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SUB–RIEMANNIAN GEODESICS ASSOCIATED TO CR-GEOMETRY

ON HEISENBERG GROUP H3.

Stanislav Froĺık1, Jaroslav Hrdina2

We introduce a class of curves corresponding to the class of metrics of sub-

Riemannian geometry on the Heisenberg group H3. Any curve from the class belongs to
a set of geodesics corresponding to a sub-Riemannian geometry on the Heisenberg group

H3. We use the symmetries of CR-geometry as an additional geometric structure on H3

to construct these curves. We demonstrate how these classes of geodesics can be used

for the corresponding control systems.
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1. Introduction

We discuss the non-trivial sub-Rimannian geometry based on Heisenberg group H3.
The control problem on H3 is well known [3, 5]. We discuss the geodesics of sub-Rimeannian
geometry with respect to additional geometric structures, [1, 2] and [4, 9]. Our solutions
are optimal trajectories with respect to a special class of metrics on distribution, [6]. On
top of that, we do not choose arbitrary symmetries for it, but to control the optimality we
choose an additional geometric structure on the distribution. The choice of the additional
geometric structure can be motivated for example by an application.

We introduce an algorithm, which embeds the Lie algebra of left invariant vector
fields into the algebra of its infinitesimal automorphisms. This algorithm is called Tanaka’s
prolongation. The algorithm has two steps. At first, it constructs the Lie algebra of au-
tomorphisms - this is called algebraic Tanaka’s prolongation - next, this algebra is seen as
an algebra of infinitesimal automorphisms. The second step is called geometric Tanaka’s
prolongation, [10, 11].

2. Heisenberg group H3

We will start with the classical definition of Heisenberg group H3 as a group of ma-
trices. The subset of 3 by 3 matrices over real numbers M3(R) given by the following set

H3 =

{1 x1 t
0 1 x2

0 0 1

 ;x1, x2, t ∈ R

}
defines a noncommutative group with the usual matrix multiplication. Consider the matrices
A,B ∈ H3.
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Then we can compute a product of matrices A and B as

AB =

1 x1 + x̄1 t+ t̄+ x1x̄2

0 1 x2 + x̄2

0 0 1


and inspect the inverse matrices to A and B

A−1 =

1 −x1 x1x2 − t
0 1 −x2

0 0 1

 , B−1 =

1 −x̄1 x̄1x̄2 − t̄
0 1 −x̄2

0 0 1

 .

Then we can inspect the group commutator [A,B] as

[A,B] = ABA−1B−1 =

1 0 x1x̄2 − x̄1x2

0 1 0
0 0 1


hence the commutator subgroup is

Γ1(H3) = [H3,H3] = ⟨[A,B];A,B ∈ H3⟩ =

{1 0 k
0 1 0
0 0 1

 ; k ∈ R

}
.

Now, assume C ∈ Γ1(H3) be an element of the commutator subgroup and we compute the
product of a matrix A with its commutator C

AC =

1 x1 t
0 1 x2

0 0 1

1 0 k
0 1 0
0 0 1

 =

1 x1 t+ k
0 1 x2

0 0 1

 = CA,

and therefore [A,C] = AC(AC)−1 = I3. Hence Γ2(H3) = [Γ1(H3),H3] = I3 = e and
the group H3 is nilpotent of class 2. Lie group H3 is called the Heisenberg group with 3
parameters. The nilpotence class measures the noncommutativity of the group. The Lie
algebra of the Heisenberg group over the real numbers is known as Heisenberg algebra h3,
[5, 8]. It is represented using the space of 3 by 3 matrices of the form

h3 =

{0 x1 t
0 0 x2

0 0 0

 ; a, b, c ∈ R

}
where a, b, c ∈ R. The basis elements of the algebra

X =

0 1 0
0 0 0
0 0 0

 , Y =

0 0 0
0 0 1
0 0 0

 , Z =

0 0 1
0 0 0
0 0 0


satisfy the commutation relations

[X,Y ] = Z, [X,Z] = 0, [Y,Z] = 0.

In the following, we shall associate with this group a noncommutative geometry of step
2. This geometry will have the Heisenberg principle built in. The bijection Φ : R3 → M3(R),

Φ(x1, x2, t) =

1 x1 t
0 1 x2

0 0 1


induces a noncommutative group law structure on R3

(1) (x1, x2, t) ◦ (x′
1, x

′
2, t

′) = (x1 + x′
1, x2 + x′

2, t+ t′ + x1x
′
2).

The zero element is e = (0, 0, 0) and the inverse of (x1, x2, t) is (−x1,−x2, x1x2− t). The set
R3 together with the group law (1) will be called the nonsymmetric 3-dimensional Heisenberg
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group. This group can be viewed as a Lie group. The left translation La : H3 → H3, Lag =
ag,∀g ∈ H3 is an analytic diffeomorphism with inverse L−1

a = La−1 . A vector field x on H3

is called left invariant if

(La)∗(Xg) = Xag, ∀a, g ∈ H3.

The set of all left invariant vector fields form the Lie algebra of H3, dentoed by L(H3). The
Lie algebra of H3 has the same dimension as H3 and it is isomorphic to the tangent space
TeH3.

It is obvious that vector fields

n1 = ∂x1
, n2 = ∂x2

+ x1∂t, n3 = ∂t(2)

are left invariant with respect to the Lie group law (1).
On the Heisenberg group, an important role is played by the distribution H generated

by linearly independent vector fields n1 and n2 :

x → Hx = spanx{n1, n2},

called the horizontal distribution. As [n1, n2] = ∂t /∈ H, the horizontal distribution H is not
involutive, and hence, by Frobenius theorem, it is not integrable, i.e. there is no surface
locally tangent to H. A vector field V on R3 is called horizontal if and only if Vx ∈ Hx,∀x.
A curve q : [0, 1] → R3 is called horizontal if the velocity vector q̇(s) is a horizontal vector
field along q(s). Horizontality is a constraint on velocities and it is called a non-holonomic
constraint. It is easy to show that any two points in H3 can be joined by a piece-wise
horizontal curve, i.e. a curve tangent to the horizontal distribution. The choice of vector
fields n1 and n2 as an orthonormal basis on the distribution H introduces a sub-Riemannian
structure on the Heisenberg group H3.

We say that the pair (û(t), q̂(t)) is an optimal pair if q̂(t) is a length minimizer curve
with respect to sub-Riemannian structure on H and satisfies q̇ = u1n1(q) + u2n2(q), q ∈ M
with the control function u = û(t). The Hamiltonian of the maximum principle is a family
of smooth functions parameterized by controls u = (u1, u2) ∈ R2 and a real number, ν ≤ 0
given by

H(ν, f) = ⟨u1n1 + u2n2, f⟩+
ν

2
(u2

1 + u2
2) = u1h1 + u2h2 +

ν

2
(u2

1 + u2
2),

where ⟨·, ·⟩ denotes evaluation. If ν = 0, we speak about an abnormal Hamiltonian. Other-
wise, we speak about a normal Hamiltonian and we normalize H by ν = −1. The curve q(t)
is called an extremal, and it is a normal (abnormal) if it corresponds to a normal (abnormal)
Hamiltonian of Pontryagin’s maximum principle. The projection of each abnormal to M
coincides with a projection of a normal for 1-step filtrations, so for Heisenberg group H3.
Thus we focus only on normal extremals.

Now, let us construct the adjoint representation of left invariant vector fields n1, n2.

ad n1 =

0 0 0
0 0 0
0 1 0

 , ad n2 =

 0 0 0
0 0 0
−1 0 0


and left-invariance leads to the following system which takes the form

ḣi = ⟨(ad dH)ei, ξ⟩ = ⟨ei, (ad dH)∗ξ⟩,(3)

where ei is the basis of h3 corresponding to ni and H : h∗3 → R corresponds to H and
ξ ∈ T ∗

0H3.
The left-invariant Hamiltonian H satisfies dH = h1dh1+h2dh2 and thus H = h1e1+

h2e2 in formula (3). Direct computation gives the adjoint action ad(h1e1 + h2e2) viewed as
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a linear endomorphism represented in the basis ei as 0 0 0
0 0 0

−h2 h1 0

(4)

According to (3) we read off directly the vertical system from the action of the matrix (4)
and the horizontal system follows from the form of generators of the distribution (2). These
considerations leads to the formulation of the following proposition.

Proposition 1. Normal extremals of the approximation are solutions of the system

ḣ1 = −h3h2, ḣ2 = h3h1, ḣ3 = 0(5)

ẋ = h2, ẏ = ϕh2, ϕ̇ = h1(6)

where (5) is the vertical system and (6) is the horizontal system.

Let us start with the solution of the vertical system (5), which is independent of the
horizontal part (6).

Proposition 2. The system (5) has the solution of the form

h1 = C2 sin(C1t) + C3 cos(C1t)

h2 = C3 sin(C1t)− C2 cos(C1t)

h3 = C1

in the generic case h3 ̸= 0 for constants C1, C2, C3. In the case h3 = 0 we get h2 = C2, h1 =
C3 for constants C1, C2, C3.

Proof. The equation ḣ3 = 0 implies h3 = C1 for some constant C1. If C1 = 0 then h2 = C2

and h1 = C3 for constants C2, C3. If C1 ̸= 0, then we get the system(
ḣ1

ḣ2

)
=

(
0 −C1

C1 0

)(
h1

h2

)
with constant coefficients and we get the solution by the discussion of eigenvalues and
eigenvectors of the corresponding matrix. □

The horizontal system can be solved by the direct integration. Moreover, it is sufficient
to consider the initial condition x(0) = y(0) = ϕ(0) = 0, because we get solutions with
different initial conditions using the group structure of H3.

Proposition 3. In the case h3 ̸= 0, the horizontal system (6) has solutions satisfying
x(0) = y(0) = ϕ(0) = 0

x1 =
1

C1
(C3 − C2 sin(C1t)− C3 cos(C1t)),

x2 =
1

4C2
1

(2C1(C
2
2 + C2

3 )t− 4C2C3 cos(C1t) + 2C2C3 cos(2C1t)

− 4C2
2 sin(C1t) + (C2

2 − C2
3 ) sin(2C1t) + 2C2C3),

t =
1

C1
(C2 − C2 cos(C1t) + C3 sin(C1t))

for constants C1, C2, C3 from proposition 2. In the degenerate case h3 = 0 we get x =
C2t, y = 12C2C3t

2, ϕ = C3t for C2, C3 from proposition 2.
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3. Symmetries of CR-structure on H3

There exist two well-known nondegenerated geometric structures on top of H3. These
are Lagrange contact structure and CR-structure. From now on we have chosen CR-structure
for further investigations. We will compute both algebraic and geometric Tanaka’s prolon-
gation in the case of algebra H3. Formally a CR (Cauchy-Riemann) structure is a smooth
manifold N equipped with a distribution D and an almost complex structure on D on this
distribution (i.e. an affinor J , such that J2 = −IdD). Now, let us introduce it in a greater
detail.

Definition 1. Let M be a smooth manifold. Let J : TM → TM be a smooth tensor field
such that J2 = −IdM . We call tensor field J the almost complex structure on M .

Definition 2. Let M be a smooth manifold. Let D be a distribution on M and J : D → D
is an almost complex structure on D. We call (M,D, J) the CR-structure structure on M .

Now we will define an additional CR-structure on distribution H = ⟨n1, n2⟩ on H3.
An almost complex structure on distribution H, is defined on basis elements as

J(n1) = −n2, J(n2) = n1.(7)

In particular Lie algebra

g0 ∼= {A ∈ Hom(H,H), AJ = JA}
preserve CR-structure. So A ∈ g0 if and only if A = id or A = J because of another
automorphism

A1(n1) = n2, A1(n2) = n1, A2(n1) = −n1, A2(n2) = −n1,

do not belong to g0 because A1J ̸= JA1 and A2J ̸= JA2. This geometric structure is also
called Cauchy–Riemannian structure and is frequently studied, [7]. To embed the control
algebra to the algebra of infinitesimal automorphisms we use Tanaka’s prolongation. In
the rest of the chapter, we will explicitly show how to calculate algebraic and geometric
extensions of the Lie algebra g0.

3.1. Algebraic Tanaka’s prolongation.

Algebraic Tanaka’s prolongation is the standard algebraic method, which can be found
in [10, 11].

Theorem 3.2. Let H3 be the Heisenberg group equipped with distribution generated by vector
fields X1 = n1 and X2 = n2 from (2) and with CR–structure (7). The algebra of infinitesimal
authomorphisms of CR–structure (7) is generated by eight basis elements it forms a Lie
algebra with multiplication Table 1.

Proof. Now, let us proceed in the construction of algebra of infinitesimal automorphisms of
h. Let

g0 = span{Λ0
1,Λ

0
2},

where we choose automorphisms as follows

Λ0
1(X1) = X1, Λ0

1(X2) = X2, Λ0
2(X1) = X2, Λ0

2(X2) = −X1.

Because Λ0
i are derivations, then we can compute

Λ0
1(X3) = Λ0

1([X1, X2]) = [Λ0
1(X1), X2] + [X1,Λ

0
1(X2)] = [X1, X2] + [X1, X2] = 2X3,

Λ0
2(X3) = Λ0

2([X1, X2]) = [Λ0
2(X1), X2] + [X1,Λ

0
2(X2)] = [X2, X2] + [X1,−X1] = 0.

Because δ1 ∈ Hom (g−1, g0)
⊕

Hom (g−2, g−1) then

δ1(X1) = α11Λ
0
1 + α12Λ

0
2, δ1(X2) = α21Λ

0
1 + α22Λ

0
2,
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[·, ·] X1 X2 X3 Λ0
1 Λ0

2 Λ1
1 Λ1

2 Λ2

X1 0 X3 0 −X1 −X2 −Λ0
1 3Λ0

2 Λ1
2

X2 −X3 0 0 −X2 X1 −3Λ0
2 −Λ0

1 −Λ1
1

X3 0 0 0 −2X3 0 2X2 −2X1 0
Λ0
1 X1 X2 2X3 0 0 −Λ1

1 −Λ1
2 −2Λ2

Λ0
2 X2 −X1 0 0 0 Λ1

2 −Λ1
1 0

Λ1
1 Λ0

1 3Λ0
2 −2X2 Λ1

1 −Λ1
2 0 −2Λ2 0

Λ1
2 −3Λ0

2 Λ0
1 2X1 Λ1

2 Λ1
1 2Λ2 0 0

Λ2 −Λ1
2 Λ1

1 0 2Λ2 0 0 0 0

Table 1. Multiplication table of Tanaka’s prolongation for Heisenberg
group H3

for some αij , 1 ≤ i, j ≤ 2. if δ1 ∈ g1 then

δ1(X3) = [δ1(X1), X2] + [X1, δ
1(X2)] = [α11Λ

0
1 + α12Λ

0
2, X2] + [X1, α21Λ

0
1 + α22Λ

0
2]

= α11Λ
0
1(X2) + α12Λ

0
2(X2)− α21Λ

0
1(X1)− α22Λ

0
2(X1)

= α11X2 − α12X1 − α21X1 − α22X2 = (α11 − α22)X2 + (−α12 − α21)X1.

Similarly we can compute

δ1([X1, X3]) = [δ1(X1), X3] + [X1, δ
1(X3)]

= [α11Λ
0
1 + α12Λ

0
2, X3] + [X1, (−α12 − α21)X1 + (α11 − α22)X2]

= α11Λ
0
1(X3) + α12Λ

0
2(X3) + (α12 + α21)[X1, X1] + (α11 − α22)[X1, X2]

= 2α11X3 + (α11 − α22)X3 = 0,

which obviously implies 3α11 = α22. Furthermore, we compute

δ1([X2, X3]) = [δ1(X2), X3] + [X2, δ
1(X3)]

= [α21Λ
0
1 + α22Λ

0
2, X3] + [X2, (−α12 − α21)X1 + (α11 − α22)X2]

= α21Λ
0
1(X3) + α22Λ

0
2(X3) + (α12 + α21)[X1, X2] + (α11 − α22)[X2, X2]

= 2α21X3 + (α12 + α21)X3 = 0

which similarly implies 3α21 = −α12 thus we can evaluate δ1 as

δ1(X1) = α11Λ
0
1 − 3α21Λ

0
2, δ1(X2) = α21Λ

0
1 + 3α11Λ

0
2.

To find g2 let us choose parameters α11, α21 as (α11, α21) = (1, 0) respectively (α11, α21) =
(0, 1), so we get

Λ1
1(X1) = Λ0

1 Λ1
1(X2) = 3Λ0

2, Λ1
2(X1) = −3Λ0

2, Λ1
2(X2) = Λ0

1.

Now, let us evaluate X3 in Λ1
i .

Λ1
1(X3) = [Λ1

1(X1), X2] + [X1,Λ
1
1(X2)] = [Λ0

1, X2]− [3Λ0
2, X1] = X2 − 3X2 = −2X2

Λ1
2(X3) = [Λ1

2(X1), X2] + [X1,Λ
1
2(X2)] = [−3Λ0

2, X2]− [Λ0
1, X1] = 3X1 −X1 = 2X1

Assume, that δ2 ∈ Hom (g−1, g1)
⊕

Hom (g−2, g0), then

δ2(X1) = β11Λ
1
1 + β12Λ

1
2, δ2(X2) = β21Λ

1
1 + β22Λ

1
2,

for some βij , 1 ≤ i, j ≤ 2. Let us compute X3, [X1, X3], [X2, X3] for δ
2 ∈ g2.

δ2(X3) = [δ2(X1), X2] + [X1, δ
2(X2)] = [β11Λ

1
1 + β12Λ

1
2, X2]− [β21Λ

1
1 + β22Λ

1
2, X1]

= 3β11Λ
0
2 + β12Λ

0
1 − β21Λ

0
1 + 3β22Λ

0
2 = (β12 − β21)Λ

0
1 + (3β11 + 3β22)Λ

0
2
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From calculation of [X1, X3], [X2, X3] in δ2 we are able to compute values of coefficients βij .

δ2([X1, X3]) = [β11Λ
1
1 + β12Λ

1
2, X3]− [(β12 − β21)Λ

0
1 + (3β11 + 3β22)Λ

0
2, X1]

= −2β11X2 + 2β12X1 + (β21 − β12)X1 − (3β11 + 3β22)X2

= (β12 + β21)X1 + (−5β11 − 3β22)X2 = 0

δ2([X2, X3]) = [β21Λ
1
1 + β22Λ

1
2, X3]− [(β12 − β21)Λ

0
1 + (3β11 + 3β22)Λ

0
2, X2]

= −2β21X2 + 2β22X1 + (β21 − β12)X2 + (3β11 + 3β22)X1

= (3β11 + 5β22)X1 + (−β21 − β12)X2 = 0

These two equations imply following system of equations

β12 + β21 = 0 −5β11 − 3β22 = 0

3β11 + 5β22 = 0 −β21 − β12 = 0

whose solution is β11 = β22 = 0, β12 = −β21, so

δ2(X1) = −β21Λ
1
2, δ2(X2) = β21Λ

1
1.

Let us try to compute g3. Chose β21 = 1 and then β21 = 0. It is obvious that such mapping
degenerates with such choice.

Λ2
1(X1) = −Λ1

2, Λ2
1(X2) = Λ1

1, Λ2
2(X1) = 0, Λ2

2(X2) = 0

Compute X3 in Λ2
i .

Λ2
1(X3) = [Λ2

1(X1), X2] + [X1,Λ
2
1(X2)] = [−Λ1

2, X2]− [Λ1
1, X1] = Λ0

1 − Λ0
1 = 0

Λ2
2(X3) = [Λ2

2(X1), X2] + [X1,Λ
2
2(X2)] = [0, X2]− [0, X1] = 0

Now assume, that δ3 ∈ Hom (g−1, g2), then

δ3(X1) = γ1Λ
2
1, δ3(X2) = γ2Λ

2
1,

for some γi, i = 1, 2. Now we will compute X3, [X1, X3], [X2, X3] in δ3 ∈ g3.

δ3(X3) = [δ3(X1), X2] + [X1, δ
3(X2)] = [γ1Λ

2
1, X2]− [γ2Λ

2
1, X1] = γ1Λ

1
1 + γ2Λ

1
2

δ3([X1, X3]) = [γ1Λ
2
1, X3]− [γ1Λ

1
1 + γ2Λ

1
2, X1] = 0− γ1Λ

0
1 − 3γ2Λ

0
2

δ3([X2, X3]) = [γ2Λ
2
1, X3]− [γ1Λ

1
1 + γ2Λ

1
2, X2] = 0− 3γ1Λ

0
2 − γ2Λ

0
1

Obviously, the system has a single solution γ1 = γ2 = 0. Compute the rest of the brackets
[Λj

i ,Λ
l
k] and construct multiplication table of this Lie algebra.

[Λ0
1,Λ

0
2](X1) = [X1,Λ

0
2] + [Λ0

1, X2] = −X2 +X2 = 0

[Λ0
1,Λ

0
2](X2) = [X2,Λ

0
2] + [Λ0

1,−X1] = −(−X1)−X1 = 0

[Λ1
1,Λ

0
1](X1) = [Λ0

1,Λ
0
1] + [Λ1

1, X1] = Λ0
1

[Λ1
1,Λ

0
1](X2) = [3Λ0

2,Λ
0
1] + [Λ1

1, X2] = 3Λ0
2

[Λ1
1,Λ

0
2](X1) = [Λ0

1,Λ
0
2] + [Λ1

1, X2] = 3Λ0
2

[Λ1
1,Λ

0
2](X2) = [3Λ0

2,Λ
0
2] + [Λ1

1,−X1] = −Λ0
1

[Λ1
2,Λ

0
1](X1) = [−3Λ0

2,Λ
0
1] + [Λ1

2, X1] = −3Λ0
2

[Λ1
2,Λ

0
1](X2) = [Λ0

1,Λ
0
1] + [Λ1

2, X2] = Λ0
1

[Λ1
2,Λ

0
2](X1) = [−3Λ0

2,Λ
0
2] + [Λ1

2, X2] = Λ0
1

[Λ1
2,Λ

0
2](X2) = [Λ0

1,Λ
0
2] + [Λ1

2,−X1] = 3Λ0
2

[Λ1
1,Λ

1
2](X1) = [Λ0

1,Λ
1
2] + [Λ1

1,−3Λ0
2] = 2Λ1

2

[Λ1
1,Λ

1
2](X2) = [3Λ0

2,Λ
1
2] + [Λ1

1,Λ
0
1] = −2Λ1

1
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[Λ2,Λ0
1](X1) = [−Λ1

2,Λ
0
1] + [Λ2, X1] = −2Λ1

2

[Λ2,Λ0
1](X2) = [Λ1

1,Λ
0
1] + [Λ2, X2] = 2Λ1

1

[Λ2,Λ0
2](X1) = [−Λ1

2,Λ
0
2] + [Λ2, X2] = 0

[Λ2,Λ0
2](X2) = [Λ1

1,Λ
0
2] + [Λ2,−X1] = 0

[Λ2,Λ1
1](X1) = [−Λ1

2,Λ
1
1] + [Λ2,Λ0

1] = 0

[Λ2,Λ1
1](X2) = [Λ1

1,Λ
1
1] + [Λ2, 3Λ0

2] = 0

[Λ2,Λ1
2](X1) = [−Λ1

2,Λ
1
2] + [Λ2,−3Λ0

2] = 0

[Λ2,Λ1
2](X2) = [Λ1

1,Λ
1
2] + [Λ2,Λ0

1] = 0

which completes the proof □

3.3. Geometric Tanaka’s prolongation.

We got the 8-dimensional Lie algebra with the multiplication table (1). For simplicity
denote elements of Tanaka’s prolongation (m0)

∞ as ei, so we got the following multiplication
table.

[·, ·] e1 e2 e3 e4 e5 e6 e7 e8
e1 0 e3 0 −e1 −e2 −e4 3e5 e7
e2 −e3 0 0 −e2 e1 −3e5 −e4 −e6
e3 0 0 0 −2e3 0 2e2 −2e1 0
e4 e1 e2 2e3 0 0 −e6 −e7 −2e8
e5 e2 −e1 0 0 0 e7 −e6 0
e6 e4 3e5 −2e2 e6 −e7 0 −2e8 0
e7 −3e5 e4 2e1 e7 e6 2e8 0 0
e8 −e7 e6 0 2e8 0 0 0 0

Table 2. Relabeled multiplication table

The next computation is based on the algorithm, which can be found in [11]. To find
infinitesimal automorphisms, we will introduce so-called Maurer-Cartan form, precisely the
mapping ω : TM → g such that ω = ωx1dx1 + ωx2dx2 + ωtdt holds ω(Xi) = ei.

Lemma 1. Let H3 be a Heisenberg group equipped with distribution generated by vector
fields n1 and n2 from (2) and g is a Lie algebra generated by elements ei, i = 1, . . . , 3 such
that [e1, e2] = e3. The Maurer-Cartan form is a mapping ω : TH3 → g such that

ω = (e2 − te3)dx1 + e3dx2 + e1dx1 = dte1 + dx1e2 + (dx2 − tdx1)e3

and denote its parts as

ω−1 = dte1 + dx1e2,

ω−2 = (dx2 − tdx1)e3.

Proof. It yields

e1 = (ωx1dx1 + ωx2dx2 + ωtdt)(∂t) = ωt,

e2 = (ωx1
dx1 + ωx2

dx2 + ωtdt)(∂x1
+ t∂x2

) = ωx1
+ tωx2

,

e3 = (ωx1
dx1 + ωx2

dx2 + ωtdt)(∂x2
) = ωx2

.

and substituting to the Maurer-Cartan form we complete the proof. □
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Theorem 1. The Lie algebra of infinitesimal automorphisms g0 ⊕ g1 ⊕ g2 is generated by
following vector fields:

Ye1 = ∂t + x1∂x2

Ye2 = ∂x1

Ye3 = ∂x2

Ye4 = x1∂x1
+ 2x2∂x2

+ t∂t

Ye5 = t∂x1
− 1

2
(x1

2 − t2)∂x2
− x1∂t

Ye6 =

(
1

2
t2 − 3x1

2

)
∂t + (3x1t− 2x2)∂x1 +

(
3

2
t2x1 − 2x2t+ 2x2 −

1

2
x1

3

)
∂x2

Ye7 = (2x2 + tx1) ∂t +
1

2
(x1

2 − 3t2)∂x1 +
(
2x1x2 − t3

)
∂x2

Ye8 = −1

2
[Ye6 , Ye7 ]

Proof. Let e3 ∈ g−2, then desired Ye3 holding

ω(Ye3) = u−2,

where u−2 = e3, is exactly Ye3 = ∂x2 . Now let e2 ∈ g−1 such that we look for Ye2 holding
ω(Ye2) = u−1 + u−2, where

u−1 = e2, du−2 = [u−1, ω−1].

Evaluation of these equations

u−1 = e2

du−2 = [e2,dte1 + dx1e2] = −dte3

yielding u−1 = e2, u
−2 = −te3, is solution Ye2 of equation ω(Ye2) = e2 − te3.

Ye2 = ∂x1 + t∂x2 − t∂x2 = ∂x1

Furthermore let e1 ∈ g−1 such that we look for Ye1 holding ω(Ye1) = u−1 + u−2, where

u−1 = e1, du−2 = [u−1, ω−1].

Evaluation of these equations

u−1 = e1

du−2 = [e1,dte1 + dx1e2] = dx1e3

yielding u−1 = e1, u
−2 = x1e3, is solution Ye1 of equation ω(Ye1) = e1 + x1e3.

Ye1 = ∂t + x1∂x2

It yields algebra ⟨Ye1 , Ye2 , Ye3⟩ isomorphic with algebra ⟨X1, X2, X3⟩. Now, let e4 ∈ g0 such
that we look for Ye4 holding ω(Ye4) = u0 + u−1 + u−2, where

u0 = e4,

du−1 = [u0, ω−1],

du−2 = [u−1, ω−1] + [u0, ω−2].

Evaluation of these equations

u0 = e4

du−1 = [e4,dte1 + dx1e2] = dte1 + dx1e2
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yielding u0 = e4, u
−1 = te1 + x1e2 and moreover

du−2 = [te1 + x1e2,dte1 + dx1e2] + [e4, (dx2 − tdx1)e3] = (tdx1 − x1dt)e3 + 2(dx2 − tx1)e3

yielding u−2 = (2x2 − x1t)e3, we get solution Ye4 of equation ω(Ye4) = e4 + te1 + x1e2 +
(2x2 − x1t)e3.

Ye4 = x1∂x1 + 2x2∂x2 + t∂t

Next let e5 ∈ g0 such that we look for Ye5 holding ω(Ye5) = u0 + u−1 + u−2, where

u0 = e5,

du−1 = [u0, ω−1],

du−2 = [u−1, ω−1] + [u0, ω−2].

Evaluation of these equations

u0 = e5

du−1 = [e5,dte1 + dx1e2] = dte2 − dx1e1

yielding u0 = e4, u
−1 = te2 − x1e1 and moreover

du−2 = [te2 − x1e1,dte1 + dx1e2] + [e5, (dx2 − tdx1)e3] = (−tdt− x1dx1)e3

yielding u−2 = − 1
2 (t

2 + x1
2)e3, we get solution Ye5 of equation ω(Ye5) = e5 + te2 − x1e1 −

1
2 (t

2 + x1
2)e3.

Ye5 = t∂x1 −
1

2
(x1

2 − t2)∂x2 − x1∂t

Now let e6 ∈ g1 such that we look for Ye6 holding ω(Ye6) = u1 + u0 + u−1 + u−2, where

u1 = e6,

du0 = [u1, ω−1],

du−1 = [u1, ω−2] + [u0, ω−1],

du−2 = [u−1, ω−1] + [u0, ω−2].

Evaluation of these equations

u1 = e6

du0 = [e6,dte1 + dx1e2] = dte4 + 3dx1e5

yielding u1 = e6, u
0 = te4 + 3x1e5 and moreover

du−1 = [te4 + 3x1e5,dte1 + dx1e2] + [e6, (dx2 − tdx1)e3]

= (3x1dt+ 3tdx1 − 2dx2)e2 + (tdt− 3x1dx1)e1,

yielding u−1 = 1
2 (t

2 − 3x1
2)e1 + (3x1t− 2x2)e2 and additionally

du−2 =

[
1

2
(t2 − 3x1

2)e1 + (3x1t− 2x2)e2,dte1 + dx1e2

]
+ [te4 + 3x1e5, (dx2 − tdx1)e3]

=

(
2tdx2 − 2t2dx1 − 3tx1dt+ 2x2dt+

1

2
t2dx1 −

3

2
x1

2dx1

)
e3

we get u−2 =
(
2x2t− 3

2 t
2x1 − 3tx1

3
)
e3.

From those equations we get solution Ye6 of equation ω(Ye6) = e6+te4+3x1e5+
1
2

(
t2 − 3x1

2
)
e1+

(3x1t− 2x2)e2 +
(
2x2 − 3

2 t
2x1 − 1

2x1
3
)
e3.

Ye6 =

(
1

2
t2 − 3x1

2

)
∂t + (3x1t− 2x2)∂x1 +

(
3

2
t2x1 − 2x2t+ 2x2 −

1

2
x1

3

)
∂x2
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Finally let e7 ∈ g1 such that we look for Ye7 holding ω(Ye7) = u1 + u0 + u−1 + u−2,
where

u1 = e7,

du0 = [u1, ω−1],

du−1 = [u1, ω−2] + [u0, ω−1],

du−2 = [u−1, ω−1] + [u0, ω−2].

Evaluation of these equations

u1 = e7

du0 = [e7,dte1 + dx1e2] = dx1e4 − 3dte5

yielding u1 = e7, u
0 = x1e4 − 3te5 and moreover

du−1 = [x1e4 − 3te5,dte1 + dx1e2] + [e7, (dx2 − tdx1)e3]

= (x1dx1 − 3tdt− 2dx2)e2 + (tdx1 + x1dt+ 2dx2)e1,

yielding u−1 = (tx1 + 2x2)e1 +
1
2 (x1

2 − 3t2)e2 and additionally from equation

du−2 =

[
(tx1 + 2x2)e1 +

1

2
(x1

2 − 3t2)e2,dte1 + dx1e2

]
+ [x1e4 − 3te5, (dx2 − tdx1)e3]

=

(
2x1dx2 + 2x2dx1 − tx1dx1 −

1

2
x1

2dt+
3

2
t2dt

)
e3

we get u−2 =
(
2x1x2 − 1

2 tx1
2 + 1

2 t
2
)
e3.

Accordingly we get solution Ye7 of equation ω(Ye7) = e7 + x1e4 − 3te5 + (tx1 + 2x2)e1 +
1
2 (x1

2 − 3t2)e2 +
(
2x1x2 − 1

2 tx1
2 + 1

2 t
2
)
e3.

Ye7 = (2x2 + tx1) ∂t +
1

2
(x1

2 − 3t2)∂x1
+
(
2x1x2 − t3

)
∂x2

We computed seven infinitesimal automorphisms, which preserves the horizontal distribution
of our mechanism. The Lie bracket of vector fields Ye6 and Ye7 is defined by Lie algebra
multiplicative table 1

2 [Ye6 , Ye7 ] = −2Ye8 which completes the proof. □

4. Notes on almost optimal control

We will use flows of vector fields from Theorem 1 given from the Tanaka’s prolongation
to design geodesics of Sub-Riemannian geometry. For every vector field Y from Theorem 1,
we can find its flow and use this flow to map a class of geodesics in sub-Riemannian geometry
3, which was defined by the choice of n1 and n2 from (2) as the orthonormal basis. The left-
invariance of the Hamiltonian guarantees that the mapped class of curves will form geodesics
of the pullback of the original metric. Therefore, we consider the vector fields [Y, n1] and
[Y, n2] orthonormal. We continue with a direct computation that we demonstrate on two
vector fields. Here, as an example, we will display flows of vector fields of Ye4 , Ye5 ∈ g0.

Lemma 4.1. Let Ye4 and Ye5 are vector fields from Theorem 1 then their flows are the
following maps

Flowe4
t =

 x1e
t

x2e
2t

tet


Flowe5

t =

 t sin(t) + x1 cos(t)
t2 sin(t) cos(t)

2 − x1
2 sin(t) cos(t)

2 + cos2(t)tx1 − tx1 + x2

t cos(t)− x1 sin(t)


Proof. Direct computation completes the proof. □
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At this moment, we can construct classes of geodesics corresponding to different
metrics on H. The procedure is straightforward, so we demonstrate it with one example.
For example in the simple case of the flow Flowe4

t , the curves

x1 =
es

C1
(C3 − C2 sin(C1t)− C3 cos(C1t)),

x2 =
e2s

4C2
1

(2C1(C
2
2 + C2

3 )t− 4C2C3 cos(C1t) + 2C2C3 cos(2C1t)

− 4C2
2 sin(C1t) + (C2

2 − C2
3 ) sin(2C1t) + 2C2C3),

t =
es

C1
(C2 − C2 cos(C1t) + C3 sin(C1t))

are geodesics of Sub-Riemannian structure based on vector fields

n̄1 = [x1∂x1
+ 2x2∂x2

+ t∂t, ∂x1
− x2∂t] = −2x2∂t + 2x2∂t − ∂x1

= −∂x1

n̄2 = [x1∂x1
+ 2x2∂x2

+ t∂t, ∂x2
] = −2∂x2

With this procedure, we are able to construct classes of geodesics corresponding to
the class of metrics on the Heisenberg group H3. That means we have proposed a method,
how to transform a geodesic to an almost optimal curve with respect to a class of metrics.
In the sequel, we could use an elementary set of initial geodesics which would be extended
to any almost optimal curve, under some assumptions, to find solution, as studied in [6].
Further analysis could, for example, propose how to classify these geodesics or how to control
a dynamic system based on H3.
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