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The purpose of this study is to present some fixed point theorems by combining

the contractions of Geraghty and Hardy-Rogers with F -contraction and α-admissible

concept in the setting of set-valued mappings under weaker conditions. We derive new
fixed point results on a metric space endowed with a partial ordering/graph by using the

results obtained herein. We give also an example and an application to support new
theory.
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1. Introduction

The multivalued fixed point theory has many and different applications as in inte-
gral or differential inclusions, economy, optimization, etc. The contraction principle due to
Banach has been generalized in different directions and one of such generalizations is due
to Nadler [19], where he used the Pompeiu-Hausdorff metric to establish some fixed point
results of multivalued mappings in metric spaces. Later many authors established some re-
sults in nonlinear analysis concerning the multivalued fixed point theory and its applications
using the Pompeiu-Hausdorff distance, for more details, see [1–3,6, 8, 13,14,17,25].

Samet et al. [21] introduced a new concept called as α-admissible, they obtained some
fixed point results for α-ψ-contractive mappings, later many authors invested such concepts
to establish some results, see [5, 12, 14, 18]. Recently, Wardowski [26] introduced a new
type of contractions called as F -contraction to show the existence of fixed points for such
contraction by more simple method of proof than Banach’s one. After that, several authors
studied on different variations of F -contraction for single-valued and multivalued mappings,
for example, see [1, 3, 4, 7, 9, 13,16,17,20,22,25,27].

In this study, we combine the notion of α-admissible with Wardowski contraction
and the contractions of Geraghty and Hardy-Rogers in order to introduce new types of
multivalued contractions to establish some fixed point theorems in the setting of complete
metric spaces. We derive new fixed point results on a metric space endowed with a partial
ordering/graph by using the results obtained herein. Finally, we give an example and an
application of the existence of solution for an integral inclusion to illustrate our results.
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2. Preliminaries

Here, we recollect some basic definitions, lemmas, notations and some known theorems
which are helpful for understanding of this paper. Let (X, d) be a metric space, and let
CB(X) be a set of nonempty, closed and bounded subsets of X, the Pompeiu -Hausdorff
metric is defined as:

H(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
,

for all A,B ∈ CB(X), where d(a,B) = inf{d(a, b) : b ∈ B}. Note that, if A = {a} (singleton)
and B = {b}, then H(A,B) = d(a, b). Also, denote the family of nonempty and closed
subsets of X by CL(X) and the family of nonempty and compact subsets of X by K(X).
Note that H : CL(X) × CL(X) → [0,∞] is a generalized Pompeiu-Hausdorff metric, that
is, H(A,B) =∞ if max {supa∈A d(a,B), supb∈B d(b, A)} does not exist in R.

Lemma 2.1. [19] Let (X, d) be a metric space and A,B ∈ CL(X) with H(A,B) > 0. Then,
for each h > 1 and for each a ∈ A, there exists b = b(a) ∈ B such that d(a, b) < hH(A,B).

Definition 2.1. [26] Let F : (0,+∞)→ R be a function satisfying:

(F1) : F is strictly increasing,
(F2) : for each sequence {αn} in X, lim

n→∞
αn = 0 if and only if lim

n→∞
F (αn) = −∞,

(F3) : there exists k ∈ (0, 1) satisfying lim
α→0+

αkF (α) = 0.

Denote by F the set of all functions F satisfying the conditions (F1)− (F3).

Example 2.1. Let Fi : (0,+∞)→ R, i ∈ {1, 2, 3}, defined by

(1) F1(t) = ln t,
(2) F2(t) = t+ ln t,
(3) F3(t) = − 1√

t
.

Then Fi ∈ F, for each i ∈ {1, 2, 3}.

Theorem 2.1. [26] Let (X, d) be a complete metric space and T : X → X be an F -
contraction, that is, there exist F ∈ F and τ > 0 such that

τ + F ((d(Tx, Ty)) ≤ F (d(x, y)), for all x, y ∈ X.
Then T has a unique fixed point x?. Moreover, for each x ∈ X, the sequence {Tnx} converges
to x?.

Sgroi and Vetro [25] proved the existence of a fixed point for a Hardy-Rogers multi-
valued contraction as a generalization of Wardowski’s theorem in the setting of multivalued
case, they showed that must adding another condition on F which is the right continuity.
So let F∗ be set of all functions F satisfying (F1)− (F3) and
(F4) : F is right continuous.

Theorem 2.2. [25] Let (X, d) be a metric space and let T : X → CB(X) be a multivalued
F -contraction of Hardy-Rogers type, that is, there exist F ∈ F∗, τ > 0 and non-negative real
numbers α, β, γ, δ, L with α+ β + γ + 2δ = 1 and γ 6= 1 such that

2τ + F (H(Tx, Ty)) ≤ F (αd(x, y) + βd(x, Tx) + γd(y, Ty) + δd(x, Ty) + Ld(y, Tx)),

for all x, y ∈ X with H(Tx, Ty) > 0. Then T has a fixed point in X.

Firstly, Asl et al. [5] adapted the notion of α-admissible to multivalued mappings as
α∗-admissible. Afterwards, Mohammadi et al. [18] introduced the concept of α-admissible
for multivalued mappings. On the other side, Iqbal and Hussain [13] introduced the notion
of α-lower semi-continuous multivalued mappings.
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Let (X, d) be a metric space and α : X × X → [0,+∞) be a given mapping. A
mapping T : X → CL(X) is an

(1) α∗-admissible, if α(x, y) ≥ 1 implies α∗(Tx, Ty) ≥ 1, where α∗(Tx, Ty) =
inf {α(a, b) : a ∈ Tx, b ∈ Ty};

(2) α-admissible, if for each x ∈ X and y ∈ Tx with α(x, y) ≥ 1, we have α(y, z) ≥ 1
for all z ∈ Ty

(3) α-lower semi-continuous, if for x ∈ X and a sequence {xn} inX with limn→∞ d(xn,
x) = 0 and α(xn, xn+1) ≥ 1, for all n ∈ N, implies

lim inf
n→∞

d(xn, Txn) ≥ d(x, Tx).

One can easily see that each α∗-admissible mapping is also α-admissible, but the
converse is not true in general.

Throughout this paper, we will denote by Ω the set of all functions β : [0,∞)→ [0, 1)
satisfying limn→∞ β(tn) = 1 implies lim

n→∞
tn = 0.

3. Fixed point results for contractions of Hardy-Rogers type

Definition 3.1. Let (X, d) be a metric space and α : X × X → R. A mapping T : X →
CL(X) is called α-F -Geraghty contraction of Hardy-Rogers type if there exist F ∈ F, β ∈ Ω
and τ > 0 and non-negative real numbers a1, a2, a3, a4, a5 with a1 + a2 + a3 + 2a4 = 1 and
a3 6= 1 such that

τ + F (H(Tx, Ty)) ≤ F (β(N(x, y))N(x, y)), (1)

for all x, y ∈ X with α(x, y) ≥ 1 and H(Tx, Ty) > 0 where

N(x, y) = a1d(x, y) + a2d(x, Tx) + a3d(y, Ty) + a4d(x, Ty) + a5d(y, Tx).

Theorem 3.1. Let (X, d) be a complete metric space and T : X → K(X) be an α-F -
Geraghty contraction of Hardy-Rogers type. Assume that the following conditions are satis-
fied:

(1) T is an α-admissible;
(2) There exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
(3) T is an α-lower semi-continuous mapping, or X is α-regular, that is, for every se-

quence {xn} in X such that xn → x ∈ X and α (xn, xn+1) ≥ 1 for all n ∈ N, then
α (xn, x) ≥ 1 for all n ∈ N.

Then T has a fixed point.

Proof. By the hypothesis (2), there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1. If
x0 = x1 or x1 ∈ Tx1, then x1 is a fixed point of T and so the proof is completed. Because of
this, assume that x0 6= x1 and x1 /∈ Tx1, then d(x1, Tx1) > 0 and hence H(Tx0, Tx1) > 0.
Since Tx1 is compact, there exists x2 ∈ Tx1 such that d(x1, x2) = d(x1, Tx1). Now, taking
(1) into account, we get

F (d(x1, x2)) = F (d(x1, Tx1)) ≤ F (H(Tx0, Tx1))

≤ F (β(N(x0, x1))N(x0, x1))− τ
Since F is strictly increasing and β(t) < 1 for all t ≥ 0, we get

F (d(x1, x2)) < F (N(x0, x1))− τ
= F (a1d(x0, x1) + a2d(x0, Tx0) + a3d(x1, Tx1) + a4d(x0, Tx1) + a5d(x1, Tx0))− τ
≤ F (a1d(x0, x1) + a2d(x0, x1) + a3d(x1, x2) + a4d(x0, x2))− τ
≤ F ((a1 + a2 + a4)d(x0, x1) + (a3 + a4)d(x1, x2))− τ.

Since F is strictly increasing, we get

d(x1, x2) < (a1 + a2 + a4)d(x0, x1) + (a3 + a4)d(x1, x2),
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which implies that

(1− a3 − a4)d(x1, x2) < (a1 + a2 + a4)d(x0, x1).

Since a1 + a2 + a3 + 2a4 = 1 and a3 6= 1, we infer that 1− a3 − a4 > 0 and so

d(x1, x2) <
a1 + a2 + a4

1− a3 − a4
d(x0, x1) = d(x0, x1).

Consequently, we obtain

F (d(x1, x2)) ≤ F (d(x0, x1))− τ.
Following the previous procedures, we can assume that x1 6= x2 and x2 /∈ Tx2. Then
d(x2, Tx2) > 0, and so H(Tx1, Tx2) > 0. Since, α(x0, x1) ≥ 1 and T is an α-admissible
multivalued mapping, we derive that α(x1, x2) ≥ 1 for x2 ∈ Tx1. Also, since Tx2 is compact,
there exists x3 ∈ Tx2 such that d(x2, x3) = d(x2, Tx2). Regarding (1), we deduce

F (d(x2, x3)) = F (d(x2, Tx2)) ≤ F (H(Tx1, Tx2))

≤ F (β(N(x1, x2))N(x1, x2))− τ
< F (N(x1, x2))− τ
= F (a1d(x1, x2) + a2d(x1, Tx1) + a3d(x2, Tx2) + a4d(x1, Tx2) + a5d(x2, Tx1))− τ
≤ F (a1d(x1, x2) + a2d(x1, x2) + a3d(x2, x3) + a4d(x1, x3))− τ
≤ F ((a1 + a2 + a4)d(x1, x2) + (a3 + a4)d(x2, x3))− τ.

By calculations similar to the above, we get

F (d(x2, x3)) ≤ F (d(x1, x2))− τ.

By continuing in this manner, we can construct a sequence {xn} in X such that such that
xn 6= xn+1 ∈ Txn, α(xn, xn+1) ≥ 1 and

F (d(xn, xn+1)) ≤ F (d(xn−1, xn))− τ, for all n ∈ N. (2)

Let bn := d(xn, xn+1) for all n ∈ N ∪ {0} . Thus, from (2), we have

F (bn) ≤ F (bn−1)− τ ≤ · · · ≤ F (b0)− nτ, for all n ∈ N (3)

and so limn→∞ F (bn) = −∞ that together with (F2) gives

lim
n→∞

bn = 0. (4)

To prove that {xn} is a Cauchy sequence, let us consider condition (F3). Then, there exists
k ∈ (0, 1) such that

lim
n→∞

bn
kF (bn) = 0. (5)

By (3), for all n ∈ N, we infer that

bn
kF (bn)− bnkF (b0) ≤ −bnknτ ≤ 0. (6)

Letting n→∞ in (6) and using (5), we get

lim
n→∞

nbn
k = 0.

By the definition of limit, there exists n1 ∈ N such that nbn
k ≤ 1 for all n ≥ n1, and

consequently,

bn ≤
1

n1/k
, for all n ≥ n1. (7)
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Let m > n ≥ n1. Then, using the triangular inequality and (7), we have

d(xn, xm) ≤
m−1∑
j=n

d(xj , xj+1)

=

m−1∑
j=n

bj ≤
m−1∑
j=n

1

j1/k

≤
∞∑
j=n

1

j1/k
<∞.

Since it is a partial sum of a convergent chain. For n,m→∞ we get d(xn, xm)→ 0. Hence
{xn} is a Cauchy sequence. Since (X, d) is complete, so {xn} is convergent to some z ∈ X.
Now we claim z ∈ Tz, if T is α-lower semi-continuous mapping. Since d(xn, Txn) ≤
d(xn, xn+1) for all n ∈ N, by (4), we deduce limn→∞ d(xn, Txn) = 0. From α-lower semi-
continuity of T, we obtain

0 ≤ d(z, Tz) ≤ lim inf
n→∞

d(xn, Txn) = 0,

Hence d(z, Tz) = 0, since Tz is closed, so z ∈ Tz.
If X is α-regular, then α(xn, z) ≥ 1. If there exists p ∈ N such d(xp+1, T z) = 0, then from
the uniqueness of limit, d(z, Tz) = 0 and so z ∈ Tz. Otherwise there exists n2 ∈ N such
that d(xn+1, T z) > 0 which gives H(Txn, T z) > 0 for all n > n2. Thus, we have

F (d(xn+1, T z)) ≤ F (H(Txn, T z))

≤ F (β(N(xn, z))N(xn, z))− τ
< F (N(xn, z))− τ
= F (a1d(xn, z) + a2d(xn, Txn) + a3d(z, Tz) + a4d(xn, T z) + a5d(z, Txn))− τ
≤ F (a1d(xn, z) + a2d(xn, xn+1) + a3d(z, Tz) + a4d(xn, T z) + a5d(z, xn+1))− τ.

Since F is strictly increasing, we get

d(xn+1, T z) < a1d(xn, z) + a2d(xn, xn+1) + a3d(z, Tz) + a4d(xn, T z) + a5d(z, xn+1),

for all n > n2. Letting n→∞ in the previous inequality, we obtain

d(z, Tz) ≤ (a3 + a4)d(z, Tz) < d(z, Tz),

which gives that d(z, Tz) = 0. This completes the proof. �

In the next theorem, we replace K(X) with CB(X) by considering in the setting of
F∗.

Theorem 3.2. Let (X, d) be a complete metric space and T : X → CB(X) be an α-
F -Geraghty contraction of Hardy-Rogers type with F ∈ F∗. Assume that the following
conditions are satisfied:

(1) T is α-admissible.
(2) There exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1.
(3) T is α-lower semi-continuous or X is α regular.

Then T has a fixed point.

Proof. As in proof of Theorem 3.1, there exist x0 ∈ X and x1 ∈ Tx0 with α(x0, x1) ≥ 1.
If x1 ∈ Tx1, then x1 is a fixed point, suppose not, so H(Tx0, Tx1) ≥ d(x1, Tx1) > 0, using
(1), we get

F (H(Tx0, Tx1))) ≤ F (β(N(x0, x1))N(x0, x1))− τ < F (N(x0, x1))− τ.
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By the property of right continuity of F, there exists a real number h1 > 1 such that

F (h1H(Tx0, Tx1)) ≤ F (N(x0, x1))− τ. (8)

From d(x1, Tx1) < h1H(Tx0, Tx1), by Lemma 2.1, there exists x2 ∈ Tx1 such that d(x1, x2) ≤
h1H(Tx0, Tx1). Then, using (F1) and (8), we deduce

F (d(x1, x2)) ≤ F (h1H(Tx0, Tx1))

≤ F (N(x0, x1))− τ
= F (a1d(x0, x1) + a2d(x0, Tx0) + a3d(x1, Tx1) + a4d(x0, Tx1) + a5d(x1, Tx0))− τ
≤ F (a1d(x0, x1) + a2d(x0, x1) + a3d(x1, x2) + a4d(x0, x2))− τ
≤ F ((a1 + a2 + a4)d(x0, x1) + (a3 + a4)d(x1, x2))− τ,

which gives us
F (d(x1, x2)) ≤ F (d(x0, x1))− τ.

In view of the fact that T is α-admissible and α(x0, x1) ≥ 1, we have α(x1, x2) ≥ 1 for
x2 ∈ Tx1. Assume that x2 /∈ Tx2. Since F is right continuous, there exists h2 > 1 such that

F (h2H(Tx1, Tx2)) ≤ F (N(x1, x2))− τ. (9)

From d(x2, Tx2) < h2H(Tx1, Tx2), by Lemma 2.1, there exists x3 ∈ Tx2 such that d(x2, x3) ≤
h2H(Tx1, Tx2). Then, using (F1) and (9), we infer that

F (d(x2, x3)) ≤ F (h2H(Tx1, Tx2))

≤ F (N(x1, x2))− τ
= F (a1d(x1, x2) + a2d(x1, Tx1) + a3d(x2, Tx2) + a4d(x1, Tx2) + a5d(x2, Tx1))− τ
≤ F (a1d(x1, x2) + a2d(x1, x2) + a3d(x2, x3) + a4d(x1, x3))− τ
≤ F ((a1 + a2 + a4)d(x1, x2) + (a3 + a4)d(x2, x3))− τ,

which implies that
F (d(x2, x3)) ≤ F (d(x1, x2))− τ.

Continuing in this manner, we build two sequences {xn} ⊂ X and {hn} ⊂ (1,+∞) such
that xn 6= xn+1 ∈ Txn, α(xn, xn+1) ≥ 1 and

F (d(xn, xn+1)) ≤ F (hnH(Txn−1, Txn)) ≤ F (d(xn−1, xn))− τ, for all n ∈ N.
Hence,

F (d(xn, xn+1)) ≤ F (d(x0, x1))− nτ, for all n ∈ N.
which gives that

lim
n→+∞

F (d(xn, xn+1)) = 1.

From (F2), we obtain
lim

n→+∞
d(xn, xn+1) = 0.

The rest of the proof is like in the proof of Theorem 3.1. �

The following example support our theoretical results.

Example 3.1. Let X = {1, 2, 3, 4} and d(x, y) = |x − y|. Define T : X → CB(X) and
α : X ×X → [0,∞) by

Tx =

 {2}, x ∈ {1, 2}
{1}, x = 3
{3}, x = 4

and

α(x, y) =

{
0, (x, y) ∈ {(2, 3), (3, 2), (3, 4), (4, 3)}
1, otherwise.
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We claim that T is an α-F -Geraghty contraction of Hardy-Rogers type, by taking F (x) =
lnx, β(t) = t

1+t , τ = 1
4 , a1 = 1 and a2 = a3 = a4 = a5 = 0. For that, we need to show that

H(Tx, Ty) ≤ e− 1
4 β(N(x, y))N(x, y), for all x, y ∈ X with H(Tx, Ty) > 0 and α(x, y) ≥ 1.

Note that H(Tx, Ty) > 0 and α(x, y) ≥ 1 if and only if (x, y) /∈ {(x, x) : x ∈ X}∪{(2, 3), (3, 2),
(3, 4), (4, 3)}. By the symmetry property of the metric, we have the following cases:

(1) For x = 1 and y = 2, we have

H(T1, T2) = 0, N(1, 2) = a1d(1, 2) = 1 and β(N(1, 2)) =
1

2

which implies

H(T1, T2) ≤ e− 1
4 β(N(1, 2))N(1, 2).

(2) For x = 1 and y = 3, we have

H(T1, T3) = 1, N(1, 3) = a1d(1, 3) = 2 and β(N(1, 3)) =
2

3

which implies

H(T1, T3) ≤ e− 1
4 β(N(1, 3))N(1, 3).

(3) For x = 1 and y = 4, we have

H(T1, T4) = 1, N(1, 4) = a1d(1, 4) = 3 and β(N(1, 4)) =
3

4

which implies

H(T1, T4) ≤ e− 1
4 β(N(1, 4))N(1, 4).

(4) For x = 2 and y = 4, we have

H(T2, T4) = 1, N(2, 4) = a1d(2, 4) = 2 and β(N(2, 4)) =
2

3

which implies

H(T2, T4) ≤ e− 1
4 β(N(2, 4))N(2, 4).

Consequently, T is an α-F -Geraghty contraction of Hardy-Rogers type. Moreover, it is easy
to see that T is an α-admissible multivalued mapping and there exist x0 = 3 and x1 = 1 ∈
Tx0 such that α (x0, x1) ≥ 1. Also, it is obvious that T is α-lower semi-continuous. But X
is not α-regular. Indeed, consider the sequence {xn} = {4, 2, 1, 3, 3, . . . , 3, . . .} in X. Then
α (xn, xn+1) ≥ 1, for all n ∈ N and xn → 3, but α (x1, 3) = α (4, 3) = 0. Consequently, all
conditions of Theorem 3.2 (resp. Theorem 3.1) are satisfied. Then T has a fixed point which
is 2.

On the other hand, for x = 3 and y = 4, we have

H(T3, T4) = 2, and N(3, 4) = a1d(3, 4) = 1,

and hence

2τ + F (H(T3, T4)) > F (N(3, 4)).

Therefore, Theorem 2.2 can not applied to this example.

Since each α∗-admissible mapping is also α-admissible, we obtain following result.

Corollary 3.1. Let (X, d) be a complete metric space, α : X ×X → [0,+∞) be a function
and T : X → CB(X) (resp. K(X)) be a multivalued mapping. Assume that the following
assertions hold:

(i) T is an α∗-admissible;
(ii) There exist x0 ∈ X and x1 ∈ Tx0 such that α (x0, x1) ≥ 1;

(iii) T is α-lower semi-continuous or X is α-regular;
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(iv) There exist F ∈ F∗, β ∈ Ω and τ > 0 and non-negative real numbers a1, a2, a3, a4, a5 with
a1 + a2 + a3 + 2a4 = 1 and a3 6= 1 such that

τ + F (H(Tx, Ty)) ≤ F (β(N(x, y))N(x, y)),

for all x, y ∈ X with α∗(Tx, Ty) ≥ 1 and H(Tx, Ty) > 0 where

N(x, y) = a1d(x, y) + a2d(x, Tx) + a3d(y, Ty) + a4d(x, Ty) + a5d(y, Tx).

Then T has a fixed point.

Corollary 3.2. Let (X, d) be a complete metric space, α : X × X → [0,+∞) be a func-
tion and T : X → CB(X) (resp. K(X)) be an α-admissible multivalued mapping and the
following assertions hold:

(i) There exist x0 ∈ X and x1 ∈ Tx0 such that α (x0, x1) ≥ 1;
(ii) T is α-lower semi-continuous or X is α-regular;

(iii) There exist F ∈ F∗, β ∈ Ω and τ > 0 and non-negative real numbers a1, a2, a3, a4, a5 with
a1 + a2 + a3 + 2a4 = 1 and a3 6= 1 such that

x, y ∈ X, H(Tx, Ty) > 0⇒ τ + F (α(x, y)H(Tx, Ty)) ≤ F (β(N(x, y))N(x, y)), (10)

where

N(x, y) = a1d(x, y) + a2d(x, Tx) + a3d(y, Ty) + a4d(x, Ty) + a5d(y, Tx).

Then T has a fixed point.

Proof. Let x, y ∈ X such that α (x, y) ≥ 1 and H(Tx, Ty) > 0. Using (F1) and (10), we
have

τ + F (H(Tx, Ty)) ≤ τ + F (α(x, y)H(Tx, Ty)) ≤ F (β(N(x, y))N(x, y)),

and hence

τ + F (H(Tx, Ty)) ≤ F (β(N(x, y))N(x, y)),

for all x, y ∈ X with α (x, y) ≥ 1 and H(Tx, Ty) > 0. This implies that the inequality (1)
holds. Thus, the rest of proof follows from Theorem 3.2 (resp. Theorem 3.1). �

If we take α(x, y) = 1 in Corollary 3.2, we obtain a extension of Theorem 2.2 as
follows.

Corollary 3.3. Let (X, d) be a complete metric space and T : X → CB(X) (resp. K(X))
be a multivalued mapping satisfying

x, y ∈ X, H(Tx, Ty) > 0⇒ τ + F (H(Tx, Ty)) ≤ F (β(N(x, y))N(x, y)),

where F ∈ F∗, β ∈ Ω and τ > 0 and non-negative real numbers a1, a2, a3, a4, a5 with a1 +
a2 + a3 + 2a4 = 1 and a3 6= 1 and

N(x, y) = a1d(x, y) + a2d(x, Tx) + a3d(y, Ty) + a4d(x, Ty) + a5d(y, Tx).

Then T has a fixed point.

4. Some Consequences

In this section we give new fixed point results on a metric space endowed with a
partial ordering/graph, by using the results provided in previous section. Define

α : X ×X → [0,+∞), α (x, y) =

{
1, if x � y,
0, otherwise.

Then the following result is a direct consequence of our results.
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Theorem 4.1. Let (X,�, d) be a complete ordered metric space and T : X → CB(X) (resp.
K(X)) be a multivalued mapping. Assume that the following assertions hold:

(i) For each x ∈ X and y ∈ Tx with x � y, we have y � z for all z ∈ Ty;
(ii) There exist x0 ∈ X and x1 ∈ Tx0 such that x0 � x1;

(iii) T is �-lower semi-continuous, that is, for x ∈ X and a sequence {xn} in X with
limn→∞ d(xn, x) = 0 and xn � xn+1 for all n ∈ N, implies

lim inf
n→∞

d(xn, Txn) ≥ d(x, Tx)

or, for every sequence {xn} in X such that xn → x ∈ X and xn � xn+1 for all n ∈ N,
we have xn � x for all n ∈ N;

(iv) There exist F ∈ F∗, β ∈ Ω and τ > 0 and non-negative real numbers a1, a2, a3, a4, a5 with
a1 + a2 + a3 + 2a4 = 1 and a3 6= 1 such that

τ + F (H(Tx, Ty)) ≤ F (β(N(x, y))N(x, y)), (11)

for all x, y ∈ X with x � y and H(Tx, Ty) > 0 where

N(x, y) = a1d(x, y) + a2d(x, Tx) + a3d(y, Ty) + a4d(x, Ty) + a5d(y, Tx).

Then T has a fixed point.

Now, we present the existence of fixed point for multivalued mappings from a metric
space X, endowed with a graph, into the space of nonempty closed and bounded subsets
of the metric space. Consider a graph G such that the set V (G) of its vertices coincides
with X and the set E (G) of its edges contains all loops; that is, E (G) ⊇ ∆, where ∆ =
{(x, x) : x ∈ X}. We assume G has no parallel edges, so we can identify G with the pair
(V (G) , E (G)).

If we define the function

α : X ×X → [0,+∞), α (x, y) =

{
1, if (x, y) ∈ E (G) ,

0, otherwise,

then the following result is a direct consequence of our results.

Theorem 4.2. Let (X, d) be a complete metric space endowed with a graph G and T : X →
CB(X) (resp. K(X)) be a multivalued mapping. Assume that the following conditions are
satisfied:

(i) For each x ∈ X and y ∈ Tx with (x, y) ∈ E(G), we have (y, z) ∈ E(G) for all z ∈ Ty;
(ii) There exist x0 ∈ X and x1 ∈ Tx0 such that (x0, x1) ∈ E(G);

(iii) T is G-lower semi-continuous, that is, for x ∈ X and a sequence {xn} in X with
limn→∞ d(xn, x) = 0 and (xn, xn+1) ∈ E(G) for all n ∈ N, implies

lim inf
n→∞

d(xn, Txn) ≥ d(x, Tx)

or, for every sequence {xn} in X such that xn → x ∈ X and (xn, xn+1) ∈ E(G) for
all n ∈ N, we have (xn, x) ∈ E(G) for all n ∈ N;

(iv) There exist F ∈ F∗, β ∈ Ω and τ > 0 and non-negative real numbers a1, a2, a3, a4, a5 with
a1 + a2 + a3 + 2a4 = 1 and a3 6= 1 such that

τ + F (H(Tx, Ty)) ≤ F (β(N(x, y))N(x, y)), (12)

for all x, y ∈ X with (x, y) ∈ E(G) and H(Tx, Ty) > 0 where

N(x, y) = a1d(x, y) + a2d(x, Tx) + a3d(y, Ty) + a4d(x, Ty) + a5d(y, Tx).

Then T has a fixed point.
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5. An Application

In this section, we apply our obtained results to prove existence theorem of solution
for an integral inclusion of Volterra type in Banach space. For this, let X := C([a, b],R)
be the space of all continuous realvalued functions on [a, b]. Clearly X with uniform metric
d(x, y) = supt∈[a,b] |x(t)− y(t)| is a complete metric space.

Consider now the following problem

x(t) ∈ f(t) +

∫ b

a

Q(t, s, x(s))ds, t ∈ J = [a, b]. (13)

where f ∈ X and Q : J × J × R→ CB(R).
Our hypotheses are on the following data :

(A) for each x ∈ X, the multivalued operator Qx(t, s) := Q(t, s, x(s)), t, s ∈ J × J, is
lower semi-continuous;

(B) there exists a continuous mapping ρ : J × J → [0,+∞) such that

|Q(t, s, u(s))−Q(t, s, v(s))| ≤ ρ(t, s) · ln(|u(s)− v(s)|+ 1),

for all u, v ∈ X with (u, v) ∈ E(G) and u 6= v and for each (t, s) ∈ J × J ;
(C) there exists τ > 0 such that

sup
t∈J

∫ b

a

ρ(t, s)ds ≤ e−τ ;

(D) there exist x0 ∈ X and x1 ∈ Tx0 such that (x0, x1) ∈ E(G);
(E) for each x ∈ X and y ∈ Tx with (x, y) ∈ E(G), we have (y, z) ∈ E(G) for all z ∈ Ty;
(F) for every sequence {xn} in X such that xn → x ∈ X and (xn, xn+1) ∈ E(G) for all

n ∈ N, we have (xn, x) ∈ E(G) for all n ∈ N;

Theorem 5.1. Under assumptions (A) − (F ) the integral inclusion (13) has a solution in
X.

Proof. Consider the set-valued operator T : X → CB(X) as follows

Tx(t) =

{
y ∈ X : y ∈ f(t) +

∫ b

a

Q(t, s, x(s))ds, t ∈ J

}
.

Note that the integral inclusion (13) has a solution if and only if T has a fixed point in X.
For the set-valued operator Qx(t, s) : J × J → CB(R), it follows from Michaels selection
theorem for x ∈ X there exists a continuous operator qx : J × J → R such that qx(t, s) ∈
Qx(t, s) for all t, s ∈ J × J. It follows that f(t) +

∫ b
a
qx(t, s)ds ∈ Tx, so Tx is non-empty for

all x ∈ X. Since f and Qx are continuous on [a, b], resp. [a, b]2, their ranges are bounded
and hence Tx is bounded, i.e., T : X → CB(X).
Let x1, x2 ∈ X with (x1, x2) ∈ E(G) and x1 6= x2, and v1 ∈ Tx1. Then

v1(t) ∈ f(t) +

∫ b

a

Q(t, s, x1(s))ds, t ∈ J.

It follows that

v1(t) = f(t) +

∫ b

a

qx1(t, s)ds, (t, s) ∈ J × J,

where qx1
(t, s) ∈ Qx1

(t, s).
From (B), we get

|Q(t, s, x1(s))−Q(t, s, x2(s))| ≤ ρ(t, s) · ln(|x1(s)− x2(s)|+ 1),

for each (t, s) ∈ J × J. Hence, there exists w(t, s) ∈ Qx2
(t, s) such that

|qx1(t, s)− w(t, s)| ≤ ρ(t, s) · ln(|x1(s)− x2(s)|+ 1),
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for all (t, s) ∈ J × J . Consider the multivalued operator L defined by

L(t, s) = Qx2(t, s) ∩ {z ∈ R : |qx1(t, s)− z| ≤ ρ(t, s) · ln(|x1(s)− x2(s)|+ 1)},
for all (t, s) ∈ J × J . Since, by (A), L is lower semi-continuous, there exists a continuous
function qx2

(t, s) ∈ L(t, s) for t, s ∈ J. Thus, we have

v2(t) = f(t) +

∫ b

a

qx2
(t, s)ds ∈ f(t) +

∫ b

a

Q(t, s, x2(s))ds, t ∈ J

and

|v1(t, s)− v2(t, s)| ≤
∫ b

a

|qx1
(t, s)− qx2

(t, s)|ds

≤
∫ b

a

ρ(t, s) · ln(|x1(s)− x2(s)|+ 1)ds

≤ ln(d(x1, x2) + 1)

∫ b

a

ρ(t, s)ds

≤ e−τ · ln(d(x1, x2) + 1)

= e−τ · ln(d(x1, x2) + 1)

d(x1, x2)
· d(x1, x2),

for each t ∈ J. Hence, we obtain

d(v1, v2) ≤ e−τ · ln(d(x1, x2) + 1)

d(x1, x2)
· d(x1, x2).

Interchanging the role of x1 and x2, we infer

H(Tx1, Tx2) ≤ e−τ · ln(d(x1, x2) + 1)

d(x1, x2)
· d(x1, x2).

Taking logarithm of two sides in above inequality we get

τ + ln(H(Tx1, Tx2)) ≤ ln

(
ln(d(x1, x2) + 1)

d(x1, x2)
· d(x1, x2)

)
,

for all x1, x2 ∈ X with (x1, x2) ∈ E(G) and x1 6= x2, Thus, we observe that the operator T

satisfies condition (12) with F (t) = ln t, β(t) = ln(t+1)
t , a1 = 1 and a2 = a3 = a4 = a5 = 0.

All other conditions of Theorem 4.2 immediately follows by the hypothesis. Therefore, T
has a fixed point, that is, the Volterra-type integral inclusion (13) has a solution in X. �

6. Conclusion

In this paper, we have established some new fixed point theorems in the setting of
complete metric spaces by using a new type of F -contractions in which our study gives a
more general cases in the study of fixed point theory. An example have been furnished to
support of the effectiveness and usability of new theory. We have also derived new fixed
point results on a metric space endowed with a partial ordering/graph by means of our main
theorems. Finally, we have applied our new theorem to ensure the existence of solutions for
Volterra-type integral inclusions under weaker conditions than ones in [4] and [24].
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