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EXACTNESS OF THE ABSOLUTE VALUE EXACT PENALTY 
FUNCTION METHOD FOR OPTIMIZATION PROBLEMS VIA 
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In this paper, the exactness property of the classical absolute value
exact penalty function method is analyzed for a new class of nonsmooth opti-
mization problems. Thus, the conditions guaranteeing the equivalence between
the sets of optimal solutions in the considered nonsmooth constrained optimiza-
tion problem and its associated penalized optimization problem with the l1 exact
penalty function are derived in terms of upper convexi�cators under appropriate
convexity hypotheses.
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1. Introduction

Exact penalty function methods used for the solution of a constrained opti-
mization problem are based on the construction of a (penalty) function whose a
unconstrained minimizer is also a solution of the constrained optimization prob-
lem. One of the most frequently used type of an exact penalty function for solving
constrained optimization problem is the absolute value exact penalty function, also
known as the l1 exact penalty function (see, for example, [1]-[7], [11], [12], [15],
[17], [20], [27], [29], [30]-[31], and others).

The notion of convexi�cators was �rst introduced by Demyanov [9]. Recently,
the idea of convexi�cators has been employed to extend and strengthen various
results in nonsmooth analysis and optimization (see, for example, [10], [13], [14],
[19], [22]-[26], [28], and others).

In this paper, we use the concept of an upper convexi�cator to derive sharpen
results for the l1 exact penalty function method which is used for solving a non-
di¤erentiable optimization problem. We analyze the main property of the l1 exact
penalty function method, that is, exactness of the penalization. We prove the
equivalence between the set of optimal solutions of the considered convex op-
timization problem and the set of minimizers of its associated exact penalized
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optimization problem with the absolute value penalty function which is the ob-
jective function in such an unconstrained mathematical programming problem.
The result established here shows that there does exist a lower bound for the
penalty parameter which is equal to the largest Lagrange multiplier, associated to
a Karush-Kuhn-Tucker point in the original nonlinear optimization problem such
that, for any penalty parameter exceeding than the mentioned above threshold,
this equivalence holds. The main result is established for the considered nondi¤er-
entiable constrained optimization problem in which every involved function admits
an upper convexi�cator @� and, moreover, is a @�-convex function. The results es-
tablished in the paper are illustrated by the example of a nonsmooth optimization
problem in which the involved functions are @�-convex.

2. Preliminaries and Problem Formulation

In this section, we give some basic de�nitions and results, which will be used
in the sequel.

By h�; �i, we denote the inner product of the vectors. Let S be a nonempty
subset of Rn. The convex hull of S is denoted by conv S.

Lemma 2.1. Let S1 and S2 be two nonempty subsets of Rn. Then,

conv (S1 + S2) = conv S1 + conv S2.

Now, for a general reader, we recall the following de�nitions of lower and
upper Dini derivatives and also lower and upper convexi�cators in the sense of
Demyanov (see [9]).

De�nition 2.1. Let a mapping f : Rn ! R := R[f1g be an extended real-valued
function, u 2 Rn and let f(u) be �nite. The lower and upper Dini derivatives of
the function f at u in the direction d 2 Rn are de�ned, respectively, by

f� (u; d) := lim inf
�#0

f (u+ �d)� f (u)
�

;

f+ (u; d) := lim sup
�#0

f (u+ �d)� f (u)
�

.

It is worthwhile to mention that, in the case where f is locally Lipschitz at
u, f�(x; d) and f+(x; d) are continuous in d.

Along the lines of Jeyakumar and Luc [22] (see also Dutta and Chandra [14],
Golestani and Nobakhtian [19]), we give now the de�nitions of lower and upper
convexi�cators that will be useful in the sequel.

De�nition 2.2. The function f : Rn ! R is said to have an upper convexi�cator
@�f(u) � Rn at u 2 Rn if @�f(u) is closed and, for each d 2 Rn,

f� (u; d) � sup
�2@�f(u)

h�; di .
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De�nition 2.3. The function f : Rn ! R is said to have a lower convexi�cator
@�f(u) � Rn at u 2 Rn if @�f(u) is closed and, for each d 2 Rn,

f+ (u; d) � inf
�2@�f(u)

h�; di .

De�nition 2.4. The function f : Rn ! R is said to have a convexi�cator @f(u) �
Rn at u 2 Rn if @f(u) is both lower and upper convexi�cator of f at u.

De�nition 2.5. The function f : Rn ! R is said to have a semiregular lower
convexi�cator @�f(u) � Rn at u 2 Rn if @�f(u) is closed and, for each d 2 Rn,

f� (u; d) � inf
�2@�f(u)

h�; di . (1)

If equality holds in (1), then @�f(u) is called a lower regular convexi�cator of f at
u.

De�nition 2.6. The function f : Rn ! R is said to have a semiregular upper
convexi�cator @�f(u) � Rn at u 2 Rn if @�f(u) is closed and, for each d 2 Rn,

f+ (u; d) � sup
�2@�f(u)

h�; di . (2)

If equality holds in (2), then @�f(u) is called an upper regular convexi�cator of f
at u.

De�nition 2.7. The function f is said to be directionally di¤erentiable at u 2 Rn
if, for every direction d 2 Rn, the usual one-sided directional derivative of f at u
de�ned by

f�(u; d) := lim
�#0

f (u+ �d)� f (u)
�

exists.

Remark 2.1. Obviously, if f is directionally di¤erentiable at u 2 Rn, then, for
every d 2 Rn,

f�(u; d) = f� (u; d) = f+ (u; d) : (3)

A real-valued function f : Rn ! R is said to be locally Lipschitz on Rn if,
for any x 2 Rn, there exist a neighborhood U of x and a positive constant Kx > 0
such that, for every y; z 2 U , it holds jf(y)� f(z)j 5 Kx ky � zk.

De�nition 2.8. [8] The Clarke generalized directional derivative of a locally Lip-
schitz function f : X ! R at u 2 X in the direction d 2 Rn, denoted f 0 (u; d), is
given by

f 0(u; d) = lim sup
y!u
�#0

f (y + �d)� f(y)
�

: (4)
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De�nition 2.9. [8] The Clarke generalized subgradient of f at u 2 Rn, denoted
@Cf (u), is de�ned by

@Cf (u) =
�
� 2 Rn : f 0(u; d) � h�; di for all d 2 Rn

	
: (5)

It follows by the above de�nition that, for any d 2 Rn, we have
f 0(u; d) = max fh�; di : � 2 @Cf (u)g : (6)

Remark 2.2. Note that, for every �xed u 2 Rn, the Clarke generalized directional
derivative f 0(u; d) is sublinear in d on Rn and @Cf (u) is a nonempty compact
subset of Rn. Further, the following inequalities

f 0(u; d) � f+ (u; d) � f� (u; d)
hold for any direction d 2 Rn. Therefore, by De�nition 2.2 and (6), the Clarke
subdi¤erential @Cf (u) is a compact and convex upper convexi�cator of f at u. Fur-
ther, it has been shown (see, e.g., [22]) that, for a locally Lipschitz function, many
important subdi¤erentials are convexi�cators and they may contain the convex hull
of a convexi�cator.

Remark 2.3. It is well-known that if f is locally Lipschitz at u 2 Rn and regular
at u in the sense of Clarke (see [8]), then it is directionally di¤erentiable at u and
f�(u; d) = f 0(u; d). Hence, by (3), it follows that the following relations

f� (u; d) = f�(u; d) = f 0(u; d) = f+ (u; d)

hold for every direction d 2 Rn and, moreover, the functions f�(u; �), f� (u; �),
f+ (u; �) are sublinear.

Remark 2.4. Note that since conv @�f (u) � @Cf (u), certain results that are
expressed in terms of upper convexi�cators may provide sharp conditions even for
locally Lipschitz functions.

Lemma 2.2. Let f : Rn ! R and let @�f(u) and @�f(u) be the lower and upper
convexi�cators of f at u 2 Rn, respectively. If � > 0, then �@�f(u) is an upper
convexi�cator of �f at u 2 Rn. If � < 0, then �@�f(u) is an upper convexi�cator
of �f at u 2 Rn.

Lemma 2.3. Assume that the functions f1, f2 : Rn ! R admit upper convexi�ca-
tors @�f1(u) and @�f2(u) at u, respectively, and that one of the convexi�cators is
upper regular at u. Then, @�f1(u) + @�f2(u) is an upper convexi�cator of f1 + f2
at u.

De�nition 2.10. Let f : Rn ! R be an extended real-valued function that has an
upper convexi�cator @� at the given point u 2 Rn. f is said to be @�-convex at u
on Rn if the following inequality

f(x)� f(u) � h�; x� ui (7)
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holds for any � 2 @�f (u) and for all x 2 Rn. If the inequality (7) is satis�ed at
each point u, then f is said to be a @�-convex function on Rn. If X is a nonempty
convex subset of Rn and (7) is satis�ed for all x; u 2 X, then f is said to be
@�-convex on X.

Consider the following constrained optimization problem:

minimize f(x)

subject to gi(x) � 0, i 2 I = f1; :::mg ; x 2 Rn;
(P)

where f : Rn ! R and gi : Rn ! R, i 2 I, are extended real-valued functions
de�ned on Rn. Let D := fx 2 Rn : gi(x) � 0, i 2 Ig be the set of all feasible
solutions of (P). We assume that f and gi, i 2 I, admit upper convexi�cators at
every feasible solution. Further, we denote the set of active inequality constraints
at point x 2 Rn by I (x) = fi 2 I : gi (x) = 0g.

The Karush-Kuhn-Tucker necessary optimality conditions for nondi¤eren-
tiable optimization problems by using upper convexi�cators were proved in the op-
timization literature (see, for example, by Dutta and Chandra [13], [14], Golestani
and Nobakhtian [19], Li and Zhang [25], Luu [26], and others). Now, we give them
in the case of the considered nonsmooth scalar optimization problem (P).

Theorem 2.1. (Karush-Kuhn-Tucker necessary optimality conditions). Let x 2 D
be an optimal solution of the considered nondi¤erentiable optimization problem (P)
and some suitable constraint quali�cation be satis�ed at x. Further, assume that
the function f : Rn ! R admits an upper semiregular convexi�cator @�f(x) and
each constraint function gi : Rn ! R, i 2 I (x), admits an upper convexi�cator
@�gi(x). Then, there exists a Lagrange multiplier � 2 Rm such that

0 2 cl
 
conv @�f(x) +

mX
i=1

�iconv @
�gi(x)

!
, (8)

�igi(x) = 0, i 2 I; (9)

�i � 0; i 2 I: (10)

Remark 2.5. In addition, if convexi�cator @�f(x) is bounded, then the Karush-
Kuhn-Tucker necessary optimality condition (8) reduces to the relation

0 2 conv @�f(x) +
mX
i=1

�iconv @
�gi(x)

(see, for example, [25]).

De�nition 2.11. The point x 2 D is said to be a Karush-Kuhn-Tucker point (a
KKT point, for short) if there exists a Lagrange multiplier � 2 Rm such that the
conditions (8)-(10) are satis�ed at x.

We shall assume that the suitable constraint quali�cation is ful�lled at each
optimal solution of the considered optimization problem (P).
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3. The exactness of the l1 exact penalty function method

For the considered optimization problem (P), we consider the penalty func-
tion de�ned by P (x; c) = f (x)+c' (x), where ' : Rn ! R+ is given. If a threshold
value c for the penalty parameter c exists such that, for every c � c,

argmin ff (x) : x 2 Dg = argmin fP (x; c) : x 2 Rng ,
then the function P (x; c) is called an exact penalty function.

The most popular nondi¤erentiable exact penalty function is the absolute
value penalty function also called the l1 exact penalty function. For the considered
optimization problem (P), the associated penalized optimization problem (P(c))
constructed in the the l1 exact penalty function method is given by

minimize P (x; c) = f(x) + c
mX
i=1

g+i (x); (P(c)) (11)

where, for a given constraint gi(x) � 0, the function g+i is de�ned by

g+i (x) =

�
0 if gi(x) � 0;

gi(x) if gi(x) > 0:
(12)

We call the unconstrained optimization problem de�ned by (11) the penalized
optimization problem with the absolute value exact penalty function.

Now, we prove the equivalence between the sets of optimal solutions in the
original constrained optimization problem (P) and its associated penalized opti-
mization problem (P(c)) with the l1 exact penalty function for any penalty pa-
rameter c exceeding a given threshold. This result is derived in terms of upper
convexi�cators under convexity hypotheses.

First, we prove that a Karush-Kuhn-Tucker point of the considered extremum
problem (P) is a minimizer of its associated penalized optimization problem (P(c)).

Theorem 3.1. Let x 2 D be a Karush-Kuhn-Tucker point of the constrained
optimization problem (P) with Lagrange multiplier � 2 Rm. Furthermore, assume
that the function f admits an upper semiregular convexi�cator at x, each constraint
function gi, i 2 I, admits an upper convexi�cator at x and, moreover, they are @�-
convex at x on Rn. If c is assumed to be su¢ ciently large (it is su¢ cient to set
c � max

�
�i, i 2 I

	
), then x is also a minimizer of its penalized optimization

problem (P(c)).

Proof. Assume that x 2 D is a Karush-Kuhn-Tucker point of the constrained
optimization problem (P). By assumption, functions f , gi, i 2 I, are @�-convex at
x on D. Hence, by De�nition 2.10, the following inequalities

f(x)� f(x) � h�; x� xi , (13)

gi(x)� gi(x) � h� i; x� xi , i 2 I (14)
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hold for all x 2 Rn and for any � 2 @�f (x), � i 2 @�gi (x), i 2 I, respectively.
Multiplying each inequality (14) by �i � 0, i 2 I, and then adding both sides of
the resulting inequalities and (13), we get that the inequality

f(x) +
mX
i=1

�igi(x)�
 
f(x) +

mX
i=1

�igi(x)

!
� h�; x� xi+

mX
i=1

�i h� i; x� xi (15)

holds for any � 2 @�f (x), � i 2 @�gi (x), i 2 I, and for all x 2 Rn. Since inequality
(15) is satis�ed for any � 2 @�f (x), � i 2 @�gi (x), i 2 I, and for all x 2 Rn, we
have that the inequality

f(x) +
mX
i=1

�igi(x)�
 
f(x) +

mX
i=1

�igi(x)

!
� (16)

*
sup

�2@�f(x)
�; x� x

+
+

mX
i=1

�i sup
�i2@�gi(x)

h� i; x� xi

holds. By assumption, x 2 D is a Karush-Kuhn-Tucker point in the constrained
optimization problem (P) and, moreover, the Karush-Kuhn-Tucker necessary op-
timality conditions (8)-(10) are satis�ed at x with a Lagrange multiplier � 2 Rm.
Hence, by Lemma 2.1, the Karush-Kuhn-Tucker necessary optimality condition
(8) gives

0 2 cl conv
 
@�f(x) +

mX
i=1

�i@
�gi(x)

!
. (17)

Let us denote 
(x) = @�f(x) +
Pm

i=1 �i@
�gi(x). Since �i � 0, i = 1; :::;m, by

Lemma 2.2 and Lemma 2.3, it follows that 
(x) is an upper convexi�cator of the
function @�f(�) +

Pm
i=1 �i@

�gi(�) at x. Hence, we have that the following relation

sup
#2
(x)

h#; x� xi = sup
�2@�f(x)

h�; x� xi+
mX
i=1

�i sup
�i2@�gi(x)

h� i; x� xi (18)

holds for all x 2 Rn. By (16), it follows that there exists # 2 cl conv
(x) such
that



#; x� x

�
= 0. This implies that the inequality

sup
#2cl conv
(x)

h#; x� xi � 0. (19)

holds for all x 2 Rn. It is well-known that the support function of a nonempty
set S � Rn is also the support function of the closure of S, and even of the closed
convex hull of S (see [16]). In other words, the support functional of any set and
its closed convex hull are identical. Hence, by the upper convexi�cator 
(x) and
the usual calculus of support functions, we observe that, for all x 2 Rn,

sup
#2cl conv
(x)

h#; x� xi = sup
#2
(x)

h#; x� xi : (20)
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Thus, combining (16)-(20), we get that the following inequality

f(x) +
mX
i=1

�igi(x) � f(x) +
mX
i=1

�igi(x) (21)

holds for all x 2 Rn. By (12), it follows that

f(x) +

mX
i=1

�ig
+
i (x) � f(x) +

mX
i=1

�ig
+
i (x). (22)

For c � max
�
�i, i 2 I

	
, we have that (18) gives, for all x 2 Rn,

f(x) + c

mX
i=1

g+i (x) � f(x) + c
mX
i=1

g+i (x). (23)

Therefore, by (11), we conclude that the following inequality P (x; c) � P (x; c)
holds for all x 2 Rn. This means that x is a minimizer of the penalized optimization
problem (P(c)). Thus, the proof of this theorem is completed. �
Corollary 3.1. Let x be an optimal point of the considered optimization problem
(P). Furthermore, assume that all hypotheses of Theorem 3.1 are ful�lled. Then x
is also a minimizer of the penalized optimization problem (P(c)) with the absolute
value exact penalty function.

Now, by an example of a nonsmooth optimization problem, we illustrate the
above result in terms of upper convexi�cators under convexity hypotheses.

Example 3.1. Consider the following nonsmooth optimization problem

min f(x) =

�
x2
��cos �

x

��+ x if x 6= 0
0 if x = 0

g(x) = jxj � x � 0:
(P1)

Note that D = fx 2 R : x � 0g and x = 0 is an optimal solution of the considered
nonsmooth optimization problem (P1). Since we use the l1 exact penalty method
for solving the extremum problem (P1), we construct the following unconstrained
optimization problem

P (x; c) = f (x) + cmax f0; jxj � xg ! min : (P1(c))

It can be seen that f� (0; d) = f+ (0; d) = d for every d 2 R. Note that x = 0
is a Karush-Kuhn-Tucker point of the problem (P1) and the Karush-Kuhn-Tucker
necessary optimality conditions (8)-(10) are ful�lled at x. Indeed, the Lagrange
multiplier � = 1

2
satis�es the condition: 0 2 conv @�f (x) + �conv @�g (x), where

@�f (x) = f1g and @�g (x) = f�2; 0g and, moreover, the condition �g(x) = 0.
Note, by De�nition 2.5, @�f (x) and @�g (x) are regular convexi�cators f and g
at x, respectively. Further, it can be shown, by De�nition 2.10, that the objective
function f and the constraint function g are @�-convex at x on R. Then, by
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Theorem 3.1, it follows that x = 0 is also a minimizer in the penalized optimization
problem (P1(c)) with the absolute value penalty function for any parameter c � 1

2
.

Note that conv @�f (x) � @Cf (x) = [�� + 1; � + 1]. Hence, this result is sharper
than the similar result established in the literature (see, for example, [2], [6], [17]).

Proposition 3.1. Let x be a minimizer of the penalized optimization problem
(P(c)) with the l1 exact penalty function. Further, assume that the objective func-
tion f is lower semicontinuous at x and the set D of all feasible solutions in the
problem (P) is compact. Then there exists a Karush-Kuhn-Tucker point of the
considered optimization problem (P).

Proof. Assume that x is a minimizer of the penalized optimization problem (P(c)).
Then, the following inequality P (x; c) � P (x; c) holds for all x 2 Rn. Hence, by
the de�nition of the penalized optimization problem (P(c)), it follows that the
following inequality

f(x) + c

mX
i=1

g+i (x) � f(x) + c
mX
i=1

g+i (x)

holds for all x 2 Rn. Thus, the following inequality f(x) � f(x) holds for all
x 2 D. This means that f is lower bounded on the compact set D. Since f is a
lower semicontinuous function, there exists ex 2 D at which f achieves its minimum
on D. Hence, there exists the Lagrange multiplier e� 2 Rm such that the Karush-
Kuhn-Tucker necessary optimality conditions (8)-(10) are satis�ed at ex with this
Lagrange multiplier. Then, by De�nition 2.11, ex 2 D is a Karush-Kuhn-Tucker
point of the considered nonsmooth optimization problem (P). �
Theorem 3.2. Let f be a lower semicontinuous function and the point x be a
minimizer of the penalized optimization problem (P(c)) with the l1 exact penalty
function. Furthermore, assume that the functions f , gi, i 2 I, are @�-convex at any
Karush-Kuhn-Tucker point of the considered constrained optimization problem (P)
and the set D of all feasible solutions in (P) is compact. If the penalty parameter
c is su¢ ciently large (it is su¢ cient that c satis�es the following condition c >

max
ne�i, i 2 Io), where e� is the Lagrange multiplier associated to any Karush-

Kuhn-Tucker point ex in (P) with Lagrange multiplier e� 2 Rm, then x is also
optimal of the nonsmooth optimization problem (P).

Proof. Assume that x is a minimizer of the penalized optimization problem (P(c)).
Then, by Proposition 3.1, there exists a KKT point ex of the problem (P). Let the
Karush-Kuhn-Tucker necessary optimality conditions (8)-(10) be satis�ed with a
Lagrange multiplier e� 2 Rm.

Now, we prove that x is also optimal in the considered optimization problem
(P). First, we show that x is feasible for the problem (P). By contradiction, suppose
that x is not feasible in (P). As we have established above, the given constrained
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optimization problem (P) has an optimal solution ex. Hence, since a constraint
quali�cation is satis�ed at ex, there exist Lagrange multiplier vector e� 2 Rm such
that the Karush-Kuhn-Tucker necessary optimality conditions (8)-(10) are satis�ed
at ex. By assumption, the functions f , gi, i 2 I, are @�-convex at any Karush-Kuhn-
Tucker point of (P). Therefore, by De�nition 2.10, it follows that the inequalities

f (x)� f (ex) � h�; x� exi , 8� 2 @�f (ex) , (24)

gi(x)� gi(ex) � h� i; x� exi , 8� i 2 @�gi (x) , 8i 2 I (25)
hold. Multiplying (25) by the associated Lagrange multiplier and then adding
them to (24), we get

f (x)� f (ex) + mX
i=1

e�igi(x)� mX
i=1

e�igi(ex) � *� + mX
i=1

e�i� i; x� ex
+
:

Using (12) with the Karush-Kuhn-Tucker necessary optimality conditions (8), (9)
and the feasibility of ex in the original extremum problem (P), in the similar way
as in the proof of Theorem 3.1, we get

f (x) +
mX
i=1

e�ig+i (x) � f (ex) . (26)

By assumption, the penalty parameter c is su¢ ciently large (it is su¢ cient that c >

max
ne�i, i 2 Io). Since x is assumed to be not feasible in the given optimization

problem (P), at least one of g+i (x) must be nonzero. Therefore, (26) yields

f (x) + c
mX
i=1

g+i (x) > f (ex) . (27)

Hence, by ex 2 D and (27), we have

f (x) + c
mX
i=1

g+i (x) > f (ex) + c mX
i=1

g+i (ex).
Then, by the de�nition of the l1 exact penalty function (see (11)), it follows that
the following inequality P (x; c) > P (ex; c) holds, which is a contradiction to the
assumption that x is a minimizer of the penalized optimization problem (P(c))
with the absolute value penalty function. Thus, we have proved that x is feasible
in the given constrained optimization problem (P). Hence, the optimality of x in
the considered constrained optimization problem (P) follows directly from (??).
This completes the proof of this theorem. �

Hence, the main result in the paper is formulated in the theorem below:

Theorem 3.3. Let all hypotheses of Corollary 3.1 and Theorem 3.2 be ful�lled.
Then, x is an optimal solution in the considered extremum problem (P) if and only
if it is a minimizer in its associated exact penalized optimization problem (P(c))
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with the absolute value penalty function for all penalty parameters exceeding the
threshold which is equal to the maximal value of the Lagrange multiplier correspond-
ing to a KKT point of the problem (P). In other words, the set of optimal solutions
in the considered nonsmooth extremum problem (P) and the set of minimizers in
its associated exact penalized optimization problem (P(c)) with the absolute value
penalty function coincide for all penalty parameters exceeding the threshold which
is equal to the maximal value of the Lagrange multiplier corresponding to a KKT
point of the problem (P).

4. Conclusions

In this paper, exactness of the penalization of the classical exact l1 penalty
function method has been investigated. Hence, new conditions guarantying the
equivalence of optimal solutions in the original nonsmooth minimization problem
and its penalized optimization problem constructed in this method have been de-
rived in the terms of upper convexi�cators of the involved functions. It is known
that convexi�cators can be viewed as a weaker version of the notion of subdi¤er-
entials so that it will lead in sharper results in nonsmooth analysis. Therefore, the
results established in the paper for the classical l1 exact penalty function method
are sharpen in comparison to those ones existing in the literature.
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