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EQUATION AND OF STOCHASTIC SYSTEMS BY BROWNIAN

MOTION
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Abstract. In this paper, we define and investigate Mittag-Leffler-Hyers-Ulam

and Mittag-Leffler-Hyers-Ulam-Rassias stability of deterministic semilinear fractional

Volterra integral equation. Also, we prove that this equation is stable with respect to the

Chebyshev and Bielecki norms. The stability of stochastic systems driven by Brownian

motion has also been studied.
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1. Introduction

The stability theory for functional equations started with a problem related to the

stability of group homomorphism that was considered by Ulam in 1940 ([14]). The first

answer to the question of Ulam was given by Hyers in 1941 in the case of Banach spaces

in [4]. Thereafter, this type of stability is called the Hyers-Ulam stability. In 1978, Th.

M. Rassias [11] generalized the Hyers Theorem by considering the stability problem with

unbounded Cauchy differences. In fact, he introduced a new type of stability which is called

the Hyers-Ulam-Rassias stability.

Alsina and Ger were the first authors who investigated the Hyers-Ulam stability of

a differential equation [1]. Recently some authors ([7], [5], [6], [12], [15] and [16]) extended

the Ulam stability problem from an integer-order differential equation to a fractional-order

differential equation.

Integral equations of various types play an important role in many branches of func-

tional analysis and its applications; for example in physics, economics and other fields. Also,

the fractional differential equations are useful tools in the modelling of many physical phe-

nomena and processes in economics, chemistry, aerodynamics, etc. (We refer the reader to

[8, 9, 10, 13] for more details). There are different types of fractional integral equations. In
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[2], the authors by defining all types of Mittag-Leffler-Hyers-Ulam stability of a fractional

integral equation proved that every mapping of this type can be somehow approximated by

an exact solution of the considered equation.

In this paper we present similar definitions to that of [2] and prove the stability results

for the following deterministic semilinear fractional Volterra integral equation

X(t) = ξt + 1
Γ(β)

∫ t
0
(t− s)β−1(AX(s) + h(X(s)))ds, t ≥ 0, β ∈ (0, 1), A < 0.

The functions h : R −→ R and ξt : R+ −→ R are both measurable.

2. Mittag-Leffler-Hyers-Ulam stability

In this section, we will study Mittag-Leffler-Hyers-Ulam stability of the following

deterministic semilinear fractional Volterra integral equation

X(t) = ξt +
1

Γ(β)

∫ t

0

(t− s)β−1(AX(s) + h(X(s)))ds, t ≥ 0, (1)

where β ∈ (0, 1), A < 0. The functions h : R −→ R and ξt : R+ −→ R are both measurable.

Definition 2.1. equation (1) is Mittag-Leffler-Hyers-Ulam stable if there exists a real num-

ber c > 0 such that, for each ε > 0 and for each solution X(t) of the inequality

|X(t)− ξt − 1
Γ(β)

∫ t
0
(t− s)β−1(AX(s) + h(X(s)))ds| ≤ εEβ(tβ),

there exists a unique solution X0(t) of equation (1) satisfying the following inequality:

|X(t)−X0(t)| ≤ cεEβ(tβ).

Before the main Theorem we have following Theorem:

Theorem 2.1. Let (X, d) be a generalized complete metric space. Assume that Λ : X −→
X is a strictly contractive operator with the Lipschitz constant L < 1. If there exists a

nonnegative integer k such that d(Λk+1x,Λkx) <∞ for some x ∈ X, then:

(a) The sequence Λnx convergence to a fixed point x∗ of Λ;

(b) x∗ is the unique fixed point of Λ in

X∗ = {y ∈ X|d(Λkx, y) <∞};

(c) If y ∈ X∗, then

d(y, x∗) ≤ 1

1− L
d(Λy, y).

Theorem 2.2. Suppose that β ∈ (0, 1), A < 0 and h : R −→ R, ξt : R+ −→ R are two

measurable functions and L be a positive constant with 0 < |A| + L < 1, such that for

function h we have |h(X1(s)) − h(X2(s))| ≤ L|X1(s) − X2(s)|, for s ∈ [0, t] and for each

ε > 0

|X(t)− ξt −
1

Γ(β)

∫ t

0

(t− s)β−1(AX(s) + h(X(s)))ds| ≤ εEβ(tβ), (2)

then the equation (1) is Mittag-Leffler-Hyers-Ulam stable.

Proof. Let us consider the space of continuous functions

Z = {X : [a, b] −→ R | X is continuous}.
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For defining the generalized metric, we apply the similar definition of theorem 3.1 of [7]:

d(X1, X2) = inf{K ∈ [0,∞] | |X1(t)−X2(t)| ≤ KεEβ(tβ), t ∈ [a, b]}, (3)

for ε > 0, it is known that (Z, d) is a generalized complete metric space, so for all X ∈ Z
and t ∈ [a, b] we define an operator Λ : Z −→ Z by

(ΛX)(t) = ξt +
1

Γ(β)

∫ t

0

(t− s)β−1(AX(s) + h(X(s)))ds, (4)

so ΛX is continuous and this ensures that Λ is a well defined operator. Now from the

definition of Λ in (4) we have

|(ΛX1)(t)− (ΛX2)(t)| ≤ (|A|+L)
Γ(β)

∫ t
0
(t− s)β−1|X1(s)−X2(s)|ds

≤ (|A|+ L)Kε
∑∞
n=0

tnβ

Γ(nβ+1) = (|A|+ L)KεEβ(tβ),

for all t ∈ [a, b]; that is d(ΛX1,ΛX2) ≤ (|A| + L)KεEβ(tβ). Hence, we can conclude that

d(ΛX1,ΛX2) ≤ (|A| + L)d(X1, X2) for any X1, X2 ∈ Z, and since 0 < (|A| + L) < 1 the

strictly continuous property is verified.

Let us take Y0 ∈ Z. By continuity of Y0 and ΛY0, it follows that there exists a

constant 0 < K1 <∞ such that

|(ΛY0)(t)− Y0(t)| = |ξt + 1
Γ(β)

∫ t
0
(t− s)β−1(AY0(s) + h(Y0(s)))ds− Y0(t)| ≤ K1Eβ(tβ),

for all t ∈ [a, b], since Y0 is bounded on [a, b] and mint∈[a,b]Eβ(tβ) > 0, thus, (3) implies that

d(ΛY0, Y0) < ∞. Therefore, according to theorem 2.1, there exists a continuous function

X0 : [a, b] −→ R such that ΛnY0 −→ X0 in (Z, d) as n → ∞ and ΛX0 = X0; that is, X0

satisfies the equation (1) for every t ∈ [a, b]. We will now prove that

{X ∈ Z|d(Y0, X) <∞} = Z.

For any X ∈ Z, since X and Y0 are bounded in [a, b] and mint∈[a,b]Eβ(tβ) > 0, so there

exists a constant 0 < CX <∞ such that

|Y0(t)−X(t)| ≤ CXEβ(tβ),

for any t ∈ [a, b]. Hence, we have d(Y0, X) < ∞ for all X ∈ Z; that is, {X ∈ Z|d(Y0, X) <

∞} = Z. Hence, in view of theorem 2.1, we conclude that X0 is the unique continuous

function which satisfies the equation (1). On the other hand, from (2) it follows that

d(X,ΛX) ≤ εEβ(tβ). Finally, theorem 2.1 together with the above inequality imply that

d(X,X0) ≤ 1
1−(|A|+L)d(ΛX,X) ≤ 1

1−(|A|+L)εEβ(tβ).

This means that the equation (1) is Mittag-Leffler-Hyers-Ulam stable. �

Example 2.1. Let ξt = sin( 1
t ), β = 1

2 , A = − 1
3 and L = 1

3 . Given a polynomial px(s), we

assume h(X(s)) = px(s) + L[X(s) +X(sins)], that satisfies

|X(t)− sin( 1
t )−

1√
π

∫ t
0
(t− s)− 1

2 (− 1
3X(s) + px(s) + 1

3 [X(s) +X(sins)])ds

≤ εE 1
2
(t

1
2 ).

According theorem 2.2, there exists a unique X0(t) such that
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X0(t) = sin( 1
t ) + 1√

π

∫ t
0
(t− s)− 1

2 (− 1
3X(s) + px(s) + 1

3 [X(s) +X(sins)])ds,

and

|X(t)−X0(t)| ≤ 1
1−(|− 1

3 |+
1
3 )
εE 1

2
(t

1
2 ) = 3εE 1

2
(t

1
2 ).

Next, we use the Chebyshev norm ‖ . ‖c to obtain the above similar result for equation

(1).

Theorem 2.3. Suppose that β ∈ (0, 1), A < 0 and h : R −→ R, ξt : R+ −→ R are two

measurable functions and L be a positive constant with

0 < (|A|+ L)Eβ(t) < 1,

such that for function h we have |h(X1(s)) − h(X2(s))| ≤ L|X1(s) − X2(s)| for s ∈ [0, t].

Then the equation (1) is Mittag-Leffler-Hyers-Ulam stable via the Chebyshev norm.

Proof. Just like the discussion in theorem 3.1, we prove that Λ defined in (4) is a contraction

map on Z with respect to the Chebyshev norm. We have:

|(ΛX1)(t)− (ΛX2)(t)| ≤ (|A|+L)
Γ(β)

∫ t
0
(t− s)β−1|X1(s)−X2(s)|ds

= (|A|+ L) ‖ X1 −X2 ‖c tβ

Γ(β+1) ≤ (|A|+ L) ‖ X1 −X2 ‖c .Eβ(t),

for all t ∈ [a, b]. Hence, we can conclude that

d(ΛX1,ΛX2) ≤ (|A|+ L)Eβ(t)d(X1, X2),

for any X1, X2 ∈ Z. Now, since 0 < (|A|+ L)Eβ(t) < 1; the strictly continuous property is

verified. By a similar argument to that of theorem 2.2 we have

d(X,X0) ≤ 1
1−(|A|+L)Eβ(t)d(ΛX,X) ≤ 1

1−(|A|+L)Eβ(t)εEβ(tβ),

which means that equation (1) is Mittag-Leffler-Hyers-Ulam stable via the Chebyshev norm.

�

In the following theorem we have used the Bielecki norm

‖ g ‖B := max
t∈[a,b]

|g(t)|e−θt , θ > 0, a, b ∈ R;

to obtain the similar theorem 3.1 for the fundamental equation (1) via the Bielecki norm.

Theorem 2.4. Suppose that β ∈ (0, 1), A < 0 and h : R −→ R, ξt : R+ −→ R are two

measurable functions and L be a positive constant with

0 < (|A|+L).tβ .eθt

Γ(β).
√

2(2β−1)θ
< 1,

such that for function h we have |h(X1(s)) − h(X2(s))| ≤ L|X1(s) − X2(s)| for s ∈ [0, t].

Then the equation (1) is Mittag-Leffler-Hyers-Ulam stable via the Bielecki norm.

Proof. Just like the discussion in theorem 2.2, we prove that equation (1) is Mittag-Leffler-

Hyers-Ulam stable via the Bielecki norm. �
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3. Mittag-Leffler-Hyers-Ulam-Rassias stability

At first we introduce the concept of Mittag-Leffler-Hyers-Ulam-Rassias stability and

then we prove that the equation (1) has the Mittag-Leffler-Hyers-Ulam-Rassias stability.

Definition 3.1. Equation (1) is Mittag-Leffler-Hyers-Ulam-Rassias stable if there exists a

real number c > 0 such that for each ε > 0 and for each solution X of the inequality

|X(t)− ξt − 1
Γ(β)

∫ t
0
(t− s)β−1(AX(s) + h(X(s)))ds| ≤ εϕ(t)Eβ(tβ),

there exists a unique solution X0 of equation (1) satisfying the following inequality:

|X(t)−X0(t)| ≤ cεϕ(t)Eβ(tβ),

where ϕ : R→ R is a continuous function.

Theorem 3.1. Suppose that β ∈ (0, 1), A < 0 and h : R −→ R, ξt : R+ −→ R are two

measurable functions. Set M = 1
Γ(β)

(
1−p
β−p

)1−p
tβ−p with 0 < p < β and let L,B be positive

constants with 0 < (|A|+L)MB < 1 such that for function h we have |h(X1(s))−h(X2(s))| ≤
L|X1(s)−X2(s)| for s ∈ [0, t] and for each ε > 0 we have

|X(t)− ξt −
1

Γ(β)

∫ t

0

(t− s)β−1(AX(s) + h(X(s)))ds| ≤ εϕ(t)Eβ(tβ), (5)

where ϕ : R −→ R is a L
1
p -integrable function such that for all t ∈ R satisfies

(
∫ t

0
(ϕ(s))

1
p ds)p ≤ Bϕ(t).

Then the equation (1) is Mittag-Leffler-Hyers-Ulam-Rassias stable.

Proof. Let us consider the space of continuous functions Z like in theorem 2.2, endowed

with the generalized metric defined by

d(X1, X2) = inf{K ∈ [0,∞] | |X1(t)−X2(t)| ≤ Kεϕ(t), t ∈ [a, b]}, (6)

for ε > 0. It is known that (Z, d) is a generalized complete metric space. We define function

Λ just like (4), so we have

|(ΛX1)(t)− (ΛX2)(t)| ≤ (|A|+L)Kε
Γ(β)

∫ t
0
(t− s)β−1ϕ(s)ds

≤ (|A|+L)Kε
Γ(β)

(
1−p
β−p

)1−p
tβ−p.Bϕ(t) = (|A|+ L)MBKεϕ(t),

for all t ∈ [a, b]. Hence, we can conclude that d(ΛX1,ΛX2) ≤ (|A|+L)MBd(X1, X2) for any

X1, X1 ∈ Z, and since 0 < (|A| + L)MB < 1, the strictly continuous property is verified.

Just like the discussion in theorem 2.2, we have

d(X,X0) ≤ 1
1−(|A|+L)MBd(ΛX,X) ≤ 1

1−(|A|+L)MB εϕ(t)Eβ(tβ).

This means that the equation (1) is Mittag-Leffler-Hyers-Ulam stable. �

Example 3.1. Let ξt = sin( 1
t ), B = 1,M = 1

Γ(β) ( 1−p
β−p )1−ptβ−pwith 0 < p < β. Choose

L > 0 such that L < min{1,M−1−|A|−1}. Given a polynomial px(s), we assume h(X(s)) =

px(s) + L[X(s) +X(sins)] that satisfies

|X(t)− sin( 1
t )−

1
Γ(β)

∫ t
0
(t− s)β−1(AX(s) + px(s) + L[X(s) +X(sins)])ds|

≤ εe−βtEβ(tβ),
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for all t ∈ [a, b] .If we set ϕ(t) = e−βt we obtain∣∣∣( ∫ t0 (e−βs)
1
p ds
)p∣∣∣ =

(
p
β −

p
β e
− βtp

)p
≤ e−βt,

for all t ∈ [a.b]. According theorem 3.1 there exists a unique X0(t) such that

X0(t) = sin( 1
t ) + 1

Γ(β)

∫ t
0
(t− s)β−1(AX(s) + px(s) + L[X(s) +X(sins)])ds,

and

|X(t)−X0(t)| ≤ 1
1−(|A|+L)M εe−βtEβ(tβ).

Here we introduce the Young integral, which is an integral with respect to Holder

continuous functions.

Definition 3.2. For T > 0, γ ∈ (0, 1),let Cγ1 ([0, T ];R) be the set of γ-Holder continuous

functions g : [0, T ]→ R of one variable such that the seminorm

‖ g ‖γ,[0,T ]:= supr 6=tr, t ∈ [0, t]
| gt − gr |
| t− r |γ

,

is finite. Also by ‖ g ‖∞,[0,T ] we denote the supremum norm of g.

Definition 3.3. The noise is an additive solution for linear stochastic differential equations

and has the form
∫

0
σ(s)dWH

s . Here

WH
t =

∫ t

0

(t− s)H−1/2dWs, H ∈ (1/2, 1),

where W is a Brownian motion and σ is a deterministic function such that∫∞
0
σ2(s)e2λsds <∞,

for some λ > 0.

Now we have following results about the semilinear fractional Volterra integral equa-

tion with additive noise:

X(t) = ξt +
1

Γ(β)

∫ t

0

(t− s)β−1AX(s) +
1

Γ(α)

∫ t

0

(t− s)α−1dθs, t ≥ 0, (7)

where the initial condition ξ = {ξt; t ≥ 0} is measurable and bounded on compact sets,

β ∈ (0, 1), A ∈ R, α ∈ (1, 2) and θ = {θs, s ≥ 0} is a γ- Holder continuous function with

γ ∈ (0, 1).

The second integral in (7) is a Young one and it is well-defined if α − 1 + γ > 1,

because s 7→ (t− s)α−1 is (α− 1)- Holder continuous on [0, T ].

Corollary 3.1. Suppose that ξ = {ξt; t ≥ 0} is measurable and bounded on compact sets,

β ∈ (0, 1), A ∈ R, α ∈ (1, 2), h : R −→ R is a measurable function, θ = {θs, s ≥ 0} is a γ-

Holder continuous function with γ ∈ (0, 1). Also suppose that for each ε > 0

|X(t)− ξt − 1
Γ(β)

∫ t
0
(t− s)β−1(AX(s) + h(X(s)))− 1

Γ(α)

∫ t
0
(t− s)α−1dθs|

≤ εEβ(tβ).

Then the equation (7) is Mittag-Leffler-Hyers-Ulam stable.

Corollary 3.2. With above assumptions if we have

|X(t)− ξt − 1
Γ(β)

∫ t
0
(t− s)β−1(AX(s) + h(X(s)))− 1

Γ(α)

∫ t
0
(t− s)α−1dθs|

≤ εϕ(t)Eβ(tβ).

Then the equation (7) is Mittag-Leffler-Hyers-Ulam-Rassias stable.
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4. Asymptotic stability

The concept of the asymptotic stability of a solution X(t) of equation (1) was con-

sidered in [3]. Now we consider this concept by the following definition:

Definition 4.1. Let B(x, r) denotes the closed ball centered at x with radius r, (r > 0) the

symbol Br stands the ball B(0, r). The equation (1) is asymptotic stable if for any ε > 0,

there exist T > 0 and r > 0 such that, if X(t), Y (t) ∈ Br and X(t), Y (t) are solutions of

equation (1), then |X(t)− Y (t)| ≤ ε for all t ≥ T.

Theorem 4.1. Suppose that β ∈ (0, 1), A < 0 and h : R −→ R, ξt : R+ −→ R are two

measurable functions and there exists 0 < L < 1 such that

|h(X(s))− h(Y (s))| ≤ L|X(s)− Y (s)|, 0 < s < t,

then the equation (1) is asymptotic stable.

Proof. Put r = βΓ(β)
2(|A|+L).tβ

ε. Suppose that X(t), Y (t) are solutions of equation (1) such that

X(t), Y (t) ∈ Br, so |X(t)− Y (t)| < 2r. Now we have

|X(t)− Y (t)| ≤ |A|.2r + L.2r

Γ(β)

∫ t

0

(t− s)β−1ds =
2r(|A|+ L)

Γ(β)
.
tβ

β
= ε.

�

Example 4.1. Let ξt = sin( 1
t ), β = 1

2 , A = − 1
3 and L = 1

3 . Given a polynomial px(s), we

assume h(X(s)) = px(s) + L[X(s) +X(sins)], that satisfies

|h(X(s))− h(Y (s))| ≤ 1
3 |X(s)− Y (s)|,

so for r = 3
8

√
π
t ε we have |X(t)− Y (t)| ≤ ε.
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