MICROSTRUCTURAL CHARACTERIZATION OF AA - 7050 ALLOY SLABS (PART I)

Nicole PANAIT¹, Mariana CIURDAŞ², Robert STEPHAN³

In lucrare se prezintă microstructura sleburilor din aliajul 7050 turnate în instalația Wagstaff în diferite zone ale secțiunii transversale a sleburilor. S-a evidențiat morfologia fazelor intermetalice intergranulare cu conținut de Al,Mg, Cu, Zn și intragranulare cu conținut de Mg și Zn (SEM) și s-a determinat compoziția acestora (EDS. De asemenea s-au pus în evidență compuși de tipul Ca-Mo-Si care pot influența negativ prelucrarea plastici, conducînd la fisurarea produselor plate.

The microstructure of 7050 DC slabs cast in Wagstaff installation, in different zones of the transverse section of the slabs is presented. By electron microscopy (SEM, EDS) the morphologies and composition of the intergranular phases which contains Al,Mg, Cu, Zn and intragranular phase with Mg and Zn content was put in evidence. The presence of intermetallic inclusions of Ca-Mo-Si has also revealed. Such inclusions may have a negative influence on the plastic deformation of the slabs, finally resulting in the cracking of plate products.

Keywords: aluminum alloy, 7050 alloy, slab, SEM, EDS

1. Introduction

AA 7050 series (Al-Zn-Mg-Cu) high strength aluminum alloys are used primarily for structural components in aerospace applications like rivets, aircraft structural parts, bolts and s.c [1-3]. The combination of high strength, resistance to stress corrosion cracking and high fracture toughness has made the alloy a major factor in the aerospace industry [4]. Alloy 7050 is typically used in applications where improved formability and toughness are desired.

2. Experimental procedures

The chemical composition of the investigated AA 7050 alloy is given in Table 1.

¹ PhD student, Faculty of Materials Science and Engineering, University POLITEHNICA of Bucharest, Romania,
² Lecturer, Faculty of Materials Science and Engineering , University POLITEHNICA of Bucharest, Romania, E-mail: ciurdasmariana@yahoo.com
³ PhD student, Faculty of Materials Science and Engineering , University POLITEHNICA of Bucharest, Romania
Table 1.

Chemical composition of as-cast slabs of AA 7050

<table>
<thead>
<tr>
<th>Element</th>
<th>Zn</th>
<th>Mg</th>
<th>Mn</th>
<th>Cu</th>
<th>Fe</th>
<th>Si</th>
<th>Cr</th>
<th>Ti</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>%wt</td>
<td>5.95</td>
<td>2.28</td>
<td>0.021</td>
<td>2.20</td>
<td>0.11</td>
<td>0.065</td>
<td>0.0025</td>
<td>0.035</td>
<td>balance</td>
</tr>
</tbody>
</table>

The samples A, B, and C have been prevailed with 4 mm thickness from the half of free surface of a 500 mm thick slab. The samples polished and have been etched with Keller’s reactant.

The samples were analyzed using a scanning electron microscope SEM FEI Quanta Inspect F with electron beam and energy dispersive X-ray spectrometry (EDS) analyzer. [5, 6].

3. Results and Discussion

The microstructure of the A, B, C samples in figure 1-3, puts in evidence the presence of the aluminum base solid solution, with different shape and sizes of the grains (50 -500 μm) also light intergrain phases (ssα-Al grains), dark colour phases and finely nucleated intergrain phases (polyhedral and acicular) (figure 1 and 2); at the grain boundaries one can see light colour formation, with similar aspect like in A and B samples (figure 3).

Fig.1. Sample microstructure taken from A zone of the slab (2000 x)

Fig.2. Sample microstructure taken from B zone of the slab (1000 x)
To put in evidence the intergran phases in A sample: AlK\(_{\alpha}\), CuK\(_{\alpha}\), MgK\(_{\alpha}\), and ZnK\(_{\alpha}\). X-ray analysis images have been recorded (figure 5). The presence of dark Mg\(_2\)Si, compound and grey, hexagonal CuMgAl\(\sim\) MgZn\(_2\)-solid solution was identified in this way.

The presence of large size light intergrain compounds and fine accicular compounds was observed in the backscattering images at high magnification 6000x and 12000x (figure 4).
To put in evidence the presence of the intergrain phases X-ray analysis have been recorded (figure 6).
In figure 6 on can observe the precipitation of cubic CuAl₆Mg₄ – Mg₃Zn₃Al₂ compound solid solution phase and accicular particles of Mg₂Zn (2-3μm) phase precipitated from the solid solution in Mg and Zn suprasaturated alloy.

Backscattering images at high magnifications (figure 7) and X-ray maps of MgKα, AlKα, CuKα, and ZnKα for B sample put in evidence the presence of CuAlMg-MgZn₂ solid solution phases and of Al₃Cu₂Fe compound.
The presence of CuAlMg-MgZn$_2$ and FeAl$_3$ intergrain phases are clearly seen in figure 8.
Fig. 8. BSE micrographs of the B sample at high magnification (x 5000) and X-ray maps of AlKᵢₓ.
Fig. 9. BSE micrographs of the B sample at high magnification (x 5000) and X-ray maps of AlK$_\alpha$, MgK$_\alpha$, SiK$_\alpha$, and CuK$_\alpha$ for B sample microzone.

MgK$_\alpha$, FeK$_\alpha$, CuK$_\alpha$, and ZnK$_\alpha$ for B sample microzone

Fig. 9 put in evidence the presence of Mg$_2$Si compound nucleated on the CuAl$_2$ phase. The morphology of intragrain and intergrain compounds in B sample is shown in figure 10.
The presence of polyhedral Al$_2$CuMg – MgZn$_2$ compounds and Mg$_2$Zn$_2$ phase was put in evidence in figure 11.

Fig. 10. Morphology of: intergrain phase - x 4000 (a) and intragrain phase (b) - x 8000, in B sample

Fig. 11. BSE micrographs of the B sample at high magnification (x 5000) and X-ray maps of AlK$_{\alpha}$, MgK$_{\alpha}$, CuK$_{\alpha}$ and ZnK$_{\alpha}$ for B sample microzone
The presence of dark Mg\textsubscript{2}Si compound in the C sample, nucleated on white coloured compound was observed in figure 12. Figure 13 put in evidence the presence of light coloured polyhedral intragrain phases.

The identification of intergrain and intragrain intermetallic phases shown in figure 12 was done by backscattering images at high magnifications and X-ray images of AlK\textsubscript{α}, MgK\textsubscript{α}, SiK\textsubscript{α}, FeK\textsubscript{α}, CuK\textsubscript{α} and ZnK\textsubscript{α} for C sample microzone (figure 14).
We can observe the presence of intergrain phases: Mg$_2$Si, FeAl$_3$ and ss CuMgAl – MgZn$_2$, confirm by EDS micrographs. The identification of elements was done by EDS microanalysis (figure 15).

The EDS microanalysis confirm the presence of the intergrain and intragrain phases: CuMgAl – MgZn$_2$ for A sample (figure 15 a); CuMgAl – MgZn$_2$ and Al$_2$Cu$_2$Fe for B sample (figure 15 b); CuMgAl – MgZn$_2$ and FeAl$_3$ for B sample (figure 15 c); the presence of Al, Cu, Mg and Zn in intermetallic compounds (figure 15d); CuMgAl – MgZn$_2$, Mg$_2$Si and FeAl$_3$ for C sample (figure 15 e).
4. Conclusions

The presence of intergrain intermetallic phases with Al, Mg, Cu, Zn as well as polyhedral precipitates within the grains that contained Mg and Zn was identified by scanning electron microscopy (SEM).

X-ray image analysis and EDS analysis reveals the presence of many compounds like FeAl₃, Al₃Cu₂Fe and solid solution like CuMgAl – MgZn₂ and Mg₂Si fine grain precipitate.

Some inclusions like CaMoSi which were also detected have a negative influence on the plasticity of the material.

The second part of this paper (II) will presents the microstructure characteriyation of D,E, and F zones of 7050 slab.

REFERENCES