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In this paper, we discuss pseudomonotone equilibrium problems and fixed
point problems in real Hilbert spaces. With the help of linesearch technique, we
propose a projection algorithm without any Lipschitz-type condition for solving
equilibrium problems and fixed point problems. We show that the constructed
algorithm converges strongly to a common element of the investigated problems.
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1. Introduction

Let H be a real Hilbert space. Let C be a nonempty closed and convex subset
of H. Let f : C × C → R be a bifunction. Recall that the equilibrium problem
(shortly, EP (f, C)) consists of finding a point x̃ ∈ C such that

f(x̃, x) ≥ 0, ∀x ∈ C. (1)

Denote the set of solutions of EP (f, C) by Sol(f, C).
The EP (f, C) has attracted so much attention both in its theory and some

relevant applications which can be refined from minimization problems, Nash equi-
libria ([2, 3, 14]), fixed point problems, variational inequalities ([11, 16]) and so on.
Iterative algorithms for solving EP (f, C) have investigated and further developed in
many different forms such as the proximal point algorithms ([13]), the projection al-
gorithms ([1]), the subgradient algorithms ([4, 8]) and the extragradient algorithms
([6, 19]).
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In order to solve EP (f, C), the bifunction f is always to be assumed to possess
Lipschitz-type condition (L): there exists ζ1 > 0, ζ2 > 0 such that

f(u†, v†) + f(v†, w†) ≥ f(u†, w†)− ζ1‖u† − v†‖2 − ζ2‖v† − w†‖2, ∀u†, v†, w† ∈ C,

and one of the following monotone properties (M1)-(M3):
(M1): strongly monotone if there exists ζ > 0 such that

f(u†, v†) + f(v†, u†) ≤ −ζ‖u† − v†‖2, ∀u†, v† ∈ C.

(M2): monotone if

f(u†, v†) + f(v†, u†) ≤ 0, ∀u†, v† ∈ C.

(M3): pseudomonotone if

f(u†, v†) ≥ 0 implies f(v†, u†) ≤ 0, ∀u†, v† ∈ C.

In [12], Mastroeni studied EP (f, C) with f satisfying condition (L) and property
(M1) by using auxiliary problem technique. Moudafi [13] investigated the proximal
point algorithm for solving EP (f, C) with f satisfying property (M2).

Note that the condition (L), in general, is not verified. Furthermore, even if
the condition (L) holds, finding the constants ζ1 and ζ2 is not an easy work. In
this respect, Nguyen, Strodiot and Nguyen [15] presented a hybrid method for solv-
ing EP (f, C) without condition (L) and fixed point problems by using a linesearch
procedure into the iterative step. Hung and Muu [7] extended the Tikhonov reg-
ularization method to the pseudomonotone equilibrium problem. Kazmi and Ali
[9] studied the EP (f, C) and a fixed point problem for an asymptotically quasi ψ-
nonexpansivemapping. Kazmi and Yousuf [10] suggested an extragradient iterative
method for finding a common solution to EP (f, C) and fixed point problems of
nonexpansive mappings. Yang and Liu [19] introduced and analyzed a subgradient
extragradient algorithm for solving the pseudomonotone equilibrium problem and
fixed point problems.

Motivated and inspired by the above work, the purpose of this paper is to
further investigate EP (f, C) and fixed point problems. We devote to solve the
pseudomonotone equilibrium problems and fixed point problems of pseudocontrac-
tive operators. We propose an iterative algorithm based on the projected method
and hybrid method with linesearch technique for finding a common solution of the
equilibrium problems and fixed point problems. We prove the strong convergence of
the proposed algorithm.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let
C be a nonempty closed convex subset of H. Recall that the distance between
a point x and C is defined as dist(x,C) = inf{‖x − a‖ : a ∈ C}. Especially, if
C = {u ∈ H : 〈w, u− v〉 ≤ 0} for w, v ∈ H with w 6= 0, then

dist(u†, C) =


|〈w, u† − v〉|
‖w‖

, if u† /∈ C,

0, if u† ∈ C.
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An operator S : C → C is said to be pseudocontractive if

‖Su− Su†‖2 ≤ ‖u− u†‖2 + ‖(I − S)u− (I − S)u†‖2, ∀u, u† ∈ C.
S : C → C is called κ-Lipschitz if ‖Su − Su†‖ ≤ κ‖u − u†‖, ∀u, u† ∈ C. If κ = 1,
then S is called nonexpansive. If κ < 1, then S is called κ-contractive.

Recall that the metric projection PC is an orthographic projection from H
onto C and satisfies ‖û− PC [û]‖ ≤ ‖u† − û‖, ∀u† ∈ C.

In the sequel, we use the following symbols.
• zn ⇀ z† means the weak convergence of zn to z† as n→∞.
• zn → p† stands for the strong convergence of zn to z† as n→∞.
• Fix(S) denotes the fixed point set of S.

Let g : C → (−∞,+∞] be a proper, lower semicontinuous and convex function.
Recall that the subdifferential ∂g of g is defined, for each u ∈ C, by

∂g(u) := {v† ∈ H : g(u†)− g(u) ≥ 〈v†, u† − u〉, ∀u† ∈ C}. (2)

It is known that u† solves the following minimization problem

min
u∈C
{g(u)}

if and only if

0 ∈ ∂g(u†) +NC(u†), (3)

where NC(u†) means the normal cone of C at u† defined by

NC(u†) = {ω ∈ H : 〈ω, u− u†〉 ≤ 0, ∀u ∈ C}. (4)

Proposition 2.1 ([12]). Let f : C×C → R be a bifunction with f(z̃, z̃) = 0,∀z̃ ∈ C.
Then the following conclusions are equivalent
(i) z† ∈ Sol(f, C);
(ii) z† solves the following minimization problem

min
z∈C

f(z†, z).

Next, we consider the following auxiliary equilibrium problem which consists
of finding a point z† ∈ C with the property

f(z†, z) + 1
2ϑ‖z

† − z‖2 ≥ 0, ∀z ∈ C, where ϑ > 0.

By Proposition 2.1, z† ∈ Sol(f, C) implies that z† also solves the following mini-
mization problem

min
z∈C
{f(z†, z) +

1

2ϑ
‖z† − z‖2}. (5)

Let f : C × C → R be a bifunction satisfying the following assumptions:
(f1): f(u†, u†) = 0,∀u† ∈ C;
(f2): f is jointly sequently weakly continuous on D×D, where D is an open convex

set containing C (recall that f is called jointly sequently weakly continuous on
D ×D, if xn ⇀ x† and yn ⇀ y†, then f(xn, yn)→ f(x†, y†));

(f3): f(u†, ·) is convex and subdifferentiable for all u† ∈ C;
(f4): f is pseudomonotone.

Lemma 2.1 ([12, 17]). Let f : C×C → R be a bifunction. If f satisfies assumptions
(f1)-(f4), then u† ∈ Sol(f, C) if and only if u† solves the problem (5).
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Lemma 2.2 ([18]). Assume that the bi-function f : C×C → R satisfies assumptions
(f1)-(f4). For given two points ū, v̄ ∈ C and two sequences {un} ⊂ C and {vn} ⊂ C,
if un ⇀ ū and vn ⇀ v̄, respectively, then, for any ε > 0, there exist δ > 0 and
Nε ∈ N verifying ∂f(vn, ·)(un) ⊂ ∂f(v̄, ·)(ū) + ε

δB for every n ≥ Nε, where B :=
{b ∈ H|‖b‖ ≤ 1}.

Lemma 2.3 ([5]). Let f : C × C → R be a bi-function satisfying assumptions (f1)-
(f4). Let {ϑn}∞n=0 be a real number sequence satisfying ϑn ∈ [ϑ, ϑ] ⊂ (0, 1]. For a
given bounded sequence {zn} in C, yn solves the following strongly convex program

min
z†∈C

{
f(zn, z

†) +
1

2ϑn
‖zn − z†‖2

}
.

Then {yn} is bounded.

Lemma 2.4 ([15]). For all x, x† ∈ H and ∀ς ∈ [0, 1], the following equality holds

‖ςx+ (1− ς)x†‖2 = ς‖x‖2 + (1− ς)‖x†‖2 − ς(1− ς)‖x− x†‖2.

Lemma 2.5. Let the operator S : C → C be κ-Lipschitz and pseudocontractive. For
any x̃ ∈ C and x† ∈ Fix(S), we have

‖x† − S[(1− ϑ)x̃+ ϑSx̃]‖2 ≤ ‖x̃− x†‖2 + (1− ϑ)‖x̃− S[(1− ϑ)x̃+ ϑSx̃]‖2,

where ϑ ∈ (0, 1√
1+κ2+1

).

Lemma 2.6 ([20]). Let S : C → C be a continuous pseudocontractive operator.
Then S is demi-closedness.

Lemma 2.7 ([20]). Suppose {$n} ⊂ [0,∞), {νn} ⊂ (0, 1), and {%n} are three real
number sequences satisfying
(i) $n+1 ≤ (1− νn)$n + %n, ∀n ≥ 1;
(ii)

∑∞
n=1 νn =∞;

(iii) lim sup
n→∞

%n
νn
≤ 0 or

∑∞
n=1 |%n| <∞.

Then limn→∞$n = 0.

Lemma 2.8 ([4]). Let {wn} be a sequence of real numbers. Assume there exists at
least a subsequence {wnk

} of {wn} such that wnk
≤ wnk+1 for all k ≥ 0. For every

n ≥ N0, define an integer sequence {τ(n)} as

τ(n) = max{i ≤ n : wni < wni+1}.
Then τ(n)→∞ as n→∞ and for all n ≥ N0, we have max{wτ(n), wn} ≤ wτ(n)+1.

3. Main results

In this section, we first give some assumptions and conditions. Let H be a real
Hilbert space. Let C be a nonempty closed convex subset of H and D be a given open
set which contains C. Let f : C×C → R be a bifunction satisfying the assumptions
(f1)-(f4) in Section 2. Let S : C → C be a κ-Lipschitz pseudocontractive operator.
Let the operator ψ : C → C be ρ-contractive. Let σ ∈ (0, 1) be a constant.

Assume that the real number sequences {ςn}, {ϑn}, {τn}, {εn}, {γn} and {µn}
satisfy the following conditions:
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(C1) 0 < ς < ςn < ς < ϑn < ϑ < 1√
1+κ2+1

(∀n ≥ 0);

(C2) 0 < τ ≤ τn < τ1 < τ2 < εn ≤ τ <∞;
(C3) γn ∈ [0, 1], limn→∞ γn = 0 and

∑∞
n=0 γn =∞;

(C4) 0 < lim infn→∞ µn ≤ lim supn→∞ µn < 1.
Next, we construct an iterative algorithm for finding a common solution of the
equilibrium problem EP (f, C) and fixed point problem of S.

Algorithm 3.1. Step 0. For given initial value x0 ∈ H, set n = 0.
Step 1. Assume that {xn} has been given. Compute

zn = (1− ςn)xn + ςnS[(1− ϑn)xn + ϑnSxn]. (6)

Step 2. Compute

yn = arg min
z†∈C

{
f(zn, z

†) +
1

2τn
‖zn − z†‖2

}
. (7)

Criterion: if yn = zn, then set un = zn and jump to Step 4; otherwise, continuous
to the next Step 3.

Step 3. Find the smallest positive integer m verifying

f(un,m, yn) +
1

2εn
‖yn − zn‖2 ≤ 0, (8)

where

un,m = (1− σm)zn + σmyn, (9)

and consequently, write σm = σn and un,m = un.
Step 4. Construct

Cn = {u† ∈ C : f(un, u
†) ≤ 0} (10)

and compute

xn+1 = γnψ(xn) + (1− γn)[µnzn + (1− µn)PCn(zn)]. (11)

Step 5. Set n := n+ 1 and return to Step 1.

Remark 3.1. The inequality (8) is well-defined, i.e., there exists a positive integer
m such that (8) holds.

In fact, if (8) is invalid, m must violate the inequality (8). Thus, for every
m ∈ N, we get

f(un,m, yn) +
1

2εn
‖yn − zn‖2 > 0. (12)

Since un,m = (1− σm)zn + σmyn and σ ∈ (0, 1), un,m → zn as m → ∞. Thanks to
the condition (f2), we deduce that f(un,m, yn)→ f(zn, yn). This together with (12)
implies that

f(zn, yn) +
1

2εn
‖yn − zn‖2 ≥ 0. (13)

By the definition of yn, we have

f(zn, yn) +
1

2τn
‖zn − yn‖2 ≤ f(zn, zn) +

1

2τn
‖zn − zn‖2 = 0. (14)
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In terms of (13) and (14), we obtain 0 < ( 1
2τn
− 1

2εn
)‖yn − zn‖2 ≤ 0. This leads a

contradiction. Hence, the search rule (8) is well-defined.

Proposition 3.1. We have the following statements:
(i) If yn = zn, then zn ∈ Sol(f, C);
(ii) Sol(f, C) ⊂ Cn;
(iii) If yn 6= zn, then zn /∈ Cn and f(un, zn) > 0.

Proof. (i) If yn = zn, then 0 ∈ ∂f(zn, ·)(zn)+NC(zn). Hence, 〈ξn, z−zn〉 ≥ 0,∀z ∈ C
where ξn ∈ ∂f(zn, ·)(zn). By the subdifferentiable inequality of f(zn, ·), we have
f(zn, z) − f(zn, zn) ≥ 〈ξn, z − zn〉 for all z ∈ C. Therefore, f(zn, z) ≥ 0(∀z ∈ C)
which implies that zn ∈ Sol(f, C).

(ii) Pick up any q ∈ Sol(f, C). Then, we have f(q, q†) ≥ 0 for all q† ∈ C.
By the pseudomonotonicity (f4) of f , we get f(q†, q) ≤ 0 for all q† ∈ C. Note that
un ∈ C. Then, f(un, q) ≤ 0 which implies that q ∈ Cn. Therefore, Sol(f, C) ⊂ Cn.

(iii) By (9), (f1) and (f3), we have

0 = f(un, un) = f(un, (1− σn)zn + σnyn)

≤ (1− σn)f(un, zn) + σnf(un, yn)

≤ (1− σn)f(un, zn)− σn
2εn
‖yn − zn‖2 (by (8))

< (1− σn)f(un, zn),

thus, f(un, zn) > 0 and so zn /∈ Cn by (10). �

Next, we show the convergence of Algorithm 3.1.

Theorem 3.1. Suppose that Ω := Sol(f, C)∩Fix(S) 6= ∅. Then the sequence {xn}
generated by (11) converges strongly to p = PΩψ(p).

Proof. Set vn = µnzn + (1− µn)PCn(zn) for all n ≥ 0. It follows that

‖vn − p‖ = ‖µn(zn − p) + (1− µn)(PCn(zn)− PCn(p))‖
≤ µn‖zn − p‖+ (1− µn)‖zn − p‖
= ‖zn − p‖.

(15)

From (6) and Lemmas 2.4 and 2.5, we deduce

‖zn − p‖2 = ‖(1− ςn)(xn − p) + ςn(S[(1− ϑn)xn + ϑnSxn]− p)‖2

= (1− ςn)‖xn − p‖2 − ςn(1− ςn)‖S[(1− ϑn)xn + ϑnSxn]− xn‖2

+ ςn‖S[(1− ϑn)xn + ϑnSxn]− p‖2

≤ (1− ςn)‖xn − p‖2 − ςn(1− ςn)‖S[(1− ϑn)xn + ϑnSxn]− xn‖2

+ ςn(‖xn − p‖2 + (1− ϑn)‖xn − S[(1− ϑn)xn + ϑnSxn]‖2)

= ‖xn − p‖2 − ςn(ϑn − ςn)‖xn − S[(1− ϑn)xn + ϑnSxn]‖2

≤ ‖xn − p‖2.

(16)
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By (6), (15) and (16), we obtain

‖xn+1 − p‖ = ‖γn(ψ(xn)− p) + (1− γn)(vn − p)‖
≤ γn‖ψ(xn)− p‖+ (1− γn)‖vn − p‖
≤ γn‖ψ(xn)− ψ(p)‖+ γn‖ψ(p)− p‖+ (1− γn)‖zn − p‖
≤ γnρ‖xn − p‖+ γn‖ψ(p)− p‖+ (1− γn)‖xn − p‖
= [1− (1− ρ)γn]‖xn − p‖+ γn‖ψ(p)− p‖.

(17)

By induction, we can conclude that ‖xn+1−p‖ ≤ max{‖x0−p‖, ‖ψ(p)−p‖/(1−ρ)}.
Thus, the sequence {xn} is bounded. Consequently, the sequences {vn} and {zn}
are all bounded. According to Lemma 2.3, we deduce that {yn} is bounded. Hence,
{un} is also bounded.

For each wn ∈ ∂f(un, ·)(un), define

Qn = {u† ∈ C : 〈wn, u† − un〉 ≤ 0}. (18)

Thanks to Lemma 2.2, {wn} is bounded. Hence, there exists a positive constant M
such that ‖wn‖ ≤M for all n. By the subdifferentiable inequality of f(un, ·) at un,
we obtain

f(un, u
†) = f(un, u

†)− f(un, un) ≥ 〈wn, u† − un〉,∀u† ∈ C, (19)

which implies that Cn ⊂ Qn.
Replacing u† by yn in (19), we get

f(un, yn) ≥ 〈wn, yn − un〉.

This together with (8) implies that

〈wn, un − yn〉 ≥
1

2εn
‖yn − zn‖2. (20)

Note that zn − un = σn
1−σn (un − yn). It follows from (20) that

〈wn, zn − un〉 ≥
σn

2εn(1− σn)
‖yn − zn‖2. (21)

Since zn /∈ Cn and Cn ⊂ Qn, we get

‖zn − PCn(zn)‖ = dist(zn, Cn)

≥ dist(zn, Qn)

=
|〈wn, zn − un〉|

‖wn‖

≥ σn
2τM

‖yn − zn‖2.

(22)

By Lemma 2.4, we have

‖vn − p‖2 = ‖µn(zn − p) + (1− µn)(PCn(zn)− p)‖2

= µn‖zn − p‖2 + (1− µn)‖PCn(zn)− p‖2

− µn(1− µn)‖zn − PCn(zn)‖2

≤ ‖zn − p‖2 − µn(1− µn)‖zn − PCn(zn)‖2.

(23)
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Combining (16) with (23) to derive

‖vn − p‖2 ≤ ‖xn − p‖2 − ςn(ϑn − ςn)‖xn − S[(1− ϑn)xn + ϑnSxn]‖2

− µn(1− µn)‖zn − PCn(zn)‖2.
(24)

By virtue of (17) and (24), we have

‖xn+1 − p‖2 ≤ γn‖ψ(xn)− p‖2 + (1− γn)‖vn − p‖2

≤ γn‖ψ(xn)− p‖2 + ‖xn − p‖2 − µn(1− µn)‖zn − PCn(zn)‖2

− ςn(ϑn − ςn)‖xn − S[(1− ϑn)xn + ϑnSxn]‖2.
(25)

Regarding the convergence of {‖xn − p‖}n≥0, there are two possible cases. Case 1:
there exists n0 such that ‖xn+1 − p‖ ≤ ‖xn − p‖ when n ≥ n0. Case 2: there exists
a subsequence {ni} of {n} such that ‖xni − p‖ < ‖xni+1 − p‖,∀i ≥ 1.

For case 1, we conclude that limn→∞ ‖xn − p‖ exists. In the light of (25), we
have

ςn(ϑn − ςn)‖xn − S[(1− ϑn)xn + ϑnSxn]‖2 + µn(1− µn)‖zn − PCn(zn)‖2

≤ γn‖ψ(xn)− p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2 → 0
(26)

which implies that

lim
n→∞

‖zn − PCn(zn)‖ = 0 (27)

and

lim
n→∞

‖xn − S[(1− ϑn)xn + ϑnSxn]‖ = 0. (28)

By (6) and (28), we deduce

lim
n→∞

‖zn − xn‖ = lim
n→∞

ςn‖xn − S[(1− ϑn)xn + ϑnSxn]‖ = 0. (29)

Since S is κ-Lipschitz continuous, we deduce

‖xn − Sxn‖ ≤ ‖xn − S[(1− ϑn)xn + ϑnSxn]‖
+ ‖S[(1− ϑn)xn + ϑnSxn]− Sxn‖
≤ ‖xn − S[(1− ϑn)xn + ϑnSxn]‖+ κϑn‖xn − Sxn‖.

This means that

‖xn − Sxn‖ ≤
1

1− κϑn
‖xn − S[(1− ϑn)xn + ϑnSxn]‖.

This together with (28) implies that

lim
n→∞

‖xn − Sxn‖ = 0. (30)

Since yn solves strongly convex program minz†∈C
{
f(zn, z

†) + 1
2τn
‖zn − z†‖2

}
, there

exists ζn ∈ ∂f(zn, ·)(yn) such that

〈ζn, v − yn〉+
1

τn
〈yn − zn, v − yn〉 ≥ 0,∀v ∈ C. (31)

Using the subdifferentiable inequality of f(zn, ·) at yn, we have

f(zn, v)− f(zn, yn) ≥ 〈ζn, v − yn〉, ∀v ∈ C. (32)
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By (31) and (32), we deduce

f(zn, v)− f(zn, yn) +
1

τn
〈yn − zn, v − yn〉 ≥ 0, ∀v ∈ C. (33)

It follows that

f(zn, v)− f(zn, yn) +
1

τ
‖yn − zn‖‖v − yn‖ ≥ 0, ∀v ∈ C. (34)

Thanks to (22) and (27), we get

lim
n→∞

σn‖yn − zn‖2 = 0. (35)

Since the sequence {xn} is bounded, there exists a subsequence {xnj} of {xn} such
that xnj ⇀ q as j →∞ and

lim sup
n→∞

〈ψ(p)− p, xn+1 − p〉 = lim
j→∞
〈ψ(p)− p, xnj+1 − p〉.

By (29), znj ⇀ q as j → ∞. Next, we show q ∈ Ω. Firstly, using Lemma 2.6 and
(30), we conclude that q ∈ Fix(S). Next, we prove q ∈ Sol(f, C) by considering two
cases.

(i) If lim infj→∞ σnj > 0, then from (35) we have

lim
j→∞

‖ynj − znj‖ = 0. (36)

Because of znj ⇀ q(j →∞), we conclude that ynj ⇀ q as j →∞ by (36). In (34),
replacing n by nj and letting j →∞, we have

f(q, v) ≥ 0,∀v ∈ C.

This means that q ∈ Sol(f, C).
(ii) If lim infj→∞ σnj = 0, then there exists a subsequence {σnji

} of {σnj} such
that limi→∞ σnji

= 0.

Since {ynji
} is bounded, without loss of generality, we may assume that ynji

⇀

q† ∈ C as i→∞. Since ynji
solves (7), for ∀y† ∈ C, we have

f(znji
, ynji

) +
1

2τnji

‖ynji
− znji

‖2 ≤ f(znji
, y†) +

1

2τnji

‖znji
− y†‖2. (37)

Since τn is bounded, we may assume, without loss of generality, that limi→∞ τnji
=

ρ† ≤ τ1. Letting i→∞ in (37), we deduce together with (f2) that

f(q, q†) +
1

2ρ†
‖q − q†‖2 ≤ f(q, y†) +

1

2ρ†
‖q − y†‖2, ∀y† ∈ C. (38)

Setting y† = q in (38), we get

f(q, q†) +
1

2ρ†
‖q − q†‖2 ≤ 0. (39)

On the other hand, m is the smallest positive integer satisfying (8), so we have

f(unji
,m−1, ynji

) > − 1

2τ2
‖ynji

− znji
‖2. (40)
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Note that unji
,m−1 = (1− σnji

−1)znji
+ σnji

−1ynji
⇀ q. Letting i → ∞ in (40), we

obtain

f(q, q†) ≥ − 1

2τ2
‖q − q†‖2. (41)

Taking into account (39) and (41), we deduce 0 ≤ ( 1
2ρ†
− 1

2τ2
)‖q − q†‖2 ≤ 0 which

implies that q† = q. Therefore, from (38), we have

f(q, y†) +
1

2ρ†
‖q − y†‖2 ≥ 0, ∀y† ∈ C.

According to Lemma 2.1, q ∈ Sol(f, C). Hence,

lim sup
n→∞

〈ψ(p)− p, xn+1 − p〉 = lim
j→∞
〈ψ(p)− p, xnj+1 − p〉 = 〈ψ(p)− p, q − p〉 ≤ 0

because of p = PΩψ(p).
From (11), we have

‖xn+1 − p‖2 ≤ (1− γn)2‖vn − p‖2 + 2γn〈ψ(xn)− ψ(p), xn+1 − p〉
+ 2γn〈ψ(p)− p, xn+1 − p〉
≤ (1− γn)2‖xn − p‖2 + 2γnρ‖xn − p‖‖xn+1 − p‖

+ 2γn〈ψ(p)− p, xn+1 − p〉
≤ (1− γn)2‖xn − p‖2 + γnρ‖xn − p‖2 + γnρ‖xn+1 − p‖2

+ 2γn〈ψ(p)− p, xn+1 − p〉.

It follows that

‖xn+1 − p‖2 ≤ [1− 2(1− ρ)γn
1− γnρ

]‖xn − p‖2 +
γ2
n

1− γnρ
‖xn − p‖2

+
2γn

1− γnρ
〈ψ(p)− p, xn+1 − p〉

≤ [1− 2(1− ρ)γn
1− γnρ

]‖xn − p‖2 +
γ2
n

1− γnρ
M0

+
2γn

1− γnρ
〈ψ(p)− p, xn+1 − p〉.

(42)

where M0 is a constant such that supn{‖xn − p‖2} ≤M0.
Combining (42) and Lemma 2.7, we deduce that xn → p.
For Case 2, by Lemma 2.8, there exists a nondecreasing sequence mk verifying

mk →∞,

max{‖xk − p‖, ‖xmk
− p‖} ≤ ‖xmk+1 − p‖,∀k ≥ 1.

From (26), we also have

ςmk
(ϑmk

− ςmk
)‖xmk

− S[(1− ϑmk
)xmk

+ ϑmk
Sxmk

]‖2

+ µmk
(1− µmk

)‖zmk
− PCmk

(zmk
)‖2

≤ γmk
‖ψ(xmk

)− p‖2 + ‖xmk
− p‖2 − ‖xmk+1 − p‖2

≤ γmk
‖ψ(xmk

)− p‖2 → 0.
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which implies that

lim
k→∞

‖zmk
− PCmk

(zmk
)‖ = 0 and lim

k→∞
‖xmk

− Sxmk
‖ = 0.

Consequently, by the similar argument as that in Case 1, we can obtain

lim sup
n→∞

〈ψ(p)− p, xmk+1 − p〉 ≤ 0. (43)

By (42), we derive

‖xmk+1 − p‖2 ≤ [1− 2(1− ρ)γmk

1− γmk
ρ

]‖xmk
− p‖2 +

γ2
mk

1− γmk
ρ
M0

+
2γmk

1− γmk
ρ
〈ψ(p)− p, xmk+1 − p〉

≤ [1− 2(1− ρ)γmk

1− γmk
ρ

]‖xmk+1 − p‖2 +
γ2
mk

1− γmk
ρ
M0

+
2γmk

1− γmk
ρ
〈ψ(p)− p, xmk+1 − p〉.

It follows that

‖xmk+1 − p‖2 ≤
γmk

2(1− ρ)
M0 +

1

1− ρ
〈ψ(p)− p, xmk+1 − p〉.

This together with (43) implies that ‖xmk+1 − p‖ as k → ∞. Hence, ‖xk − p‖ → 0
as k →∞. This completes the proof. �

Algorithm 3.2. Step 0. For given initial value x0 ∈ H, set n = 0.
Step 1. Assume that {xn} has been given. Compute

yn = arg min
z†∈C

{
f(xn, x

†) +
1

2τn
‖xn − x†‖2

}
.

Criterion: if yn = xn, then set un = xn and jump to Step 3; otherwise, continuous
to the next Step 2.

Step 2. Find the smallest positive integer m verifying

f(un,m, yn) +
1

2εn
‖yn − xn‖2 ≤ 0,

where

un,m = (1− σm)xn + σmyn,

and consequently, write σm = σn and un,m = un.
Step 3. Construct

Cn = {u† ∈ C : f(un, u
†) ≤ 0}

and compute

xn+1 = γnψ(xn) + (1− γn)[µnxn + (1− µn)PCn(xn)].

Step 4. Set n := n+ 1 and return to Step 1.

Theorem 3.2. Suppose that Sol(f, C) 6= ∅. Then the sequence {xn} generated by
Algorithm 3.2 converges strongly to p† = PSol(f,C)ψ(p†).
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