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INFINITELY MANY POSITIVE WEAK SOLUTIONS FOR A 
PERTURBED FOURTH-ORDER KIRCHHOFF-TYPE ON THE WHOLE 

SPACE

Mohammad Reza Heidari TAVANI1, Mehdi   KHODABAKHSHI2, Seyyed Mansour VAEZPOUR3

This study aims to establish the existence of infinitely many weak solutions

for a fourth-order Kirchhoff-type equation on an unbounded interval. The approach used

in the persent study is based on variational methods and critical point theory.
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1. Introduction

In the current research the following Kirchhoff type problem is considered:
J(u) = λα(x)f(u(x)), a.e. x ∈ R,

u ∈W 2,2(R),

(1)

where λ is a positive parameter and

J(u) = uiυ(x) +K(
∫
R(q(x)|u′(x)|2 + s(x)|u(x)|2)dx)((−q(x)u′(x))′ + s(x)u(x)),

in which q, s ∈ L∞(R), with q0 = ess inf
R

q > 0 and s0 = ess inf
R

s > 0, K : [0,+∞[→ R is a

continuous function such that there exist positive numbers m0 and m1 with m0 ≤ K(t) ≤ m1

for all t ≥ 0. Also α, f : R → R are two functions such that α ∈ L1(R), α(x) ≥ 0, for a.e.

x ∈ R , α 6≡ 0 and also f : R→ R is a continuous and non-negative function.

This type of differential equation is a generalized classical D’Alembert’s wave equation

for the free vibration of an elastic beam proposed by Kirchhoff in [10]. In fact in prob-

lem (1), the function f represents the force that the foundation exerts on the beam and

K(
∫
R(q(x)|u′(x)|2 + s(x)|u(x)|2)dx) models the effects of the small changes in the length of

the beam. Some important topics about modeling of Kirchhoff type strings and beams can

be found in references [2, 10, 15] .

As we know, one of the most widely used differential equations is the fourth-order differ-

ential equation, which plays a key role in describing the large number of elastic deviations
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in beams and strings. Over the past two decades, many studies have been conducted on

fourth-order differential equations and surprising results have been obtained. For example,

readers might refer to the references cited at the end of the present study: [5, 8, 11, 13].

Also, to study the different types of Kirchhoff differential equations, they might refer to the

cited references: [7, 9, 12, 14].

For example in [9], the authors considered the following fourth-order Kirchhoff-type

problem: 
uiυ +K

(∫ 1

0
(−A|u′(x)|2 +B|u(x)|2)dx

)
(Au′′ +Bu) =

λf(x, u) + µg(x, u) + h(u), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,

(2)

where A and B are real constants, λ is a positive parameter, µ is a non-negative parameter,

K : [0,+∞[→ R is a continuous function such that there exist positive numbers m0 and m1

with m0 ≤ K(t) ≤ m1 for all t ≥ 0, f, g : [0, 1]×R→ R are two L2-Carathéodory functions

and h : R → R is a Lipschitz continuous function with the Lipschitz constant L > 0 and

h(0) = 0.

The researchers of the present work examined the existence of at least three general-

ized solutions by using the variational methods and critical point theory.

It is to be noticed that if the interval is bounded, then there will not be much challenge to

prove the existence of solution for the differential equation.

Therefore, since the operators which have been used to solve equations such as (1) on

R are not compact, the study of such problems is very complicated.

In the present paper, using an infinitely many critical points theorem obtained in [4]

, the existence of a sequence of weak solutions for the problem (1) is guaranteed.

2. Preliminaries

Let us recall some basic concepts that we will need later.

W 2,2
0 (R) = H2

0 (R) denotes the closure of C∞0 (R) in W 2,2(R) = H2(R) and since C∞0 (R) is

dense in W 2,2(R), we have W 2,2
0 (R) = W 2,2(R), [[1], Corollary 3.19].

We denote by ‖.‖t the usual norm on Lt(R), for all 1 ≤ t ≤ +∞.

Also, the Sobolev space W 2,2(R) is equipped with the norm

‖ u ‖W 2,2(R)=

(∫
R

(|u′′(x)|2 + |u′(x)|2 + |u(x)|2)dx

)1/2

,

for all u ∈W 2,2(R). On the other hand, we can consider W 2,2(R) with the norm

‖ u ‖=
(∫

R
(|u′′(x)|2 + q(x)|u′(x)|2 + s(x)|u(x)|2)dx

)1/2

,

for all u ∈W 2,2(R). According to

(min{1, q0, s0})
1
2 ‖ u ‖W 2,2(R)≤‖ u ‖≤

(max{1, ‖q‖∞, ‖s‖∞})
1
2 ‖ u ‖W 2,2(R), (3)

the norm ‖ . ‖ is equvalent to the ‖ . ‖W 2,2(R) norm.

It is well known that W 2,2(R) is continuously embedded in L∞(R), [[6],Corollary 9.13].

Therefore there exists a constant Cq,s (depending on the functions q and s) such that

‖u‖∞ ≤ Cq,s ‖ u ‖ ,∀u ∈W 2,2(R).
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In the following proposition, we obtain an approximation for this constant.

Proposition 2.1. Let u ∈W 2,2(R); then

‖u‖∞ ≤ Cq,s ‖ u ‖ (4)

where Cq,s =

(
1

4‖q‖∞‖s‖∞

) 1
4
(

max{1,‖q‖∞,‖s‖∞}
min{1,q0,s0}

) 1
2

.

Proof. According to inequality (3) and also by substituting ‖q‖∞ and ‖s‖∞ with −A and

B respectively in Proposition 2.1 from [8], the desired result will be obtained.

�

Let us define F (ξ) =
∫ ξ

0
f(t)dt for all ξ ∈ R and K̃(η) =

∫ η
0
K(t)dt for all η > 0.

Moreover we introduce the functional Iλ : W 2,2(R)→ R associated with (1)

Iλ = Φ− λΨ,

for every u ∈W 2,2(R), where

Φ(u) =
1

2

∫
R
|u′′(x)|2dx+

1

2
K̃

(∫
R

(q(x)|u′(x)|2 + s(x)|u(x)|2)dx

)
dx (5)

and

Ψ(u) =

∫
R
α(x)F (u(x))dx (6)

for every u ∈W 2,2(R).

It should be noted that the assumptions on α and f guarantee that the functional Ψ is

well defined (see [3], P.17). Also, Ψ is a Gâteaux differentiable sequentially weakly upper

semicontinuous functional, whose Gâteaux derivative is given by

Ψ′(u)(v) =

∫
R
α(x)f(u(x))v(x)dx,

for every v ∈W 2,2(R).

On the other hand, according to the inequality

min{1,m0}
2

‖u‖2 ≤ Φ(u) ≤ max{1,m1}
2

‖u‖2 (7)

Φ is coercive and convex. By standard arguments, one has that Φ is Gâteaux differ-

entiable and sequentially weakly lower semi-continuous, and its Gâteaux derivative is the

functional Φ′(u) ∈ (W 2,2(R))∗ given by

Φ′(u)(v) = lim
θ→0

Φ(u+ θ v)− Φ(u)

θ
=

d

dθ
[Φ(u+ θ v)]

∣∣∣
θ=0

=

∫
R
u′′(x)v′′(x)dx+

K
(∫

R
(q(x)|u′(x)|2 + s(x)|u(x)|2)dx

)
×
∫
R

(
q(x)u′(x)v′(x) + s(x)u(x)v(x)

)
dx

for every v ∈W 2,2(R).

Definition 2.1. Fixing the real parameter λ, a function u ∈ W 2,2(R) is said to be a weak

solution of (1) if∫
R
u′′(x)v′′(x)dx+K

(∫
R

(q(x)|u′(x)|2 + s(x)|u(x)|2)dx

)
×∫

R

(
q(x)u′(x)v′(x) + s(x)u(x)v(x)

)
dx− λ

∫
R
α(x)f(u(x))v(x)dx = 0
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for every v ∈W 2,2(R).

Hence, the critical points of Iλ are exactly the weak solutions of (1).

Lemma 2.1. Suppose f : R→ R is a non-negative continuous function. If u0 6≡ 0 is a weak

solution for problem (1) then u0 is non-negative.

Proof. Let v(x) = ū0(x) = max{−u0(x), 0} and we assume that Θ = {x ∈ R : u0(x) ≤ 0}.
Then we have∫

Θ∪Θc

u′′0(x)ū′′0(x)dx+K

(∫
R

(q(x)|u′0(x)|2 + s(x)|u0(x)|2)dx

)
×∫

Θ∪Θc

(
q(x)u′0(x)ū′0(x) + s(x)u0(x)ū0(x)

)
dx =

∫
R
λα(x)f(u0(x))ū0(x)dx,

that is ∫
Θ

(
− |u′′0(x)|2

)
dx+m0

∫
Θ

(
− q(x)|u′0(x)|2 − s(x)|u0(x)|2

)
dx ≥ 0,

hence min{1,m0}‖ū0‖ = 0 which means that u0 ≥ 0 and the proof is complete. �

Our main tool to investigate the existence of infinitely many solutions for the problem

(1) is the classical Ricceri’s variational principle which we now recall.

Theorem 2.1 ([4], Theorem 2.1). Let X be a reflexive real Banach space, let Φ,Ψ : X → R
be two Gâteaux differentiable functionals such that Φ is sequentially weakly lower semicontin-

uous, strongly continuous, and coercive and Ψ is sequentially weakly upper semicontinuous.

For every r > infX Φ, let us put

ϕ(r) := inf
u∈Φ−1(]−∞,r[)

supv∈Φ−1(]−∞,r[) Ψ(v)−Ψ(u)

r − Φ(u)

and

γ := lim inf
r→+∞

ϕ(r), δ := lim inf
r→(infX Φ)+

ϕ(r).

Then, one has

(a) for every r > infX Φ and every λ ∈]0, 1
ϕ(r) [, the restriction of the functional

Iλ = Φ − λΨ to Φ−1(] − ∞, r[) admits a global minimum, which is a critical point (local

minimum) of Iλ in X.

(b) If γ < +∞ then, for each λ ∈]0, 1
γ [, the following alternative holds:

either

(b1) Iλ possesses a global minimum,

or

(b2) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→+∞

Φ(un) = +∞.

(c) If δ < +∞ then, for each λ ∈]0, 1
δ [, the following alternative holds:

either

(c1) there is a global minimum of Φ which is a local minimum of Iλ,

or

(c2) there is a sequence of pairwise distinct critical points (local minima) of Iλ,

with

limn→+∞Φ(un) = infX Φ, which weakly converges to a global minimum of Φ.
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3. Main results

Put

τ :=
540 min{1,m0}

86111 (max{1,m1})(max{1, ‖q‖∞, ‖s‖∞})Cq,s2 , (8)

A := ‖α‖1 lim inf
ξ→+∞

F (ξ)

ξ2
, (9)

and

B := lim sup
ξ→+∞

F (ξ)
∫ 5

8
3
8

α(x)dx

ξ2
. (10)

Qur main result is the following.

Theorem 3.1. Let f : R→ R be a continuous and non-negative function, and assume that

(i) F (t) ≥ 0 for every t ∈]0, 3
8 [∪] 5

8 , 1[ where F (ξ) =
∫ ξ

0
f(t)dt for all ξ ∈ R,

(ii) A < τB, where τ ,A and B are given by (8) , (9) and (10) respectively .

Then for every

λ ∈
]

86111

1080

(max{1,m1})(max{1, ‖q‖∞, ‖s‖∞})
B

,
min{1,m0}

2ACq,s
2

[
the problem (1) admits a sequence of positive weak solutions which is unbounded in W 2,2(R).

Proof. Our aim is to apply Theorem 2.1, part (b) with X = W 2,2(R). For this purpose

fix λ as in our conclusion and Φ,Ψ are the functionals introduced in section 2. In the

previous section, we showed that Φ and Ψ have the necessary conditions in Theorem 2.1.

Our assumptions on f guarantee that F ∈ C1(R) and F ′(t) = f(t) ≥ 0 for all t ∈ R, so F is

non-decreasing. Hence for every ξ > 0 we have

sup
|t|≤ξ

F (t) = F (ξ).

Now, we claim that there are many critical points for the functional Iλ in W 2,2(R).

For our goal, let {ξn} be a sequence of positive numbers such that limn→∞ ξn = +∞ and

lim
n→∞

∫
R α(x) sup|t|≤ξn F (t)dx

ξ2
n

= ‖α‖1 lim
n→∞

F (ξn)

ξ2
n

= A.

Set rn := min{1,m0}
2

( ξn
Cq,s

)2

, for each n ∈ N.

For every u ∈W 2,2(R) by using (4) we have

Φ−1(]−∞, rn[) = {u ∈W 2,2(R); Φ(u) < rn} ⊆{
u ∈W 2,2(R);

min{1,m0}
2

‖u‖2 < min{1,m0}
2

( ξn
Cq,s

)2
}

=

{u ∈ X; Cq,s‖u‖ < ξn} ⊆
{
u ∈W 2,2(R); ‖u‖∞ ≤ ξn

}
.

Now, since 0 ∈ Φ−1(]−∞, rn[) then the following inequalities are obtained:

ϕ(rn) = inf
u∈Φ−1(]−∞,rn[)

supv∈Φ−1(]−∞,rn[) Ψ(v)−Ψ(u)

rn − Φ(u)
≤

supv∈Φ−1(]−∞,rn[) Ψ(v)

rn
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≤
∫
R α(x) sup|t|≤ξn F (t)dx

rn
=

‖α‖1F (ξn)

min{1,m0}
2

( ξn
Cq,s

)2

=
2Cq,s

2

min{1,m0}
‖α‖1

F (ξn)

ξn
2 ,

for every n ∈ N. Hence, it follows that

γ ≤ lim inf
n→∞

Φ(rn) ≤ 2Cq,s
2

min{1,m0}
A < +∞,

because condition (ii) shows A < +∞. Now, we will prove that the functional Iλ is un-

bounded from below. to this end, let {dn} be a sequence of positive numbers such that

limn→∞ dn = +∞ and

lim
n→+∞

F (dn)
∫ 5

8
3
8

α(x)dx

dn
2 = B. (11)

Let {vn} be a sequence in W 2,2(R) which is defined by

vn(x) :=


−64 dn

9
(x2 − 3

4
x) if x ∈ [0, 3

8 ],

dn if x ∈] 3
8 ,

5
8 ],

− 64 dn
9 (x2 − 5

4x+ 1
4 ) if x ∈] 5

8 , 1],

0 otherwise.

(12)

One can compute that

‖ vn ‖W 2,2(R)
2

=
86111

540
dn

2,

and the following can be inferred from (3) and (7)

(min{1,m0})(min{1, q0, s0})
86111

1080
dn

2 ≤ Φ(vn) ≤

(max{1,m1})(max{1, ‖q‖∞, ‖s‖∞})
86111

1080
dn

2. (13)

Also, by using condition (i), we infer∫
R
α(x)F (vn(x))dx ≥

∫ 5
8

3
8

α(x)F (dn)dx = F (dn)

∫ 5
8

3
8

α(x)dx,

for every n ∈ N. Therefore, we have

Iλ(vn) = Φ(vn)− λΨ(vn)

≤ (max{1,m1})(max{1, ‖q‖∞, ‖s‖∞})
86111

1080
dn

2 − λF (dn)

∫ 5
8

3
8

dx,

for every n ∈ N. If B < +∞, let

ε ∈
]

(max{1,m1})(max{1, ‖q‖∞, ‖s‖∞})
λB

86111

1080
, 1

[
.

By (11) there is Nε such that

F (dn)

∫ 5
8

3
8

α(x)dx > εB dn
2, (∀n > Nε).



Infinitely many positive weak solutions for a perturbed fourth-order Kirchhoff-type on the whole space 85

Consequently, one has

Iλ(vn) ≤ (max{1,m1})(max{1, ‖q‖∞, ‖s‖∞})
86111

1080
dn

2 − λεBdn2

= dn
2

(
(max{1,m1})(max{1, ‖q‖∞, ‖s‖∞})

86111

1080
− λεB

)
,

for every n > Nε. Thus, it follows that

lim
n→∞

Iλ(vn) = −∞.

If B = +∞, then consider

M >
(max{1,m1})(max{1, ‖q‖∞, ‖s‖∞})

λ

86111

1080
.

By (11) there is N(M) such that

F (dn)

∫ 5
8

3
8

α(x)dx > Mdn
2, (∀n > N(M)).

So, we have

Iλ(vn) ≤ (max{1,m1})(max{1, ‖q‖∞, ‖s‖∞})
86111

1080
dn

2 − λMdn
2

= dn
2

(
(max{1,m1})(max{1, ‖q‖∞, ‖s‖∞})

86111

1080
− λM

)
,

for every n > N(M). Taking into account the choice of M, also in this case, one has

lim
n→∞

Iλ(vn) = −∞.

Therefore according to Theorem 2.1, the functional Iλ admits an unbounded sequence

{un} ⊂ W 2,2(R) of critical points. Finally, since the weak solutions of the problem (1)

are exactly the solutions of the equation I ′λ(u) = 0, Theorem 2.1 and Lemma 2.1 guarantee

the conclusion.

�

Remark 3.1. We note that assumption (ii) in Theorem 3.1 could be replaced by the follow-

ing more general hypotheses:

(iii) there exists two sequences {an} and {bn} such that

0 ≤ an <
1

Cq,s

( 540 min{1,m0}
86111 (max{1,m1})(max{1, ‖q‖∞, ‖s‖∞})

) 1
2

bn

for every n ∈ N and limn→∞ bn = +∞ such that

lim
n→∞

F (bn)‖α‖1 − F (an)
∫ 5

8
3
8

α(x)dx

min{1,m0}
2

( bn
Cq,s

)2

− (max{1,m1})(max{1, ‖q‖∞, ‖s‖∞})
86111

1080
an

2
<

1080

86111 (max{1,m1})(max{1, ‖q‖∞, ‖s‖∞})
lim sup
ξ→+∞

F (ξ)
∫ 5

8
3
8

α(x)dx

ξ2
.
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It is clear that from (iii) by choosing an = 0 for all n ∈ N, (ii) will be obtained. Let

rn := min{1,m0}
2

( bn
Cq,s

)2

for every n ∈ N. Now we have

ϕ(rn) ≤
supv∈Φ−1(]−∞,rn[)

∫
R α(x)F (v(x))dx−

∫
R α(x)F (vn(x))dx

rn − Φ(vn)

≤
F (bn)‖α‖1 − F (an)

∫ 5
8
3
8

α(x)dx

min{1,m0}
2

( bn
Cq,s

)2

− (max{1,m1})(max{1, ‖q‖∞, ‖s‖∞})
86111

1080
an

2

where

vn(x) :=


−64 an

9
(x2 − 3

4
x) if x ∈ [0, 3

8 ],

an if x ∈] 3
8 ,

5
8 ],

− 64 an
9 (x2 − 5

4x+ 1
4 ) if x ∈] 5

8 , 1],

0 otherwise.

(14)

The continuation of our argument is similar to the process of proving Theorem 3.1 and so

for every

λ ∈

]
86111

1080

(max{1,m1})(max{1, ‖q‖∞, ‖s‖∞})

lim supξ→+∞

F (ξ)
∫ 5

8
3
8

α(x)dx

ξ2

,

1

F (bn)‖α‖1 − F (an)
∫ 5

8
3
8

α(x)dx

min{1,m0}
2

(
bn
Cq,s

)2

− (max{1,m1})(max{1, ‖q‖∞, ‖s‖∞}) 86111
1080 an2

[

the problem (1) admits a sequence of positive weak solutions which is unbounded in

W 2,2(R).

Please note the following example to illustrate Theorem 3.1.

Example 3.1. Let f : R→ R be the function defined as

f(t) =


0 if t ∈ R\

⋃
n∈N

[n!n, (n+ 1)!]

4[(n+ 1)2 − 1] min{t− n!n, (n+ 1)!− t} if t ∈ [n!n, (n+ 1)!],

and also put an = n! and bn = n!n for each n ∈ N. Then we have (see [5])

lim inf
ξ→+∞

F (ξ)

ξ2
= 0

and

lim sup
ξ→+∞

F (ξ)

ξ2
= 1.

Let α : R→ R be the function defined as follows
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α(x) =


80 if x ∈ [ 3

8 ,
5
8 ]

0 otherwise,

and so one has

A = ‖α‖1 lim inf
ξ→+∞

F (ξ)

ξ2
= 0

and

B = lim sup
ξ→+∞

F (ξ)
∫ 5

8
3
8

α(x)dx

ξ2
= 20.

Therefore, the condition (ii) of Theorem 3.1 is satisfied and so according to the The-

orem 3.1 for any

λ >
86111

1080

(max{1,m1})(max{1, ‖q‖∞, ‖s‖∞})
B

≈ 12

the problem

uiυ(x) + (2 + tanh(

∫
R

(|u′(x)|2 + |u(x)|2)dx))(−u′′(x) + u(x)) = λα(x)f(u(x))

admits a sequence of positive weak solutions which is unbounded in W 2,2(R).

Remark 3.2. In Theorem 3.1, the conclusion (c) can be used instead of (b). The deforma-

tion of A and B by replacing ξ → +∞ with ξ → 0+, will be as follows:

A = ‖α‖1 lim inf
ξ→0+

F (ξ)

ξ2

and

B = lim sup
ξ→0+

F (ξ)
∫ 5

8
3
8

α(x)dx

ξ2
.

In this case, will be achieved a sequence of pairwise distinct positive weak solutions

to the problem (1) which converges uniformly to zero.
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