COHOMOLOGICAL PROPERTIES AND ARENS REGULARITY OF BANACH ALGEBRAS

Kazem HAGHNEJAD AZAR¹, Ali JABBARI², Hossein EGHBALI SARA³

In this paper, we study some cohomological properties of Banach algebras. For a Banach algebra A and a Banach A-bimodule B, we investigate the vanishing of the first Hochschild cohomology groups $H^1(A^n, B^m)$ and $H^1_{w^*}(A^n, B^m)$, where $0 \le m, n \le 3$. For amenable Banach algebra A, we show that there are Banach A-bimodules C, D and elements $\mathfrak{a}, \mathfrak{b} \in A^{**}$ such that

$$Z^1(A, C^*) = \{R_{D''(\mathfrak{q})}: D \in Z^1(A, C^*)\} = \{L_{D''(\mathfrak{b})}: D \in Z^1(A, D^*)\}.$$

where, for every $b \in B$, $L_b(a) = ba$ and $R_b(a) = ab$, for every $a \in A$. Moreover, under a condition, we show that if the second transpose of a continuous derivation from the Banach algebra A into A^* i.e., a continuous linear map from A^{**} into A^{***} , is a derivation, then A is Arens regular. Finally, we show that if A is a dual left strongly irregular Banach algebra such that its second dual is amenable, then A is reflexive.

Keywords: Arens regularity, topological centers, cohomological group, weakly amenable, Connes-amenability.

1. Introduction

A *derivation* from a Banach algebra A into a Banach A-bimodule B is a bounded linear mapping $D: A \rightarrow B$ such that

$$D(ab) = aD(b) + D(a)b$$
 for all $a, b \in A$.

The space of continuous derivations from A into B is denoted by $Z^1(A, B)$. The easiest example of derivations is the *inner derivations*, which are given for each $b \in B$ by

$$\delta_h(a) = ab - ba$$
 for all $a \in A$.

The space of inner derivations from A into B is denoted by $B^1(A,B)$. The Banach algebra A is said to be *amenable*, if for every Banach A-bimodule B, all derivations from A into B^* are inner derivations, in the other word, $H^1(A,B^*) = Z^1(A,B^*)/B^1(A,B^*) = \{0\}$ and A is said to be *weakly amenable* if $H^1(A,A^*) = \{0\}$.

Department of Mathematics, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran, e-mail: haghnejad@uma.ac.ir

² Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran, e-mail: jabbari_al@yahoo.com

³ Department of Mathematics, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran, e-mail: h.eghbali.sarai@gmail.com

The concept of amenability for a Banach algebra A, introduced by Johnson in 1972, see [15]. For a Banach A-bimodule B, the quotient space $H^1(A,B)$ of all continuous derivations from A into B modulo the subspace of inner derivations is called the first cohomology group of A with coefficients in B. Following [25] the Banach algebra A is called *super-amenable* if $H^1(A,B) = \{0\}$ for every Banach A-bimodule B (super-amenable Banach algebras are called contractible, too). It is clear that if A is super-amenable, then A is amenable.

In [17], Johnson, Kadison, and Ringrose introduced the notion of amenability for von Neumann algebras. The basic concepts, however, make sense for arbitrary dual Banach algebras. But is most commonly associated with Connes, see [4]. For this reason, this notion of amenability is called *Connes-amenability* (the origin of this name seems to be Helemskii, see [18]).

Let A be a Banach algebra. A Banach A-bimodule X is called dual if there is a closed submodule X_* of X^* such that $X = (X_*)^*$ (X_* is called the *predual* of X). A Banach algebra A is called dual if it is dual as a Banach A-bimodule.

Let A be a dual Banach algebra. A dual Banach A-bimodule X is called *normal* if, for every $x \in X$, the maps

$$A \longrightarrow X, \quad a \mapsto \begin{cases} a \cdot x \\ x \cdot a \end{cases}$$

are weak *-continuous (w^* -continuous). The dual Banach algebra A is called Connes-amenable if, for every dual Banach A-bimodule X, every w^* -continuous derivation $D: A \to X$ is inner; or equivalently, $H^1_{w^*}(A, X) = \{0\}$ [25].

The second dual A^{**} of Banach algebra A endowed with the either Arens multiplications is a Banach algebra. The constructions of the two Arens multiplications in A^{**} lead us to the definition of topological centers for A^{**} with respect to both Arens multiplications. The topological centers of Banach algebras, module actions and applications of them were introduced and discussed in [1, 19, 21]. To state our results, we need to fix some notations and recall some definitions.

Assume that T is an operator from normed linear space X into normed linear space Y. T^* is the adjoint of T from Y^* into X^* . We say that T^* is $weak^* - weak^*$ continuous, if for each $\{y'_{\alpha}\} \subseteq Y^*$, $y'_{\alpha} \stackrel{w^*}{\longrightarrow} y'$ in Y^* implies $T^*y'_{\alpha} \stackrel{w^*}{\longrightarrow} T^*y'$ in X^* .

Let X,Y,Z be normed linear spaces and $m: X \times Y \to Z$ be a bounded bilinear mapping. Arens in [1] offers two natural extensions m^{***} and m^{t***t} of m from $X^{**} \times Y^{**}$ into Z^{**} , for more information see [9, 19, 21].

The mapping m^{***} is the unique extension of m such that $x'' \to m^{***}(x'',y'')$ from X^{**} into Z^{**} is $weak^* - weak^*$ continuous for every $y'' \in Y^{**}$, but the mapping $y'' \to m^{***}(x'',y'')$ is not in general $weak^* - weak^*$ continuous from Y^{**} into Z^{**} unless $x'' \in X$. Hence the first topological center of m may be defined as follows

 $Z_1(m) = \{x'' \in X^{**}: y'' \to m^{***}(x'',y'') \text{ isweak}^* - \text{weak}^* \text{ continuous} \}.$ Now, let $m^t : Y \times X \to Z$ be the transpose of m defined by $m^t(y,x) = m(x,y)$ for every $x \in X$ and $y \in Y$. Then m^t is a continuous bilinear map from $Y \times X$ to Z, and so it may be extended as above to $m^{t***}: Y^{**} \times X^{**} \to Z^{**}$. The mapping $m^{t***t}: X^{**} \times Y^{**} \to Z^{**}$ in general is not equal to m^{***} , see [1]. If $m^{***} = m^{t***t}$, then m is called Arens regular. The mapping $y'' \to m^{t***t}(x'',y'')$ is $weak^* - weak^*$ continuous for every $x'' \in X^{**}$, but the mapping $x'' \to m^{t***t}(x'',y'')$ from X^{**} into Z^{**} is not in general weak *-weak * continuous for every $y'' \in Y^{**}$. So we define the second topological center of m as

 $Z_2(m) = \{y'' \in Y^{**}: x'' \to m^{t***t}(x'', y'') \text{ isweak}^* - \text{weak}^* \text{ continuous}\}.$ It is clear that m is $Arens\ regular$ if and only if $Z_1(m) = X^{**}$ or $Z_2(m) = Y^{**}$. Arens regularity of m is equivalent to the following

$$\underset{i}{\operatorname{limlim}}\langle z', m(x_i, y_j)\rangle = \underset{j}{\operatorname{limlim}}\langle z', m(x_i, y_j)\rangle,$$

whenever both limits exist for all bounded sequences $(x_i)_i \subseteq X$, $(y_i)_i \subseteq Y$ and $z' \in Z^*$, see [7].

The mapping m is left strongly Arens irregular if $Z_1(m) = X$ and m is right strongly Arens irregular if $Z_2(m) = Y$. The first Arens product is defined as follows in three steps. For a, b in A, f in A^* and m, n in A^{**} , the elements f. a, m. f of A^* and m. n of A^{**} are defined as follows:

 $\langle f,a,b\rangle = \langle f,ab\rangle$, $\langle m.f,a\rangle = \langle m,f.a\rangle$, $\langle m.n,f\rangle = \langle m,n.f\rangle$. The second Arens product is defined as follows. For a,b in A, f in A^* and m,n in A^{**} , the elements $a \diamond f$, $f \diamond m$ of A^* and $m \diamond n$ of A^{**} are defined by the equalities

 $\langle a \circ f, b \rangle = \langle f, ba \rangle$, $\langle f \circ m, a \rangle = \langle m, a \circ f \rangle$, $\langle m \circ n, f \rangle = \langle n, f \circ m \rangle$. The Arens regularity of a normed algebra A is defined to be the Arens regularity of its algebra multiplication when considered as a bilinear mapping $m: A \times A \to A$. Let B be a Banach A-bimodule, and let

$$\pi_{\ell}: A \times B \longrightarrow B$$
 and $\pi_{r}: B \times A \longrightarrow B$,

be the right and left module actions of A on B. By above notation, the transpose of π_r denoted by $\pi_r^t : A \times B \to B$. Then

$$\pi_{\ell}^*: B^* \times A \longrightarrow B^*$$
 and $\pi_r^{t*t}: A \times B^* \longrightarrow B^*$.

Thus B^* is a left Banach A-module and a right Banach A-module with respect to the module actions π_r^{t*t} and π_ℓ^* , respectively. The second dual B^{**} is a Banach A^{**} -bimodule with the following module actions

$$\pi_{\ell}^{***}: A^{**} \times B^{**} \longrightarrow B^{**}$$
 and $\pi_{r}^{***}: B^{**} \times A^{**} \longrightarrow B^{**}$,

where A^{**} is considered as a Banach algebra with respect to the first Arens product. Similarly, B^{**} is a Banach A^{**} -bimodule with the module actions

$$\pi_{\ell}^{t***t}: A^{**} \times B^{**} \longrightarrow B^{**}$$
 and $\pi_{r}^{t***t}: B^{**} \times A^{**} \longrightarrow B^{**}$,

where A^{**} is considered as a Banach algebra with respect to the second Arens product. In this way we write $Z(\pi_{\ell}) = Z_{B^{**}}(A^{**})$ and $Z(\pi_r) = Z_{A^{**}}(B^{**})$.

Let B be a Banach A-bimodule. Then we say that B factors on the left (right) with respect to A, if B = BA (B = AB). Thus B factors on both sides, if B = BA = AB.

2. Weak *-weak * continuous derivations

Let B be a Banach A-bimodule. In this section, we study the cohomological properties of Banach algebra A whenever every derivation in $Z^1(A^{**}, B^*)$ is weak *-weak * continuous.

Theorem 2.1. Let B be a Banach A-bimodule and let every derivation D: $A^{**} \rightarrow B^*$ is weak *-weak * continuous. If $Z_{B^{**}}^{\ell}(A^{**}) = A^{**}$ and $H^1(A, B^*) = \{0\}$, then $H^1(A^{**}, B^*) = \{0\}$.

Proof. Let $D: A^{**} \to B^*$ be a derivation. Then $D|_A: A \to B^*$ is a derivation. Since $H^1(A, B^*) = \{0\}$, there exists $b' \in B^*$ such that $D|_A = \delta_{b'}$. Suppose that $a'' \in A^{**}$ and $(a_\alpha)_\alpha \subseteq A$ such that $a_\alpha \xrightarrow{w^*} a''$ in A^{**} . Then

$$D(a'') = w^* - \lim_{\alpha} D|_A(a_{\alpha})$$

$$= w^* - \lim_{\alpha} \delta_{b'}(a_{\alpha})$$

$$= w^* - \lim_{\alpha} (a_{\alpha}b' - b'a_{\alpha})$$

$$= a''b' - b'a''.$$

We now show that $b'a'' \in B^*$. Assume that $(b''_{\beta})_{\beta} \in B^{**}$ such that $b'' = w^* - \lim_{\beta} b''_{\beta}$. Since $Z^{\ell}_{B^{**}}(A^{**}) = A^{**}$, we have

$$\langle b'a'', b''_{\beta} \rangle = \langle a''. b''_{\beta}, b' \rangle \rightarrow \langle a''. b'', b' \rangle = \langle b'a'', b'' \rangle.$$

Thus, $b'a'' \in (B^{**}, weak^*)^* = B^*$, and so $H^1(A^{**}, B^*) = \{0\}$.

Corollary 2.1. Let A be an Arens regular Banach algebra and let every derivation $D: A^{**} \to A^*$ is weak *-weak * continuous. If A is weakly amenable, then $H^1(A^{**}, A^*) = \{0\}.$

By the following result, we show that weak amenability of the Banach algebra A is essential in vanishing of $H^1(A^{**}, A^*)$.

Proposition 2.1. Let A be a Banach algebra such that is an ideal in A^{**} . If A is not weakly amenable, then $H^1(A^{**}, A^*) \neq \{0\}$.

Proof. Let $d: A \to A^*$ be a derivation and $\pi: A^{**} \to A$ be a bounded homomorphism. Now; define $D: = d \circ \pi: A^{**} \to A^*$. Clearly, D is a bounded derivation which it is not inner. This shows that $H^1(A^{**}, A^*) \neq \{0\}$.

Example 2.1. (i) Let K be a compact metric space, d be a metric on K and $\alpha \in (0,1]$. The Lipschitz algebra $Lip_{\alpha}K$ is the space of complex-valued functions f on K such that

$$p_{\alpha}(f) = \sup \left\{ \frac{|f(x) - f(y)|}{d(x, y)^{\alpha}} : x, y \in K, x \neq y \right\}$$

is finite. A subspace of
$$\operatorname{Lip}_{\alpha}K$$
 that contains $f \in \operatorname{Lip}_{\alpha}K$ such that
$$\frac{|f(x) - f(y)|}{d(x,y)^{\alpha}} \to 0 \quad \text{as} \quad d(x,y) \to 0$$

is denoted by $\lim_{\alpha} K$. Let $\alpha \in (0, \frac{1}{2})$. Then by [6, Theorem 4.4.34] or [2, Theorem 3.8], $\lim_{\alpha} K$ is Arens regular and by [2, Theorem 3.10] it is weakly amenable. Then by Corollary 2, $H^1((lip_{\alpha}K)^{**}, (lip_{\alpha}K)^*) = \{0\}.$

(ii) Let ω be a weight sequence on \mathbb{Z} such that

$$\sup \left\{ \frac{\omega(m+n)}{\omega(m)\omega(n)} \left(\frac{1+|n|}{1+|m+n|} \right) : m, n \in \mathbb{Z} \right\}$$

is finite. The Beurling algebra $\ell^1(\mathbb{Z},\omega)$ is not weakly amenable [2, Theorem 2.3]. Then by Proposition 2, we have

$$H^1(\ell^1(\mathbb{Z},\omega)^{**},\ell^\infty(\mathbb{Z},\omega)) \neq \{0\}.$$

Let B be a dual Banach algebra, with predual X and suppose that $X^{\perp} = \{x''': x'''|_X = 0 \text{ where } x''' \in X^{***}\} = \{b'': b''|_X = 0 \text{ where } b'' \in B^{**}\}.$ Then the canonical projection $P: X^{***} \to X^*$ gives a continuous linear map $P: B^{**} \to B$. Thus, we can write the following equality

$$B^{**} = X^{***} = X^* \oplus \ker P = B \oplus X^{\perp}$$

as a direct sum of Banach A-bimodules.

Theorem 2.2. Let B be a Banach A-bimodule such that every derivation from A^{**} into B is weak *-weak continuous and $A^{**}B$, $BA^{**} \subseteq B$.

- (i) If $H^1(A, B) = 0$, then $H^1(A^{**}, B) = \{0\}$.
- (ii) Suppose that A has a left bounded approximate identity (=LBAI), has a predual X and $AB^*, B^*A \subseteq X$. If $H^1(A, B) = 0$, then

$$H^1(A^{**}, B^{**}) = \{0\}.$$

Proof. (i) Proof is similar to the proof of Theorem 2.

(ii) Set $B^{**} = B \oplus X^{\perp}$. Then we have

$$H^1(A^{**}, B^{**}) = H^1(A^{**}, B) \oplus H^1(A^{**}, X^{\perp}).$$

Since $H^1(A, B) = \{0\}$, by (i), $H^1(A^{**}, B) = \{0\}$. Now let $\widetilde{D} \in$ $Z^1(A^{**}, X^{\perp})$ and we take $D = \widetilde{D}|_A$. It is clear that $D \in Z^1(A^{**}, X^{\perp})$. Assume that $a'', x'' \in A^{**}$ and $(a_{\alpha})_{\alpha}, (x_{\beta})_{\beta} \subseteq A$ such that $a_{\alpha} \stackrel{w^*}{\to} a''$ and $x_{\beta} \stackrel{w^*}{\to} x''$ on A^{**} . Since AB^* , $B^*A \subseteq X$, for every $b' \in B^*$, by using the weak *-weak continuity of \widetilde{D} , we have

$$\begin{split} &\langle \widetilde{D}(\alpha^{\prime\prime} \circ x^{\prime\prime}), b^\prime \rangle = \underset{\beta}{\lim} \underset{\alpha}{\lim} \langle D(\alpha_\alpha x_\beta), b^\prime \rangle \\ &= \underset{\beta}{\lim} \underset{\alpha}{\lim} \langle (D(\alpha_\alpha) x_\beta + \alpha_\alpha D(x_\beta)), b^\prime \rangle \end{split}$$

$$= \underset{\beta}{\lim\lim |m\rangle} \langle D(a_{\alpha})x_{\beta}, b'\rangle + \underset{\beta}{\lim\lim |m\rangle} \langle a_{\alpha}D(x_{\beta}), b'\rangle$$

$$= \underset{\beta}{\lim\lim |m\rangle} \langle D(a_{\alpha}), x_{\beta}b'\rangle + \underset{\beta}{\lim\lim |m\rangle} \langle D(x_{\beta}), b'a_{\alpha}\rangle$$

$$= 0.$$

Since A has a LBAI, A^{**} has a left unit e'' with respect to the second Arens product [6, Proposition 2.9.16]. Then $D(x'') = D(e'' \diamond x'') = 0$, and so D = 0.

Example 2.2. (i) Assume that G is a compact group. Then we know that $L^1(G)$ is M(G)-bimodule and $L^1(G)$ is an ideal in the second dual of M(G), $M(G)^{**}$. By [20, Corollary 1.2], we have $H^1(L^1(G), M(G)) = \{0\}$. Then by Theorem 2, every weak *-weak continuous derivation from $L^1(G)^{**}$ into M(G) is inner.

(ii) We know that c_0 is a C^* -algebra and every C^* -algebra is weakly amenable, so c_0 is weakly amenable. Then by Theorem 2, every weak *- weak continuous derivation from ℓ^{∞} into ℓ^1 is inner.

Theorem 2.3. Let B be a Banach A-bimodule and A has a LBAI. Suppose that $AB^{**}, B^{**}A \subseteq B$ and every derivation from A^{**} into B^{*} is weak *-weak * continuous. If $H^{1}(A, B^{*}) = \{0\}$, then $H^{1}(A^{**}, B^{***}) = \{0\}$.

Proof. Take $B^{***} = B^* \oplus B^{\perp}$, where $B^{\perp} = \{b''' \in B^{***} : b'''|_B = 0\}$. Then we have

$$H^1(A^{**}, B^{***}) = H^1(A^{**}, B^*) \oplus H^1(A^{**}, B^{\perp}).$$

Since $H^1(A, B^*) = \{0\}$, similar to Theorem 2(i), we have $H^1(A^{**}, B^*) = \{0\}$. It suffices to show that $H^1(A^{**}, B^{\perp}) = 0$. Let $(e_{\alpha})_{\alpha} \subseteq A$ be a LBAI for A such that $e_{\alpha} \stackrel{w^*}{\to} e''$ in A^{**} where e'' is a left unit for A^{**} with respect to the second Arens product. Let $a'' \in A^{**}$ and suppose that $(a_{\beta})_{\beta} \subseteq A$ such that $a_{\beta} \stackrel{w^*}{\to} a''$ in A^{**} . Let $D \in Z^1(A^{**}, B^{\perp})$. Then for every $b'' \in B^{**}$, by weak *-weak * continuity of D, we have

$$\begin{split} &\langle D(a^{\prime\prime}),b^{\prime\prime}\rangle = \langle D(e^{\prime\prime}\circ a^{\prime\prime}),b^{\prime\prime}\rangle \\ &= \underset{\beta}{\operatorname{limlim}}\langle (D(e_{\alpha}a_{\beta}),b^{\prime\prime}\rangle \\ &= \underset{\beta}{\operatorname{limlim}}\langle (D(e_{\alpha})a_{\beta}+e_{\alpha}D(a_{\beta})),b^{\prime\prime}\rangle \\ &= \underset{\beta}{\operatorname{limlim}}\langle D(e_{\alpha})a_{\beta},b^{\prime\prime}\rangle + \underset{\beta}{\operatorname{limlim}}\langle e_{\alpha}D(a_{\beta}),b^{\prime\prime}\rangle \\ &= \underset{\beta}{\operatorname{limlim}}\langle D(e_{\alpha}),a_{\beta}b^{\prime\prime}\rangle + \underset{\beta}{\operatorname{limlim}}\langle D(a_{\beta}),b^{\prime\prime}e_{\alpha}\rangle \\ &= 0. \end{split}$$

It follows that D = 0, and so the result holds.

It is known that neither the weak amenability of A implies that of A^{**} , nor the weak amenability of A^{**} implies that of A. The question "when the weak

amenability of A^{**} implies that of A?" is investigated in many works; see [3, 7, 10, 11, 12] for more details. We now by Theorem 2 consider the converse of the above question, i.e., "under which conditions the weak amenability of A implies that of A^{**} ?", as follows:

Corollary 2.2. Assume that A is a Banach algebra with LBAI such that it is two-sided ideal in A^{**} and every derivation D: $A^{**} \rightarrow A^{***}$ is weak * - weak * continuous. If A is weakly amenable, then A^{**} is weakly amenable.

Example 2.3. Assume that G is a locally compact group. We know that $L^1(G)$ is weakly amenable Banach algebra, see [16]. Then by Corollary 2, every weak*-weak* continuous derivation from $L^1(G)^{**}$ into $L^1(G)^{***}$ is inner.

Theorem 2.4. Let A be an amenable and Arens regular Banach algebra. If for any normal Banach A-bimodule B with predual X, we have $AB^*, B^*A \subseteq X$, then $H^1_{w^*}(A^{**}, B^{**}) = \{0\}.$

Proof. If the Banach algebra A is amenable and Arens regular, then A^{**} is Connesamenable and the converse holds whenever A is an ideal in A^{**} , too [25, Theorem 4.4.8]. Thus $H^1_{w^*}(A^{**},B)=\{0\}$ and by the argument before Theorem 2, we have $B^{**}=B \oplus X^{\perp}$. These imply that $H^1_{w^*}(A^{**},B^{**})=H^1_{w^*}(A^{**},X^{\perp})$. It is known that every amenable Banach algebra possesses a BAI, so by a similar argument in the proof of Theorem 2(ii), we obtain that $H^1_{w^*}(A^{**},X^{\perp})=\{0\}$.

Proposition 2.2. Suppose that A is an amenable Banach algebra. If for every Banach A-bimodule B, we have AB^{**} , $B^{**}A \subseteq B$, then

$$H^1_{w^*}(A^{**},B^{***})=\{0\}.$$

Proof. By applying a similar argument in the proof of Theorem 2(ii), we obtain the desire.

Corollary 2.3. Assume that A is a weakly amenable Banach algebra with a LBAI. If A is an ideal in A^{**} , it follows that

$$H^1_{w^*}(A^{**},A^{***})=\{0\}.$$

Example 2.4. Assume that G is a compact group. It is known that $L^1(G)$ has a BAI and is a two-sided ideal in $L^1(G)^{**}$. We know that $L^1(G)$ is weakly amenable, hence by Corollary 2,

$$H^1_{w^*}(L^\infty(G)^*, L^\infty(G)^{**}) = \{0\}.$$

Proposition 2.3. Let A be a Banach algebra such that A is an ideal in A^{**} and A^* factors. Then A is amenable if and only if A^{**} is Connes-amenable.

Proof. By [3, Corollary 2.8](i), A is Arens regular. Then by [24, Theorem 4.4], the proof completes.

A Banach space A is called weakly sequentially complete if every weakly Cauchy sequence in A has a weak limit in A.

Theorem 2.5. Let A be an Arens regular dual Banach algebra such that A^* is weakly sequentially complete (WSC). If $H^1_{w^*}(A^{**}, A^{***}) = \{0\}$, then $H^1_{w^*}(A, A^*) = \{0\}$.

Proof. Let $D: A \to A^*$ be a w^* -continuous derivation. Since A^* is WSC, every derivation $D: A \to A^*$ is weakly compact. Then by [5, Theorem 6.5.5], we have $D''(A^{**}) \subseteq A^*$ and hence, by Arens regularity of A, A^* is an A^{**} -submodule of $(A^{**})^*$ and $D''(A^{**}).A^{**} \subseteq A^*.A^{**} \subseteq A^*$. Then by [7, Theorem 7.1], $D'':A^{**} \to A^{***}$ is a w^* -continuous derivation. Thus, there exists $a''' \in A^{***}$ such that D''(F) = F.a''' - a'''.F, for each $F \in A^{**}$. Now, let $E:A \to A^{**}$ be the canonical map and set $f = E^*(a''')$, then D(a) = a.f - f.a, for all $a \in A$. This means that D is an inner w^* -continuous derivation. Thus the proof follows.

For any $n \in \mathbb{N}$, we denote the *n*-th dual of the Banach algebra A by $A^{(n)}$. In the following, we extend the [3, Corollary 2.8](i) to the general case as follows: **Lemma 2.1.** If $A^{(2n)}$ is a two-sided ideal in $A^{(2n+2)}$ and $A^{(2n+1)}$ factors, then $A^{(2n)}$ is Arens regular, where $n \in \mathbb{N} \cup \{0\}$.

Theorem 2.6. Let A be a Banach algebra such that A^{**} is an ideal in A^{****} and A^{***} factors. If A is weakly amenable, then $H^1_{w^*}(A^{**},A^{***})=\{0\}$.

Proof. Lemma 2 implies that A^{**} is Arens regular. Now, let $D: A^{**} \to A^{***}$ be a weak *- weak *-continuous derivation. First, we prove that A^{***} is a normal Banach A^{**} -bimodule. Let $(a''_{\alpha})_{\alpha}$ be a net in A^{**} and $a''' \in A^{***}$. Then, by Arens regularity of A^{**} , for every $b'' \in A^{**}$ we have

regularity of
$$A^{**}$$
, for every $b'' \in A^{**}$ we have
$$\langle (w^* - \lim_{\alpha} a_{\alpha}''). a''', b'' \rangle = \langle a''', b''. (w^* - \lim_{\alpha} a_{\alpha}'') \rangle$$
$$= \lim_{\alpha} \langle a''', b''. a_{\alpha}'' \rangle$$
$$= \lim_{\alpha} \langle a_{\alpha}''. a''', b'' \rangle$$
$$= \langle w^* - \lim_{\alpha} (a_{\alpha}''. a'''), b'' \rangle.$$

Moreover,

$$\langle a^{\prime\prime\prime}. (w^* - \lim_{\alpha} a^{\prime\prime}_{\alpha}), b^{\prime\prime} \rangle = \langle a^{\prime\prime\prime}, w^* - \lim_{\alpha} a^{\prime\prime}_{\alpha}. b^{\prime\prime} \rangle$$

$$= \lim_{\alpha} \langle a^{\prime\prime\prime}, a^{\prime\prime}_{\alpha}, b^{\prime\prime} \rangle$$

$$= \lim_{\alpha} \langle a^{\prime\prime\prime}. a^{\prime\prime}_{\alpha}, b^{\prime\prime} \rangle$$

$$= \langle w^* - \lim_{\alpha} (a^{\prime\prime\prime}. a^{\prime\prime}_{\alpha}), b^{\prime\prime} \rangle.$$

Hence, the mappings $a'' \mapsto a'' \cdot a'''$ and $a'' \mapsto a''' \cdot a''$ are weak *-weak *-continuous from A^{**} into A^{***} . Thus, A^{***} is a normal Banach A^{**} -bimodule. For each $a \in A$, we define $\overline{D}: A \longrightarrow A^*$ by

$$\overline{D}(a) = D(\hat{a})|_{A}$$

where $\hat{a} \in A^{**}$ with $\hat{a}(a') = a'(a)$, for all $a \in A$. As the following equalities \overline{D} is a continuous derivation from A into A^* .

$$\overline{D}(ab) = D(\widehat{ab}) = D(\widehat{a}.\widehat{b}) = a.D(\widehat{b}) + D(\widehat{a}).b = a.\overline{D}(b) + \overline{D}(a).b$$
, where $a, b \in A$. By weak amenability of A , we have \overline{D} is inner. Then

there exist $a''' \in A^{***}$ such that

$$D(\hat{a}) = \overline{D}(a) = a. a'''|_A - a'''|_A. a = \hat{a}. a'''|_A - a'''|_A. \hat{a}.$$

We consider the canonical mapping $E: A^* \to A^{***}$. Then there exists $b''' \in A^{***}$ such that $E(a'''|_A) = b'''$. So

$$D(\hat{a}) = \hat{a}.b''' - b'''.\hat{a}.$$

Then *D* is inner. It follows that $H_{w^*}^1(A^{**}, A^{***}) = \{0\}.$

Corollary 2.4. Let $A^{(2n+2)}$ be a two sided ideal in $A^{(2n+4)}$ and $A^{(2n+3)}$ factors. If $A^{(2n)}$ is weakly amenable, then $H^1_{w^*}(A^{(2n+2)},A^{(2n+3)})=\{0\}$. *Proof.* Apply Lemma 2 and Theorem 2.

Weak *-continuous derivations from dual Banach algebras into their ideals are studied in [8].

Remark 2.1. If M is subspace of A and N is subspace of A^* , then $M^{\perp} = \{x^* \in X^*: \langle x^*, x \rangle = 0, \forall x \in M\}$ and $^{\perp}N = \{x \in A: \langle x^*, x \rangle = 0, \forall x^* \in N\}$. If A is a dual Banach algebra and I is w^* -closed ideal of A, then I is dual with predual $I_* = \frac{A_*}{L_I}$ that $(I_*)^* = (\frac{A_*}{L_I})^* = (^{\perp}I)^{\perp} = I$ and $I^* = \frac{A^*}{I^{\perp}}$, see [5].

Proposition 2.4. Let A be a dual Banach algebra and I be an arbitrary w^* -closed ideal of A such that $H^1(A, I^{**}) = \{0\}$. Then $H^1_{w^*}(A, I) = \{0\}$.

Proof. Let $D \in Z^1_{w^*}(A,I)$ and $E:I \to I^{**}$ be the natural embedding. Then $E \circ D:A \to I^{**}$ is a bounded derivation. Since $H^1(A,I^{**})=\{0\}$, there exists $a^{**} \in I^{**}$ such that $E \circ D = \delta_{a^{**}}$. Consider the decomposition $I^{**} = I \oplus I^{\perp}_*$ as an A-bimodule. If $P:I^{**} \to I$ is a projection, we have $D = \delta_{p(a^{**})}$. Then $H^1_{w^*}(A,I) = \{0\}$.

A Banach algebra A is without of order if for any $a, b \in A$, ab = 0 implies that a = 0 or b = 0. Semisimple and unital Banach algebras are without of order Banach algebras. Now by Proposition 2 and [8, Theorem 3.1], we have the following result.

Corollary 2.5. Let A be a dual Banach algebra and I be a closed two-sided ideal in A such that I is without order. If $H^1(A, I^{**}) = \{0\}$, then $H^1_{w^*}(I, I) = \{0\}$.

Example 2.5. (i) Let G be a locally compact group. A linear subspace $S^1(G)$ of $L^1(G)$ is said to be a Segal algebra, if it satisfies the following conditions:

- (S1) $S^1(G)$ is dense in $L^1(G)$;
- (S2) If $f \in S^1(G)$, then $L_x f \in S^1(G)$, i.e. $S^1(G)$ is left translation invariant;
- (S3) $S^1(G)$ is a Banach space under some norm $\|\cdot\|_S$ and $\|L_x f\|_S = \|f\|_S$, for all $f \in S^1(G)$ and $x \in G$;
- (S4) $x \mapsto L_x f$ from G into $S^1(G)$ is continuous.

For more details about Segal algebras, see [22, 23]. Now, let G be an

abelian locally compact group. Then $H^1(L^1(G), S^1(G)^{**}) = \{0\}$. Then by Proposition 2 and Corollary 2, we have $H^1_{w^*}(L^1(G), S^1(G)) = \{0\}$ and $H^1_{w^*}(S^1(G), S^1(G)) = \{0\}$.

(ii) Let Λ be a non-empty, totally ordered set, and regard it as a semigroup by defining the product of two elements to be their maximum. The resulting semigroup, which we denote by Λ_{V} , is a semilattice. We may then form the ℓ^1 -convolution algebra $\ell^1(\Lambda_{V})$. For every $t \in \Lambda_{V}$ we denote the point mass concentrated at t by e_t . The definition of multiplication in $\ell^1(\Lambda_{V})$ ensures that $e_s e_t = e_{max(s,t)}$ for all s and t.

The semilattice Λ_V , is a commutative semigroup in which every element is idempotent. If we denote the set of idempotent elements of Λ_V by $E(\Lambda_V)$, then $E(\Lambda_V) = \Lambda_V$. The ℓ^1 -convolution algebras of semilattices provide interesting examples of commutative Banach algebras. By [14, Proposition 3.3], $H^1(\ell^1(\Lambda_V), I^{**}) = \{0\}$, for any closed two-sided I of $\ell^1(\Lambda_V)$. Then by Corollary 2, $H^1_{W^*}(I,I) = \{0\}$, for any closed two-sided I of $\ell^1(\Lambda_V)$.

(iii) Let K be an infinite compact metric space, $\alpha \in (0,1)$ and $\lim_{\alpha} K$ be the small Lipschitz algebra (see Example 2). By [14, Proposition 3.4], $H^1(\lim_{\alpha} K, I^{**}) = \{0\}$, for any closed two-sided I of $\lim_{\alpha} K$. Then by Corollary 2, $H^1_{w^*}(I,I) = \{0\}$, for any closed two-sided I of $\lim_{\alpha} K$.

3. Representations of derivations and Arens regularity

Let A be a Banach algebra and B be a Banach A-bimodule with the module action " \bullet ". Then for every $b \in B$, we define

$$L_b(a) = b \cdot a$$
 and $R_b(a) = a \cdot b$,

for every $a \in A$. These are the operation of left and right multiplication by b on A. In the following by using the super-amenability of Banach algebra A, we give a representation for $Z^1(A, C)$, where C is a Banach A-bimodule.

For a Banach A-bimodule B and for a derivation $D: A \to B^*$, we show that the left module action $\pi_\ell: A \times B \to B$ is Arens regular whenever $D'': A^{**} \to B^{***}$ is a derivation and $B^* \subseteq D''(A^{**})$. On the other hand, if A is a left strongly Arens irregular and A^{**} is amenable Banach algebra with respect to the first Arens product, then A is unital. Moreover, if A is a dual Banach algebra, it follows that A is reflexive.

Theorem 3.1. Assume that A is an amenable Banach algebra. Then there are Banach A-bimodules C, D and elements $a, b \in A^{**}$ such that

$$Z^1(A,C^*) = \{R_{D''(\mathfrak{a})} \colon D \in Z^1(A,C^*)\} = \{L_{D''(\mathfrak{b})} \colon D \in Z^1(A,D^*)\}.$$

Proof. Suppose that B is a Banach A-bimodule with a module action \bullet . Every amenable Banach algebra has a BAI [25, Proposition 2.2.1], so A has a BAI such

as $(e_{\alpha})_{\alpha}$. Then by Cohen factorization Theorem we have $B \cdot A = B = A \cdot B$, i.e., for every $b \in B$, there are $y, z \in B$ and $a, t \in A$ such that $y \cdot a = b = t \cdot z$. Then we have

$$\lim_{\alpha} b \cdot e_{\alpha} = \lim_{\alpha} (y \cdot a) \cdot e_{\alpha} = \lim_{\alpha} y \cdot (ae_{\alpha}) = y \cdot a = b \tag{1}$$

and

$$\lim_{\alpha} e_{\alpha} \bullet b = \lim_{\alpha} e_{\alpha} \bullet (t \bullet z) = \lim_{\alpha} (t e_{\alpha}) \bullet z = t \bullet z = b. \tag{2}$$

It follows that B has a BAI as $(e_{\alpha})_{\alpha} \subseteq A$. Let e'' and f'' be the right and left unit for A^{**} , respectively such that $e_{\alpha} \stackrel{w^*}{\to} e''$ and $e_{\alpha} \stackrel{w^*}{\to} f''$ in A^{**} .

Take C = B and define a module action "·" as $a \cdot x = 0$ and $x \cdot a = x \bullet a$, for all $a \in A$ and $x \in C$. Clearly, (C, \cdot) is a Banach A-bimodule. Suppose that $D \in Z^1(A, C^*)$. Then there is an element $c \in C^*$ such that $D = \delta_c$. Then for every $a \in A$, we have

$$D(a) = \delta_c(a) = a \cdot c - c \cdot a = a \cdot c.$$

From (1) and module actions of C, for any $x \in C$ and $x' \in C^*$, we have

$$\lim_{\alpha} \langle x, x' \cdot e_{\alpha} \rangle = \lim_{\alpha} \langle e_{\alpha} \cdot x, x' \rangle = 0 \tag{3}$$

and

$$\lim_{\alpha} \langle x, e_{\alpha} \cdot x' \rangle = \lim_{\alpha} \langle x \cdot e_{\alpha}, x' \rangle = \lim_{\alpha} \langle x \cdot e_{\alpha}, x' \rangle = \langle x, x' \rangle. \tag{4}$$

It follows that $e_{\alpha} \cdot x' \stackrel{w^*}{\to} x'$ in C^* . Since D'' is a weak *-to-weak * continuous linear operator, we have

$$D''(e'') = D''(w^* - \lim_{\alpha} e_{\alpha}) = w^* - \lim_{\alpha} D''(e_{\alpha}) = w^* - \lim_{\alpha} D(e_{\alpha})$$

= $w^* - \lim_{\alpha} (e_{\alpha}x') = x'$.

Thus we conclude that $D(a) = a \cdot D''(e'') = a \cdot D''(e'')$ for all $a \in A$. It follows that $D = R_{D''(e'')}$. On the other hand, since for every derivation $D \in Z^1(A, C^*)$, $R_{D''(e'')} \in Z^1(A, C^*)$, the result holds.

Now, again consider B as a Banach A-bimodule with the module action "•" and set D = B with the module action \triangleleft such that $a \triangleleft y = a \bullet y$ and $y \triangleleft a = 0$, for all $a \in A$ and $y \in D$. By a similar argument that we have discussed above, and setting b = f'', the proof completes.

Example 3.1. (i) Let G be an amenable locally compact group. Then by Johnson Theorem $H^1(L^1(G), X^*) = \{0\}$, for every Banach A-bimodule X. Then by defining the similar module actions of $L^{\infty}(G)$ as a Banach $L^1(G)$ -bimodule in the proof of Theorem 3 and by this Theorem, we have

$$Z^1(L^1(G), L^{\infty}(G)) = \{R_{D(ev)}: D \in Z^1(L^1(G), L^{\infty}(G))\}$$

$$= \{L_{D(f'')}: D \in Z^1(L^1(G), L^{\infty}(G))\},\$$

where e'' and f'' are the left and right units of $L^1(G)^{**}$, indeed they w^* -accumulations of the BAI of $L^1(G)$.

(ii) Let G be locally compact group. Then by [20, Corollary 1.2] $H^1(L^1(G), M(G)) = \{0\}$. Then by applying the module actions defined in the proof of Theorem 3, we can see M(G) as a Banach $L^1(G)$ -bimodule. Then by Theorem 3, we have

$$Z^{1}(L^{1}(G), L^{\infty}(G)) = \{R_{D(e^{\prime\prime})}: D \in Z^{1}(L^{1}(G), L^{\infty}(G))\}$$

= \{L_{D(f^{\prime\prime})}: D \in Z^{1}(L^{1}(G), L^{\infty}(G))\},

where e'' and f'' are the left and right units of $L^1(G)^{**}$.

Theorem 3.2. Let A be a Banach algebra, B be a Banach A-bimodule and $D: A \to B^*$ be a continuous derivation. If $D'': A^{**} \to B^{***}$ is a derivation and $B^* \subseteq D''(A^{**})$, then $Z_{A^{**}}^{\ell}(B^{**}) = B^{**}$. Proof. Since $D'': A^{**} \to B^{***}$ is a derivation, by [26, Theorem 4.2], $D''(A^{**})B^{**} \subseteq B^{**}$

Proof. Since $D'': A^{**} \to B^{***}$ is a derivation, by [26, Theorem 4.2], $D''(A^{**})B^{**} \subseteq B^*$. Due to $B^* \subseteq D''(A^{**})$, we have $B^*B^{**} \subseteq B^*$. Let $(a''_{\alpha})_{\alpha} \subseteq A^{**}$ such that $a''_{\alpha} \stackrel{w^*}{\to} a''$ in A^{**} . Assume that $b'' \in B^{**}$. Then for every $b' \in B^*$, since $b'b'' \in B^*$, we have

$$\langle b^{\prime\prime}.\,a^{\prime\prime}_\alpha,b^\prime\rangle=\langle a^{\prime\prime}_\alpha b^\prime,b^{\prime\prime}\rangle \rightarrow \langle a^{\prime\prime},b^\prime b^{\prime\prime}\rangle=\langle b^{\prime\prime}.\,a^{\prime\prime},b^\prime\rangle.$$

Thus $b''. a''_{\alpha} \xrightarrow{w^*} b''. a''$ is in B^{**} , and so $b'' \in Z^{\ell}_{A^{**}}(B^{**})$.

Corollary 3.1. Let A be a Banach algebra and $D: A \to A^*$ be a continuous derivation such that $A^* \subseteq D''(A^{**})$. If $D'': A^{**} \to A^{***}$ is a derivation, then A is Arens regular.

Example 3.2. Let G be an infinite locally compact group. Thus, $L^1(G)$ is not Arens regular. Then Corollary 3 implies that there is no $D \in Z^1(L^1(G), L^1(G)^*)$ such that $L^1(G)^* \subseteq D''(L^1(G)^{**})$ and its second transpose D'' is a derivation.

Lemma 3.1. Let B be a Banach left A-module and B^{**} has a LBAI with respect to A^{**} . Then B^{**} has a left unit with respect to A^{**} .

Proof. Assume that $(e''_{\alpha})_{\alpha} \subseteq A^{**}$ is a LBAI for B^{**} . By passing to a suitable subnet, we may suppose that there is an $e'' \in A^{**}$ such that $e''_{\alpha} \stackrel{w^*}{\to} e''$ in A^{**} . Then for every $b'' \in B^{**}$ and $b' \in B^{*}$, we have

$$\begin{split} \langle \pi_{\ell}^{***}(e^{\prime\prime\prime},b^{\prime\prime}),b^{\prime}\rangle &= \langle e^{\prime\prime},\pi_{\ell}^{**}(b^{\prime\prime},b^{\prime})\rangle = \lim_{\alpha} \langle e_{\alpha}^{\prime\prime},\pi_{\ell}^{**}(b^{\prime\prime},b^{\prime})\rangle \\ &= \lim_{\alpha} \langle \pi_{\ell}^{***}(e_{\alpha}^{\prime\prime},b^{\prime\prime}),b^{\prime}\rangle = \langle b^{\prime\prime},b^{\prime}\rangle. \end{split}$$

It follows that $\pi_{\ell}^{***}(e'',b'')=b''$.

Theorem 3.3. Let A be a left strongly Arens irregular and suppose that A^{**} is an amenable Banach algebra. Then we have the following assertions.

(i) A has an identity.

- If A is a dual Banach algebra, then A is reflexive. (ii)
- *Proof.* (i) Amenability of A^{**} implies that it has a BAI. By using Lemma 3, A^{**} has an identity say that e''. So, the mapping $x'' \rightarrow e'' \cdot x'' = x''$ is weak *-toweak * continuous from A^{**} into A^{**} . It follows that $e'' \in Z_1(A^{**}) = A$. This means that A has an identity.
- (ii) Assume that E is a predual of A. Then we have $A^{**} = A \oplus E^{\perp}$. Since A^{**} is amenable, by [12, Theorem 1.8] or [13, Theorem 2.3], A is amenable, and so E^{\perp} is amenable. Thus E^{\perp} has a BAI such as $(e''_{\alpha})_{\alpha} \subseteq E^{\perp}$. Since E^{\perp} is a closed and weak *-closed subspace of A^{**} , without loss generality, there is $e'' \in$ E^{\perp} such that

$$e_{\alpha}^{\prime\prime} \xrightarrow{w^*} e^{\prime\prime}$$
 and $e_{\alpha}^{\prime\prime} \xrightarrow{\|\cdot\|} e^{\prime\prime}$.

Then e'' is a left identity for E^{\perp} . On the other hand, for every $x'' \in E^{\perp}$, since E^{\perp} is an ideal in A^{**} , we have $x'' \cdot e'' \in E^{\perp}$. Thus, for every $a' \in A^*$,

$$\langle x''.e'',a'\rangle = \lim_{\alpha} \langle (x''.e'').e''_{\alpha},a'\rangle = \lim_{\alpha} \langle x''.(e''.e''_{\alpha}),a'\rangle$$

$$= \lim_{\alpha} \langle x''.e''_{\alpha},a'\rangle = \langle x'',a'\rangle.$$

It follows that $x'' \cdot e'' = x''$, and so e'' is a right identity for E^{\perp} . Consequently, e'' is a two-sided identity for E^{\perp} . Now, let $a'' \in A^{**}$. Then

$$e''.a'' = (e''.a'').e'' = e''.(a''.e'') = a''.e''$$

e''.a'' = (e''.a'').e'' = e''.(a''.e'') = a''.e''.Hence $e'' \in Z_1(A^{**}) = A$. It follows that e'' = 0, and so $E^{\perp} = 0$. This implies that $A^{**} = A$.

Example 3.3. Let G be a locally compact group. If $M(G)^{**}$ is amenable, then by Theorem 3(ii), because $C_0(G)^* = M(G)$, we conclude that M(G) is reflexive. This means that G is a finite group, moreover see [12, Corollary 1.4].

Acknowledgment

We would like to thank the referee for her/his careful reading of our paper and many valuable suggestions.

REFERENCES

- [1] R. E. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc., 2 (1951), No. 6, 839-
- [2] W. G. Bade, P. C. Curtis and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc., 55 (1987), No. 3, 359-377.
- [3] A. Bagheri Vakilabad, K. Haghnejad Azar and A. Jabbari, Arens regularity of module actions and weak amenability of Banach algebras, Period. Math. Hung., 71 (2015), No. 2, 224-235.
- [4] A. Connes, Classification of injective factors, Ann. Math., 104 (1976),73-114.

- [5] J. B. Conway, A course in functional analysis, Springer-Verlag, New York, 1985.
- [6] H. G. Dales, Banach algebra and automatic continuity, Oxford 2000.
- [7] H. G. Dales, A. Rodr13053'f gues-Palacios and M. V. Velasco, The second transpose of a derivation, J. London. Math. Soc., 64 (2001), No. 2, 707-721.
- [8] A. Ebadian and A. Jabbari, Weak *-continuous derivations on module extension of dual Banach algebras, South. Asian Bull. Math., 39 (2015), No. 3, 347â€'363.
- [9] M. Eshaghi Gordji and M. Filali, Arens regularity of module actions, Studia Math., 181 (2007), No. 3, 237-254.
- [10] *M. Eshaghi Gordji and M. Filali*, Weak amenability of the second dual of a Banach algebra, Studia Math., **182** (2007), No. 3, 205-213.
- [11] *F. Ghahramani and J. Laali*, Amenability and topological centers of the second duals of Banach algebras, Bull. Austral. Math. Soc., **65** (2002), 191-197.
- [12] F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability of second conjugate Banach algebras, Proc. Amer. Math. Soc., 129 (1996), 1489-1497.
- [13] F. Gourdeau, Amenability and the second dual of a Banach algebra, Studia Math., 125 (1997), No. 1, 75-81.
- [14] A. *Jabbari*, On ideal amenability of Banach algebras, J. Math. Physics, Analysis, Geometry, **8** (2012), No. 2, 135-143.
- [15] B. E. Johnson, Cohomology in Banach algebra, Mem. Amer. Math. Soc., 127, 1972.
- [16] B. E. Johnson, Weak amenability of group algebra, Bull. London. Math. Soc., 23 (1991), No. 3, 281-284.
- [17] B. E. Johnson, R. V. Kadison, and J. Ringrose, Cohomology of operator algebras, III, Bull. Soc. Math. France., **100** (1972),73-79.
- [18] A. Ya. Helemskii, Homological essence of amenability in the sense of A. Connes: the injectivity of the predual bimodule (traslated from the Russian), Math.USSR-Sb, **68** (1991), 555-566.
- [19] A. T. Lau and A. Ülger, Topological center of certain dual algebras, Trans. Amer. Math. Soc., **348** (1996), 1191-1212.
- [20] V. Losert, The derivation problem for group algebra, Ann. Math., 168 (2008), 221-246.
- [21] S. Mohamadzadih and H. R. E. Vishki, Arens regularity of module actions and the second adjoint of a derivation, Bull. Aust. Math. Soc., 77 (2008), 465-476.
- [22] *H. Reiter*, L¹-algebras and Segal algebras, Lecture notes in Mathematics, Vol. **231**, Springer, Berlin, 1971.
- [23] *H. Reiter and J. D. Stegeman*, Classical harmonic analysis and locally compact groups, London Math. Soc. Mono. Ser. Vol. **22**, Oxford, 2000.
- [24] V. Runde, Amenability for dual Banach algebras, Studia Math., 148 (2001), 47-66.
- [25] V. Runde, Lectures on amenability, Lecture Note in Mathematics, Vol. 1774, Springer Verlag, 2001.
- [26] A. Ülger, Arens regularity of weakly sequentialy compact Banach algebras, Proc. Amer. Math. Soc., 127 (1999), No. 11, 3221-3227.