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COHOMOLOGICAL PROPERTIES AND 
ARENS REGULARITY OF BANACH ALGEBRAS 

Kazem HAGHNEJAD AZAR1, Ali JABBARI2, Hossein EGHBALI SARA3 
 

   In this paper, we study some cohomological properties of Banach algebras. 
For a Banach algebra 𝐴𝐴 and a Banach 𝐴𝐴-bimodule 𝐵𝐵, we investigate the vanishing 
of the first Hochschild cohomology groups 𝐻𝐻1(𝐴𝐴𝑛𝑛 ,𝐵𝐵𝑚𝑚) and 𝐻𝐻𝑤𝑤∗

1 (𝐴𝐴𝑛𝑛,𝐵𝐵𝑚𝑚), where 
0 ≤ 𝑚𝑚,𝑛𝑛 ≤ 3. For amenable Banach algebra 𝐴𝐴, we show that there are Banach 𝐴𝐴-
bimodules 𝐶𝐶, 𝐷𝐷 and elements 𝔞𝔞, 𝔟𝔟 ∈ 𝐴𝐴∗∗ such that  

𝑍𝑍1(𝐴𝐴,𝐶𝐶∗) = {𝑅𝑅𝐷𝐷′′(𝔞𝔞): 𝐷𝐷 ∈ 𝑍𝑍1(𝐴𝐴,𝐶𝐶∗)} = {𝐿𝐿𝐷𝐷′′(𝔟𝔟): 𝐷𝐷 ∈ 𝑍𝑍1(𝐴𝐴,𝐷𝐷∗)}. 
where, for every 𝑏𝑏 ∈ 𝐵𝐵, 𝐿𝐿𝑏𝑏(𝑎𝑎) = 𝑏𝑏𝑏𝑏 and 𝑅𝑅𝑏𝑏(𝑎𝑎) = 𝑎𝑎𝑎𝑎, for every 𝑎𝑎 ∈ 𝐴𝐴. Moreover, 
under a condition, we show that if the second transpose of a continuous derivation 
from the Banach algebra 𝐴𝐴 into 𝐴𝐴∗ i.e., a continuous linear map from 𝐴𝐴∗∗ into 𝐴𝐴∗∗∗, 
is a derivation, then 𝐴𝐴 is Arens regular. Finally, we show that if 𝐴𝐴 is a dual left 
strongly irregular Banach algebra such that its second dual is amenable, then 𝐴𝐴 is 
reflexive.  

 
Keywords: Arens regularity, topological centers, cohomological group, weakly 
amenable, Connes-amenability. 

 
1. Introduction 
 
A derivation from a Banach algebra 𝐴𝐴 into a Banach 𝐴𝐴-bimodule 𝐵𝐵 is a 

bounded linear mapping 𝐷𝐷:𝐴𝐴 ⟶ 𝐵𝐵 such that  
𝐷𝐷(𝑎𝑎𝑎𝑎) = 𝑎𝑎𝑎𝑎(𝑏𝑏) + 𝐷𝐷(𝑎𝑎)𝑏𝑏        for all        𝑎𝑎, 𝑏𝑏 ∈ 𝐴𝐴. 

The space of continuous derivations from 𝐴𝐴 into 𝐵𝐵 is denoted by 𝑍𝑍1(𝐴𝐴,𝐵𝐵). The 
easiest example of derivations is the inner derivations, which are given for each 
𝑏𝑏 ∈ 𝐵𝐵 by  

𝛿𝛿𝑏𝑏(𝑎𝑎) = 𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏        for all        𝑎𝑎 ∈ 𝐴𝐴. 
The space of inner derivations from 𝐴𝐴 into 𝐵𝐵 is denoted by 𝐵𝐵1(𝐴𝐴,𝐵𝐵). The Banach 
algebra 𝐴𝐴  is said to be amenable, if for every Banach 𝐴𝐴 -bimodule 𝐵𝐵 , all 
derivations from 𝐴𝐴 into 𝐵𝐵∗ are inner derivations, in the other word, 𝐻𝐻1(𝐴𝐴,𝐵𝐵∗) =
𝑍𝑍1(𝐴𝐴,𝐵𝐵∗)/𝐵𝐵1(𝐴𝐴,𝐵𝐵∗) = {0} and 𝐴𝐴 is said to be weakly amenable if 𝐻𝐻1(𝐴𝐴,𝐴𝐴∗) =
{0}. 
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The concept of amenability for a Banach algebra 𝐴𝐴, introduced by Johnson 
in 1972, see [15]. For a Banach 𝐴𝐴-bimodule 𝐵𝐵, the quotient space 𝐻𝐻1(𝐴𝐴,𝐵𝐵) of all 
continuous derivations from 𝐴𝐴 into 𝐵𝐵 modulo the subspace of inner derivations is 
called the first cohomology group of 𝐴𝐴 with coefficients in 𝐵𝐵. Following [25] the 
Banach algebra 𝐴𝐴 is called super-amenable if 𝐻𝐻1(𝐴𝐴,𝐵𝐵) = {0} for every Banach 
𝐴𝐴-bimodule 𝐵𝐵 (super-amenable Banach algebras are called contractible, too). It is 
clear that if 𝐴𝐴 is super-amenable, then 𝐴𝐴 is amenable. 

In [17], Johnson, Kadison, and Ringrose introduced the notion of 
amenability for von Neumann algebras. The basic concepts, however, make sense 
for arbitrary dual Banach algebras. But is most commonly associated with Connes, 
see [4]. For this reason, this notion of amenability is called Connes-amenability (the 
origin of this name seems to be Helemskii, see [18]). 

Let 𝐴𝐴 be a Banach algebra. A Banach 𝐴𝐴-bimodule 𝑋𝑋 is called dual if there 
is a closed submodule 𝑋𝑋∗ of 𝑋𝑋∗ such that 𝑋𝑋 = (𝑋𝑋∗)∗ (𝑋𝑋∗ is called the predual of 
𝑋𝑋). A Banach algebra 𝐴𝐴 is called dual if it is dual as a Banach 𝐴𝐴-bimodule. 

Let 𝐴𝐴 be a dual Banach algebra. A dual Banach 𝐴𝐴-bimodule 𝑋𝑋 is called 
normal if, for every 𝑥𝑥 ∈ 𝑋𝑋, the maps  

𝐴𝐴 ⟶ 𝑋𝑋,    𝑎𝑎 ↦ �𝑎𝑎 ⋅ 𝑥𝑥
𝑥𝑥 ⋅ 𝑎𝑎

 
are weak  ∗ -continuous (𝑤𝑤∗ -continuous). The dual Banach algebra 𝐴𝐴  is called 
Connes-amenable if, for every dual Banach 𝐴𝐴-bimodule 𝑋𝑋, every 𝑤𝑤∗-continuous 
derivation 𝐷𝐷:𝐴𝐴 ⟶ 𝑋𝑋 is inner; or equivalently, 𝐻𝐻𝑤𝑤∗

1 (𝐴𝐴,𝑋𝑋) = {0} [25]. 
The second dual 𝐴𝐴∗∗ of Banach algebra 𝐴𝐴 endowed with the either Arens 

multiplications is a Banach algebra. The constructions of the two Arens 
multiplications in 𝐴𝐴∗∗ lead us to the definition of topological centers for 𝐴𝐴∗∗ with 
respect to both Arens multiplications. The topological centers of Banach algebras, 
module actions and applications of them were introduced and discussed in [1, 19, 
21]. To state our results, we need to fix some notations and recall some definitions. 

Assume that 𝑇𝑇 is an operator from normed linear space 𝑋𝑋 into normed 
linear space 𝑌𝑌 . 𝑇𝑇∗  is the adjoint of 𝑇𝑇  from 𝑌𝑌∗  into 𝑋𝑋∗ . We say that 𝑇𝑇∗  is 
𝑤𝑤𝑤𝑤𝑤𝑤𝑘𝑘∗ − 𝑤𝑤𝑤𝑤𝑤𝑤𝑘𝑘∗  continuous, if for each {𝑦𝑦𝛼𝛼′ } ⊆ 𝑌𝑌∗ , 𝑦𝑦𝛼𝛼′ ⟶

𝑤𝑤∗

𝑦𝑦′  in 𝑌𝑌∗  implies 
𝑇𝑇∗𝑦𝑦𝛼𝛼′ ⟶

𝑤𝑤∗

𝑇𝑇∗𝑦𝑦′ in 𝑋𝑋∗. 
Let 𝑋𝑋,𝑌𝑌,𝑍𝑍  be normed linear spaces and 𝑚𝑚:𝑋𝑋 × 𝑌𝑌 → 𝑍𝑍  be a bounded 

bilinear mapping. Arens in [1] offers two natural extensions 𝑚𝑚∗∗∗ and 𝑚𝑚𝑡𝑡∗∗∗𝑡𝑡 of 
𝑚𝑚 from 𝑋𝑋∗∗ × 𝑌𝑌∗∗ into 𝑍𝑍∗∗, for more information see [9, 19, 21]. 

The mapping 𝑚𝑚∗∗∗  is the unique extension of 𝑚𝑚  such that 𝑥𝑥′′ →
𝑚𝑚∗∗∗(𝑥𝑥′′,𝑦𝑦′′) from 𝑋𝑋∗∗ into 𝑍𝑍∗∗ is 𝑤𝑤𝑤𝑤𝑤𝑤𝑘𝑘∗ − 𝑤𝑤𝑤𝑤𝑤𝑤𝑘𝑘∗ continuous for every 𝑦𝑦′′ ∈
𝑌𝑌∗∗ , but the mapping 𝑦𝑦′′ → 𝑚𝑚∗∗∗(𝑥𝑥′′,𝑦𝑦′′)  is not in general 𝑤𝑤𝑤𝑤𝑤𝑤𝑘𝑘∗ − 𝑤𝑤𝑤𝑤𝑤𝑤𝑘𝑘∗ 
continuous from 𝑌𝑌∗∗ into 𝑍𝑍∗∗ unless 𝑥𝑥′′ ∈ 𝑋𝑋. Hence the first topological center of 
𝑚𝑚 may be defined as follows  



Cohomological properties and arens regularity of Banach algebras            213 

𝑍𝑍1(𝑚𝑚) = {𝑥𝑥′′ ∈ 𝑋𝑋∗∗:  𝑦𝑦′′ → 𝑚𝑚∗∗∗(𝑥𝑥′′,𝑦𝑦′′)  isweak∗ − weak∗  continuous}. 
Now, let 𝑚𝑚𝑡𝑡:𝑌𝑌 × 𝑋𝑋 → 𝑍𝑍 be the transpose of 𝑚𝑚 defined by 𝑚𝑚𝑡𝑡(𝑦𝑦, 𝑥𝑥) = 𝑚𝑚(𝑥𝑥,𝑦𝑦) 
for every 𝑥𝑥 ∈ 𝑋𝑋 and 𝑦𝑦 ∈ 𝑌𝑌. Then 𝑚𝑚𝑡𝑡 is a continuous bilinear map from 𝑌𝑌 × 𝑋𝑋 to 
𝑍𝑍, and so it may be extended as above to 𝑚𝑚𝑡𝑡∗∗∗:𝑌𝑌∗∗ × 𝑋𝑋∗∗ → 𝑍𝑍∗∗. The mapping 
𝑚𝑚𝑡𝑡∗∗∗𝑡𝑡:𝑋𝑋∗∗ × 𝑌𝑌∗∗ → 𝑍𝑍∗∗ in general is not equal to 𝑚𝑚∗∗∗, see [1]. If 𝑚𝑚∗∗∗ = 𝑚𝑚𝑡𝑡∗∗∗𝑡𝑡, 
then 𝑚𝑚 is called Arens regular. The mapping 𝑦𝑦′′ → 𝑚𝑚𝑡𝑡∗∗∗𝑡𝑡(𝑥𝑥′′,𝑦𝑦′′) is 𝑤𝑤𝑤𝑤𝑤𝑤𝑘𝑘∗ −
𝑤𝑤𝑤𝑤𝑤𝑤𝑘𝑘∗  continuous for every 𝑥𝑥′′ ∈ 𝑋𝑋∗∗ , but the mapping 𝑥𝑥′′ → 𝑚𝑚𝑡𝑡∗∗∗𝑡𝑡(𝑥𝑥′′,𝑦𝑦′′) 
from 𝑋𝑋∗∗ into 𝑍𝑍∗∗ is not in general weak ∗-weak ∗ continuous for every 𝑦𝑦′′ ∈ 𝑌𝑌∗∗. 
So we define the second topological center of 𝑚𝑚 as  
𝑍𝑍2(𝑚𝑚) = {𝑦𝑦′′ ∈ 𝑌𝑌∗∗:  𝑥𝑥′′ → 𝑚𝑚𝑡𝑡∗∗∗𝑡𝑡(𝑥𝑥′′,𝑦𝑦′′)  isweak∗ − weak∗  continuous}. 

It is clear that 𝑚𝑚 is Arens regular if and only if 𝑍𝑍1(𝑚𝑚) = 𝑋𝑋∗∗ or 𝑍𝑍2(𝑚𝑚) = 𝑌𝑌∗∗. 
Arens regularity of 𝑚𝑚 is equivalent to the following  

lim
𝑖𝑖

lim
𝑗𝑗
〈𝑧𝑧′,𝑚𝑚(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗)〉 = lim

𝑗𝑗
lim
𝑖𝑖
〈𝑧𝑧′,𝑚𝑚(𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗)〉, 

whenever both limits exist for all bounded sequences (𝑥𝑥𝑖𝑖)𝑖𝑖 ⊆ 𝑋𝑋 , (𝑦𝑦𝑖𝑖)𝑖𝑖 ⊆ 𝑌𝑌 and 
𝑧𝑧′ ∈ 𝑍𝑍∗, see [7]. 

The mapping 𝑚𝑚 is left strongly Arens irregular if 𝑍𝑍1(𝑚𝑚) = 𝑋𝑋 and 𝑚𝑚 is 
right strongly Arens irregular if 𝑍𝑍2(𝑚𝑚) = 𝑌𝑌. The first Arens product is defined as 
follows in three steps. For 𝑎𝑎, 𝑏𝑏 in 𝐴𝐴, 𝑓𝑓 in 𝐴𝐴∗ and 𝑚𝑚,𝑛𝑛 in 𝐴𝐴∗∗, the elements 𝑓𝑓.𝑎𝑎, 
𝑚𝑚.𝑓𝑓 of 𝐴𝐴∗ and 𝑚𝑚.𝑛𝑛 of 𝐴𝐴∗∗ are defined as follows:  

〈𝑓𝑓.𝑎𝑎, 𝑏𝑏〉 = 〈𝑓𝑓,𝑎𝑎𝑎𝑎〉,    〈𝑚𝑚.𝑓𝑓,𝑎𝑎〉 = 〈𝑚𝑚,𝑓𝑓.𝑎𝑎〉,    〈𝑚𝑚.𝑛𝑛, 𝑓𝑓〉 = 〈𝑚𝑚,𝑛𝑛. 𝑓𝑓〉. 
The second Arens product is defined as follows. For 𝑎𝑎, 𝑏𝑏 in 𝐴𝐴, 𝑓𝑓 in 𝐴𝐴∗ and 𝑚𝑚, 𝑛𝑛 
in 𝐴𝐴∗∗ , the elements 𝑎𝑎 ⋄ 𝑓𝑓  , 𝑓𝑓 ⋄ 𝑚𝑚 of 𝐴𝐴∗  and 𝑚𝑚 ⋄ 𝑛𝑛 of 𝐴𝐴∗∗  are defined by the 
equalities  

〈𝑎𝑎 ⋄ 𝑓𝑓, 𝑏𝑏〉 = 〈𝑓𝑓, 𝑏𝑏𝑏𝑏〉,    〈𝑓𝑓 ⋄ 𝑚𝑚,𝑎𝑎〉 = 〈𝑚𝑚,𝑎𝑎 ⋄ 𝑓𝑓〉,    〈𝑚𝑚 ⋄ 𝑛𝑛,𝑓𝑓〉 = 〈𝑛𝑛,𝑓𝑓 ⋄ 𝑚𝑚〉. 
The Arens regularity of a normed algebra 𝐴𝐴 is defined to be the Arens regularity 
of its algebra multiplication when considered as a bilinear mapping 𝑚𝑚:𝐴𝐴 × 𝐴𝐴 → 𝐴𝐴. 
Let 𝐵𝐵 be a Banach 𝐴𝐴-bimodule, and let  

𝜋𝜋ℓ: 𝐴𝐴 × 𝐵𝐵 ⟶ 𝐵𝐵    and    𝜋𝜋𝑟𝑟: 𝐵𝐵 × 𝐴𝐴 ⟶ 𝐵𝐵, 
be the right and left module actions of 𝐴𝐴 on 𝐵𝐵. By above notation, the transpose of 
𝜋𝜋𝑟𝑟 denoted by 𝜋𝜋𝑟𝑟𝑡𝑡:𝐴𝐴 × 𝐵𝐵 → 𝐵𝐵. Then  

𝜋𝜋ℓ∗:𝐵𝐵∗ ×  𝐴𝐴 ⟶ 𝐵𝐵∗    and    𝜋𝜋𝑟𝑟𝑡𝑡∗𝑡𝑡:𝐴𝐴 × 𝐵𝐵∗ ⟶ 𝐵𝐵∗. 
Thus 𝐵𝐵∗ is a left Banach 𝐴𝐴-module and a right Banach 𝐴𝐴-module with respect to 
the module actions 𝜋𝜋𝑟𝑟𝑡𝑡∗𝑡𝑡 and 𝜋𝜋ℓ∗, respectively. The second dual 𝐵𝐵∗∗ is a Banach 
𝐴𝐴∗∗-bimodule with the following module actions  

𝜋𝜋ℓ∗∗∗: 𝐴𝐴∗∗ × 𝐵𝐵∗∗ ⟶ 𝐵𝐵∗∗    and    𝜋𝜋𝑟𝑟∗∗∗: 𝐵𝐵∗∗ × 𝐴𝐴∗∗ ⟶ 𝐵𝐵∗∗, 
where 𝐴𝐴∗∗ is considered as a Banach algebra with respect to the first Arens product. 
Similarly, 𝐵𝐵∗∗ is a Banach 𝐴𝐴∗∗-bimodule with the module actions  

𝜋𝜋ℓ𝑡𝑡∗∗∗𝑡𝑡: 𝐴𝐴∗∗ × 𝐵𝐵∗∗ ⟶ 𝐵𝐵∗∗    and    𝜋𝜋𝑟𝑟𝑡𝑡∗∗∗𝑡𝑡: 𝐵𝐵∗∗ × 𝐴𝐴∗∗ ⟶ 𝐵𝐵∗∗, 
where 𝐴𝐴∗∗  is considered as a Banach algebra with respect to the second Arens 
product. In this way we write 𝑍𝑍(𝜋𝜋ℓ) = 𝑍𝑍𝐵𝐵∗∗(𝐴𝐴∗∗) and 𝑍𝑍(𝜋𝜋𝑟𝑟) = 𝑍𝑍𝐴𝐴∗∗(𝐵𝐵∗∗). 
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Let 𝐵𝐵 be a Banach 𝐴𝐴-bimodule. Then we say that 𝐵𝐵 factors on the left 
(right) with respect to 𝐴𝐴, if 𝐵𝐵 = 𝐵𝐵𝐵𝐵 (𝐵𝐵 = 𝐴𝐴𝐴𝐴). Thus 𝐵𝐵 factors on both sides, if 
𝐵𝐵 = 𝐵𝐵𝐵𝐵 = 𝐴𝐴𝐴𝐴.  

 
2. Weak ∗-weak ∗ continuous derivations  
 
Let 𝐵𝐵  be a Banach 𝐴𝐴 -bimodule. In this section, we study the 

cohomological properties of Banach algebra 𝐴𝐴  whenever every derivation in 
𝑍𝑍1(𝐴𝐴∗∗,𝐵𝐵∗) is weak ∗-weak ∗ continuous. 
Theorem 2.1. Let 𝐵𝐵 be a Banach 𝐴𝐴-bimodule and let every derivation 𝐷𝐷:𝐴𝐴∗∗ ⟶
𝐵𝐵∗  is weak ∗-weak ∗  continuous. If 𝑍𝑍𝐵𝐵∗∗

ℓ (𝐴𝐴∗∗) = 𝐴𝐴∗∗  and 𝐻𝐻1(𝐴𝐴,𝐵𝐵∗) = {0}, then 
𝐻𝐻1(𝐴𝐴∗∗,𝐵𝐵∗) = {0}.   
Proof. Let 𝐷𝐷:𝐴𝐴∗∗ ⟶ 𝐵𝐵∗ be a derivation. Then 𝐷𝐷|𝐴𝐴:𝐴𝐴 → 𝐵𝐵∗ is a derivation. Since 
𝐻𝐻1(𝐴𝐴,𝐵𝐵∗) = {0}, there exists 𝑏𝑏′ ∈ 𝐵𝐵∗  such that 𝐷𝐷|𝐴𝐴 = 𝛿𝛿𝑏𝑏′ . Suppose that 𝑎𝑎′′ ∈
𝐴𝐴∗∗ and (𝑎𝑎𝛼𝛼)𝛼𝛼 ⊆ 𝐴𝐴  such that 𝑎𝑎𝛼𝛼 ⟶

𝑤𝑤∗

𝑎𝑎′′ in 𝐴𝐴∗∗. Then 
 
 𝐷𝐷(𝑎𝑎′′) = 𝑤𝑤∗ − lim

𝛼𝛼
𝐷𝐷|𝐴𝐴(𝑎𝑎𝛼𝛼) 

     = 𝑤𝑤∗ − lim
𝛼𝛼
𝛿𝛿𝑏𝑏′(𝑎𝑎𝛼𝛼) 

 = 𝑤𝑤∗ − lim
𝛼𝛼

(𝑎𝑎𝛼𝛼𝑏𝑏′ − 𝑏𝑏′𝑎𝑎𝛼𝛼) 
 = 𝑎𝑎′′𝑏𝑏′ − 𝑏𝑏′𝑎𝑎′′. 

 
We now show that 𝑏𝑏′𝑎𝑎′′ ∈ 𝐵𝐵∗. Assume that (𝑏𝑏𝛽𝛽′′)𝛽𝛽 ∈ 𝐵𝐵∗∗ such that 𝑏𝑏′′ =

𝑤𝑤∗ − lim𝛽𝛽𝑏𝑏𝛽𝛽′′. Since 𝑍𝑍𝐵𝐵∗∗
ℓ (𝐴𝐴∗∗) = 𝐴𝐴∗∗, we have  

〈𝑏𝑏′𝑎𝑎′′, 𝑏𝑏𝛽𝛽′′〉 = 〈𝑎𝑎′′. 𝑏𝑏𝛽𝛽′′, 𝑏𝑏′〉 → 〈𝑎𝑎′′. 𝑏𝑏′′, 𝑏𝑏′〉 = 〈𝑏𝑏′𝑎𝑎′′, 𝑏𝑏′′〉. 
Thus, 𝑏𝑏′𝑎𝑎′′ ∈ (𝐵𝐵∗∗,𝑤𝑤𝑤𝑤𝑤𝑤𝑘𝑘∗)∗ = 𝐵𝐵∗, and so 𝐻𝐻1(𝐴𝐴∗∗,𝐵𝐵∗) = {0}.  
Corollary 2.1. Let 𝐴𝐴 be an Arens regular Banach algebra and let every derivation 
𝐷𝐷:𝐴𝐴∗∗ → 𝐴𝐴∗  is weak  ∗ -weak  ∗  continuous. If 𝐴𝐴  is weakly amenable, then 
𝐻𝐻1(𝐴𝐴∗∗,𝐴𝐴∗) = {0}.  

By the following result, we show that weak amenability of the Banach 
algebra 𝐴𝐴 is essential in vanishing of 𝐻𝐻1(𝐴𝐴∗∗,𝐴𝐴∗).  
Proposition 2.1. Let 𝐴𝐴 be a Banach algebra such that is an ideal in 𝐴𝐴∗∗. If 𝐴𝐴 is 
not weakly amenable, then 𝐻𝐻1(𝐴𝐴∗∗,𝐴𝐴∗) ≠ {0}.   
Proof. Let 𝑑𝑑:𝐴𝐴 ⟶ 𝐴𝐴∗  be a derivation and 𝜋𝜋:𝐴𝐴∗∗ ⟶ 𝐴𝐴  be a bounded 
homomorphism. Now; define 𝐷𝐷: = 𝑑𝑑 ∘ 𝜋𝜋:𝐴𝐴∗∗ ⟶ 𝐴𝐴∗ . Clearly, 𝐷𝐷  is a bounded 
derivation which it is not inner. This shows that 𝐻𝐻1(𝐴𝐴∗∗,𝐴𝐴∗) ≠ {0}.  
Example 2.1. (i) Let 𝐾𝐾 be a compact metric space, 𝑑𝑑 be a metric on 𝐾𝐾 and 𝛼𝛼 ∈
(0,1]. The Lipschitz algebra 𝐿𝐿𝐿𝐿𝑝𝑝𝛼𝛼𝐾𝐾 is the space of complex-valued functions 𝑓𝑓 on 
𝐾𝐾 such that  
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𝑝𝑝𝛼𝛼(𝑓𝑓) = 𝑠𝑠𝑠𝑠𝑠𝑠 �
|𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)|
𝑑𝑑(𝑥𝑥,𝑦𝑦)𝛼𝛼

: 𝑥𝑥,𝑦𝑦 ∈ 𝐾𝐾, 𝑥𝑥 ≠ 𝑦𝑦� 

is finite. A subspace of 𝐿𝐿𝐿𝐿𝑝𝑝𝛼𝛼𝐾𝐾 that contains 𝑓𝑓 ∈ 𝐿𝐿𝐿𝐿𝑝𝑝𝛼𝛼𝐾𝐾 such that  
|𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)|
𝑑𝑑(𝑥𝑥,𝑦𝑦)𝛼𝛼

→ 0    𝑎𝑎𝑎𝑎    𝑑𝑑(𝑥𝑥,𝑦𝑦) → 0 

is denoted by 𝑙𝑙𝑙𝑙𝑝𝑝𝛼𝛼𝐾𝐾. Let 𝛼𝛼 ∈ (0, 1
2
). Then by [6, Theorem 4.4.34] or [2, Theorem 

3.8], 𝑙𝑙𝑙𝑙𝑝𝑝𝛼𝛼𝐾𝐾 is Arens regular and by [2, Theorem 3.10] it is weakly amenable. Then 
by Corollary 2, 𝐻𝐻1((𝑙𝑙𝑙𝑙𝑝𝑝𝛼𝛼𝐾𝐾)∗∗, (𝑙𝑙𝑙𝑙𝑝𝑝𝛼𝛼𝐾𝐾)∗) = {0}.  
(ii) Let 𝜔𝜔 be a weight sequence on ℤ such that  

𝑠𝑠𝑠𝑠𝑠𝑠 �
𝜔𝜔(𝑚𝑚 + 𝑛𝑛)
𝜔𝜔(𝑚𝑚)𝜔𝜔(𝑛𝑛)

�
1 + |𝑛𝑛|

1 + |𝑚𝑚 + 𝑛𝑛|
� :𝑚𝑚,𝑛𝑛 ∈ ℤ� 

is finite. The Beurling algebra ℓ1(ℤ,𝜔𝜔) is not weakly amenable [2, Theorem 2.3]. 
Then by Proposition 2, we have 

𝐻𝐻1(ℓ1(ℤ,𝜔𝜔)∗∗, ℓ∞(ℤ,𝜔𝜔)) ≠ {0}. 
  Let 𝐵𝐵 be a dual Banach algebra, with predual 𝑋𝑋 and suppose that  

𝑋𝑋⊥ = {𝑥𝑥′′′: 𝑥𝑥′′′|𝑋𝑋 = 0  where  𝑥𝑥′′′ ∈ 𝑋𝑋∗∗∗} = {𝑏𝑏′′: 𝑏𝑏′′|𝑋𝑋 = 0  where  𝑏𝑏′′ ∈ 𝐵𝐵∗∗}. 
Then the canonical projection 𝑃𝑃:𝑋𝑋∗∗∗ ⟶ 𝑋𝑋∗  gives a continuous linear map 
𝑃𝑃:𝐵𝐵∗∗ ⟶ 𝐵𝐵. Thus, we can write the following equality  

 𝐵𝐵∗∗ = 𝑋𝑋∗∗∗ = 𝑋𝑋∗ ⊕ ker𝑃𝑃 = 𝐵𝐵 ⊕ 𝑋𝑋⊥, 
as a direct sum of Banach 𝐴𝐴-bimodules.   
Theorem 2.2. Let 𝐵𝐵 be a Banach 𝐴𝐴-bimodule such that every derivation from 𝐴𝐴∗∗ 
into 𝐵𝐵 is weak ∗-weak continuous and 𝐴𝐴∗∗𝐵𝐵,𝐵𝐵𝐴𝐴∗∗ ⊆ 𝐵𝐵.   

(i) If 𝐻𝐻1(𝐴𝐴,𝐵𝐵) = 0, then 𝐻𝐻1(𝐴𝐴∗∗,𝐵𝐵) = {0}.  
(ii) Suppose that 𝐴𝐴 has a left bounded approximate identity (=LBAI),  has 
a predual 𝑋𝑋 and 𝐴𝐴𝐵𝐵∗,𝐵𝐵∗𝐴𝐴 ⊆ 𝑋𝑋. If 𝐻𝐻1(𝐴𝐴,𝐵𝐵) = 0, then  

𝐻𝐻1(𝐴𝐴∗∗,𝐵𝐵∗∗) = {0}. 
   

Proof. (i) Proof is similar to the proof of Theorem 2. 
(ii) Set 𝐵𝐵∗∗ = 𝐵𝐵 ⊕𝑋𝑋⊥. Then we have  

𝐻𝐻1(𝐴𝐴∗∗,𝐵𝐵∗∗) = 𝐻𝐻1(𝐴𝐴∗∗,𝐵𝐵) ⊕𝐻𝐻1(𝐴𝐴∗∗,𝑋𝑋⊥). 
Since 𝐻𝐻1(𝐴𝐴,𝐵𝐵) = {0}, by (i), 𝐻𝐻1(𝐴𝐴∗∗,𝐵𝐵) = {0}. Now let 𝐷𝐷� ∈

𝑍𝑍1(𝐴𝐴∗∗,𝑋𝑋⊥) and we take 𝐷𝐷 = 𝐷𝐷�|𝐴𝐴. It is clear that 𝐷𝐷 ∈ 𝑍𝑍1(𝐴𝐴∗∗,𝑋𝑋⊥). Assume that 
𝑎𝑎′′, 𝑥𝑥′′ ∈ 𝐴𝐴∗∗ and (𝑎𝑎𝛼𝛼)𝛼𝛼, (𝑥𝑥𝛽𝛽)𝛽𝛽 ⊆ 𝐴𝐴 such that 𝑎𝑎𝛼𝛼 →

𝑤𝑤∗

𝑎𝑎′′ and 𝑥𝑥𝛽𝛽 →
𝑤𝑤∗

𝑥𝑥′′ on 𝐴𝐴∗∗. 
Since 𝐴𝐴𝐵𝐵∗,𝐵𝐵∗𝐴𝐴 ⊆ 𝑋𝑋, for every 𝑏𝑏′ ∈ 𝐵𝐵∗, by using the weak ∗-weak continuity of 
𝐷𝐷�, we have  

 〈𝐷𝐷�(𝑎𝑎′′ ⋄ 𝑥𝑥′′), 𝑏𝑏′〉 = lim
𝛽𝛽

lim
𝛼𝛼
〈𝐷𝐷(𝑎𝑎𝛼𝛼𝑥𝑥𝛽𝛽), 𝑏𝑏′〉 

 = lim
𝛽𝛽

lim
𝛼𝛼
〈(𝐷𝐷(𝑎𝑎𝛼𝛼)𝑥𝑥𝛽𝛽 + 𝑎𝑎𝛼𝛼𝐷𝐷(𝑥𝑥𝛽𝛽)),𝑏𝑏′〉 
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 = lim
𝛽𝛽

lim
𝛼𝛼
〈𝐷𝐷(𝑎𝑎𝛼𝛼)𝑥𝑥𝛽𝛽 ,𝑏𝑏′〉 + lim

𝛽𝛽
lim
𝛼𝛼
〈𝑎𝑎𝛼𝛼𝐷𝐷(𝑥𝑥𝛽𝛽),𝑏𝑏′〉 

 = lim
𝛽𝛽

lim
𝛼𝛼
〈𝐷𝐷(𝑎𝑎𝛼𝛼),𝑥𝑥𝛽𝛽𝑏𝑏′〉 + lim

𝛽𝛽
lim
𝛼𝛼
〈𝐷𝐷(𝑥𝑥𝛽𝛽)),𝑏𝑏′𝑎𝑎𝛼𝛼〉 

 = 0. 
 

Since 𝐴𝐴 has a LBAI, 𝐴𝐴∗∗  has a left unit 𝑒𝑒′′  with respect to the second 
Arens product [6, Proposition 2.9.16]. Then 𝐷𝐷(𝑥𝑥′′) = 𝐷𝐷(𝑒𝑒′′ ⋄ 𝑥𝑥′′) = 0 , and so 
𝐷𝐷 = 0.  

    
Example 2.2. (i) Assume that 𝐺𝐺 is a compact group. Then we know that 𝐿𝐿1(𝐺𝐺) is 
𝑀𝑀(𝐺𝐺)-bimodule and 𝐿𝐿1(𝐺𝐺) is an ideal in the second dual of 𝑀𝑀(𝐺𝐺), 𝑀𝑀(𝐺𝐺)∗∗. By 
[20, Corollary 1.2], we have 𝐻𝐻1(𝐿𝐿1(𝐺𝐺),𝑀𝑀(𝐺𝐺)) = {0}. Then by Theorem 2, every 
weak ∗-weak continuous derivation from 𝐿𝐿1(𝐺𝐺)∗∗ into 𝑀𝑀(𝐺𝐺) is inner.  

    (ii) We know that 𝑐𝑐0 is a C ∗-algebra and every C ∗-algebra is weakly 
amenable, so 𝑐𝑐0 is weakly amenable. Then by Theorem 2, every weak ∗- weak 
continuous derivation from ℓ∞ into ℓ1 is inner.  
Theorem 2.3. Let 𝐵𝐵 be a Banach 𝐴𝐴-bimodule and 𝐴𝐴 has a 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿. Suppose that 
𝐴𝐴𝐵𝐵∗∗,𝐵𝐵∗∗𝐴𝐴 ⊆ 𝐵𝐵  and every derivation from 𝐴𝐴∗∗  into 𝐵𝐵∗  is weak  ∗ -weak  ∗ 
continuous. If 𝐻𝐻1(𝐴𝐴,𝐵𝐵∗) = {0}, then 𝐻𝐻1(𝐴𝐴∗∗,𝐵𝐵∗∗∗) = {0}.   
Proof. Take 𝐵𝐵∗∗∗ = 𝐵𝐵∗ ⊕ 𝐵𝐵⊥ , where 𝐵𝐵⊥ = {𝑏𝑏′′′ ∈ 𝐵𝐵∗∗∗: 𝑏𝑏′′′|𝐵𝐵 = 0} . Then we 
have  

𝐻𝐻1(𝐴𝐴∗∗,𝐵𝐵∗∗∗) = 𝐻𝐻1(𝐴𝐴∗∗,𝐵𝐵∗) ⊕𝐻𝐻1(𝐴𝐴∗∗,𝐵𝐵⊥). 
Since 𝐻𝐻1(𝐴𝐴,𝐵𝐵∗) = {0}, similar to Theorem 2(i), we have 𝐻𝐻1(𝐴𝐴∗∗,𝐵𝐵∗) = {0}. It 
suffices to show that 𝐻𝐻1(𝐴𝐴∗∗,𝐵𝐵⊥) = 0. Let (𝑒𝑒𝛼𝛼)𝛼𝛼 ⊆ 𝐴𝐴 be a LBAI for 𝐴𝐴 such that 
𝑒𝑒𝛼𝛼 →

𝑤𝑤∗

𝑒𝑒′′ in 𝐴𝐴∗∗ where 𝑒𝑒′′ is a left unit for 𝐴𝐴∗∗ with respect to the second Arens 
product. Let 𝑎𝑎′′ ∈ 𝐴𝐴∗∗  and suppose that (𝑎𝑎𝛽𝛽)𝛽𝛽 ⊆ 𝐴𝐴 such that 𝑎𝑎𝛽𝛽 →

𝑤𝑤∗

𝑎𝑎′′  in 𝐴𝐴∗∗ . 
Let 𝐷𝐷 ∈ 𝑍𝑍1(𝐴𝐴∗∗,𝐵𝐵⊥). Then for every 𝑏𝑏′′ ∈ 𝐵𝐵∗∗, by weak ∗-weak ∗ continuity of 𝐷𝐷, 
we have  

 〈𝐷𝐷(𝑎𝑎′′), 𝑏𝑏′′〉 = 〈𝐷𝐷(𝑒𝑒′′ ⋄ 𝑎𝑎′′),𝑏𝑏′′〉 
 = lim

𝛽𝛽
lim
𝛼𝛼
〈(𝐷𝐷(𝑒𝑒𝛼𝛼𝑎𝑎𝛽𝛽),𝑏𝑏′′〉 

 = lim
𝛽𝛽

lim
𝛼𝛼
〈(𝐷𝐷(𝑒𝑒𝛼𝛼)𝑎𝑎𝛽𝛽 + 𝑒𝑒𝛼𝛼𝐷𝐷(𝑎𝑎𝛽𝛽)),𝑏𝑏′′〉 

 = lim
𝛽𝛽

lim
𝛼𝛼
〈𝐷𝐷(𝑒𝑒𝛼𝛼)𝑎𝑎𝛽𝛽, 𝑏𝑏′′〉 + lim

𝛽𝛽
lim
𝛼𝛼
〈𝑒𝑒𝛼𝛼𝐷𝐷(𝑎𝑎𝛽𝛽),𝑏𝑏′′〉 

 = lim
𝛽𝛽

lim
𝛼𝛼
〈𝐷𝐷(𝑒𝑒𝛼𝛼),𝑎𝑎𝛽𝛽𝑏𝑏′′〉 + lim

𝛽𝛽
lim
𝛼𝛼
〈𝐷𝐷(𝑎𝑎𝛽𝛽),𝑏𝑏′′𝑒𝑒𝛼𝛼〉 

 = 0. 
 

It follows that 𝐷𝐷 = 0, and so the result holds.  
It is known that neither the weak amenability of 𝐴𝐴 implies that of 𝐴𝐴∗∗, nor 

the weak amenability of 𝐴𝐴∗∗  implies that of 𝐴𝐴 . The question “when the weak 
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amenability of 𝐴𝐴∗∗ implies that of 𝐴𝐴?” is investigated in many works; see [3, 7, 10, 
11, 12] for more details. We now by Theorem 2 consider the converse of the above 
question, i.e., “under which conditions the weak amenability of 𝐴𝐴 implies that of 
𝐴𝐴∗∗?”, as follows:   
Corollary 2.2. Assume that 𝐴𝐴 is a Banach algebra with 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 such that it is two-
sided ideal in 𝐴𝐴∗∗  and every derivation 𝐷𝐷:𝐴𝐴∗∗ → 𝐴𝐴∗∗∗  is weak  ∗ - weak  ∗ 
continuous. If 𝐴𝐴 is weakly amenable, then 𝐴𝐴∗∗ is weakly amenable.   
Example 2.3. Assume that 𝐺𝐺 is a locally compact group. We know that 𝐿𝐿1(𝐺𝐺) is 
weakly amenable Banach algebra, see [16]. Then by Corollary 2, every weak ∗- 
weak ∗ continuous derivation from 𝐿𝐿1(𝐺𝐺)∗∗ into 𝐿𝐿1(𝐺𝐺)∗∗∗ is inner.  
Theorem 2.4. Let 𝐴𝐴 be an amenable and Arens regular Banach algebra. If for any 
normal Banach 𝐴𝐴 -bimodule 𝐵𝐵  with predual 𝑋𝑋 , we have 𝐴𝐴𝐵𝐵∗,𝐵𝐵∗𝐴𝐴 ⊆ 𝑋𝑋 , then 
𝐻𝐻𝑤𝑤∗
1 (𝐴𝐴∗∗,𝐵𝐵∗∗) = {0}.   

Proof. If the Banach algebra 𝐴𝐴 is amenable and Arens regular, then 𝐴𝐴∗∗ is Connes-
amenable and the converse holds whenever 𝐴𝐴 is an ideal in 𝐴𝐴∗∗, too [25, Theorem 
4.4.8]. Thus 𝐻𝐻𝑤𝑤∗

1 (𝐴𝐴∗∗,𝐵𝐵) = {0} and by the argument before Theorem 2, we have 
𝐵𝐵∗∗ = 𝐵𝐵 ⊕𝑋𝑋⊥. These imply that 𝐻𝐻𝑤𝑤∗

1 (𝐴𝐴∗∗,𝐵𝐵∗∗) = 𝐻𝐻𝑤𝑤∗
1 (𝐴𝐴∗∗,𝑋𝑋⊥). It is known that 

every amenable Banach algebra possesses a BAI, so by a similar argument in the 
proof of Theorem 2(ii), we obtain that 𝐻𝐻𝑤𝑤∗

1 (𝐴𝐴∗∗,𝑋𝑋⊥) = {0}.  
Proposition 2.2. Suppose that 𝐴𝐴 is an amenable Banach algebra. If for every 
Banach 𝐴𝐴-bimodule 𝐵𝐵, we have 𝐴𝐴𝐵𝐵∗∗,𝐵𝐵∗∗𝐴𝐴 ⊆ 𝐵𝐵, then  

𝐻𝐻𝑤𝑤∗
1 (𝐴𝐴∗∗,𝐵𝐵∗∗∗) = {0}. 

Proof. By applying a similar argument in the proof of Theorem 2(ii), we obtain the 
desire.  
Corollary 2.3. Assume that 𝐴𝐴 is a weakly amenable Banach algebra with a LBAI. 
If 𝐴𝐴 is an ideal in 𝐴𝐴∗∗, it follows that  

𝐻𝐻𝑤𝑤∗
1 (𝐴𝐴∗∗,𝐴𝐴∗∗∗) = {0}. 

Example 2.4. Assume that 𝐺𝐺 is a compact group. It is known that 𝐿𝐿1(𝐺𝐺) has a BAI 
and is a two-sided ideal in 𝐿𝐿1(𝐺𝐺)∗∗. We know that 𝐿𝐿1(𝐺𝐺) is weakly amenable, 
hence by Corollary 2,  

𝐻𝐻𝑤𝑤∗
1 (𝐿𝐿∞(𝐺𝐺)∗, 𝐿𝐿∞(𝐺𝐺)∗∗) = {0}. 

Proposition 2.3. Let 𝐴𝐴 be a Banach algebra such that 𝐴𝐴 is an ideal in 𝐴𝐴∗∗ and 
𝐴𝐴∗ factors. Then 𝐴𝐴 is amenable if and only if 𝐴𝐴∗∗ is Connes-amenable.   
Proof. By [3, Corollary 2.8](i), 𝐴𝐴 is Arens regular. Then by [24, Theorem 4.4], the 
proof completes.  

 A Banach space 𝐴𝐴 is called weakly sequentially complete if every weakly 
Cauchy sequence in 𝐴𝐴 has a weak limit in 𝐴𝐴. 
Theorem 2.5. Let 𝐴𝐴 be an Arens regular dual Banach algebra such that 𝐴𝐴∗ is 
weakly sequentially complete (WSC). If 𝐻𝐻𝑤𝑤∗

1 (𝐴𝐴∗∗,𝐴𝐴∗∗∗) = {0}, then 𝐻𝐻𝑤𝑤∗
1 (𝐴𝐴,𝐴𝐴∗) =

{0}.   
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Proof. Let 𝐷𝐷:𝐴𝐴 ⟶ 𝐴𝐴∗  be a 𝑤𝑤∗-continuous derivation. Since 𝐴𝐴∗  is WSC, every 
derivation 𝐷𝐷:𝐴𝐴 ⟶ 𝐴𝐴∗ is weakly compact. Then by [5, Theorem 6.5.5], we have 
𝐷𝐷′′(𝐴𝐴∗∗) ⊆ 𝐴𝐴∗ and hence, by Arens regularity of 𝐴𝐴, 𝐴𝐴∗ is an 𝐴𝐴∗∗-submodule of 
(𝐴𝐴∗∗)∗  and 𝐷𝐷′′(𝐴𝐴∗∗).𝐴𝐴∗∗ ⊆ 𝐴𝐴∗.𝐴𝐴∗∗ ⊆ 𝐴𝐴∗ . Then by [7, Theorem 7.1], 𝐷𝐷′′:𝐴𝐴∗∗ ⟶
𝐴𝐴∗∗∗  is a 𝑤𝑤∗ -continuous derivation. Thus, there exists 𝑎𝑎′′′ ∈ 𝐴𝐴∗∗∗  such that 
𝐷𝐷′′(𝐹𝐹) = 𝐹𝐹.𝑎𝑎′′′ − 𝑎𝑎′′′.𝐹𝐹, for each 𝐹𝐹 ∈ 𝐴𝐴∗∗. Now, let 𝐸𝐸:𝐴𝐴 ⟶ 𝐴𝐴∗∗ be the canonical 
map and set 𝑓𝑓 = 𝐸𝐸∗(𝑎𝑎′′′), then 𝐷𝐷(𝑎𝑎) = 𝑎𝑎.𝑓𝑓 − 𝑓𝑓.𝑎𝑎, for all 𝑎𝑎 ∈ 𝐴𝐴. This means that 
𝐷𝐷 is an inner 𝑤𝑤∗-continuous derivation. Thus the proof follows.  

 For any 𝑛𝑛 ∈ ℕ, we denote the 𝑛𝑛-th dual of the Banach algebra 𝐴𝐴 by 𝐴𝐴(n). 
In the following, we extend the [3, Corollary 2.8](i) to the general case as follows:   
Lemma 2.1. If 𝐴𝐴(2𝑛𝑛) is a two-sided ideal in 𝐴𝐴(2𝑛𝑛+2) and 𝐴𝐴(2𝑛𝑛+1) factors, then 
𝐴𝐴(2𝑛𝑛) is Arens regular, where 𝑛𝑛 ∈ ℕ ∪ {0}.   
Theorem 2.6. Let 𝐴𝐴 be a Banach algebra such that 𝐴𝐴∗∗ is an ideal in 𝐴𝐴∗∗∗∗ and 
𝐴𝐴∗∗∗ factors. If 𝐴𝐴 is weakly amenable, then 𝐻𝐻𝑤𝑤∗

1 (𝐴𝐴∗∗,𝐴𝐴∗∗∗) = {0}.   
Proof. Lemma 2 implies that 𝐴𝐴∗∗ is Arens regular. Now, let 𝐷𝐷:𝐴𝐴∗∗ ⟶ 𝐴𝐴∗∗∗ be a 
weak ∗- weak ∗-continuous derivation. First, we prove that 𝐴𝐴∗∗∗ is a normal Banach 
𝐴𝐴∗∗ -bimodule. Let (𝑎𝑎𝛼𝛼′′)𝛼𝛼  be a net in 𝐴𝐴∗∗  and 𝑎𝑎′′′ ∈ 𝐴𝐴∗∗∗ . Then, by Arens 
regularity of 𝐴𝐴∗∗, for every 𝑏𝑏′′ ∈ 𝐴𝐴∗∗ we have  

 〈(𝑤𝑤∗ − lim
𝛼𝛼
𝑎𝑎𝛼𝛼′′).𝑎𝑎′′′, 𝑏𝑏′′〉 = 〈𝑎𝑎′′′, 𝑏𝑏′′. (𝑤𝑤∗ − lim

𝛼𝛼
𝑎𝑎𝛼𝛼′′)〉 

 = lim
𝛼𝛼
〈𝑎𝑎′′′, 𝑏𝑏′′.𝑎𝑎𝛼𝛼′′〉 

 = lim
𝛼𝛼
〈𝑎𝑎𝛼𝛼′′. 𝑎𝑎′′′, 𝑏𝑏′′〉 

 = 〈𝑤𝑤∗ − lim
𝛼𝛼

(𝑎𝑎𝛼𝛼′′. 𝑎𝑎′′′),𝑏𝑏′′〉. 
 

Moreover,  
 〈𝑎𝑎′′′. (𝑤𝑤∗ − lim

𝛼𝛼
𝑎𝑎𝛼𝛼′′), 𝑏𝑏′′〉 = 〈𝑎𝑎′′′,𝑤𝑤∗ − lim

𝛼𝛼
𝑎𝑎𝛼𝛼′′. 𝑏𝑏′′〉 

 = lim
𝛼𝛼
〈𝑎𝑎′′′,𝑎𝑎𝛼𝛼′′, 𝑏𝑏′′〉 

 = lim
𝛼𝛼
〈𝑎𝑎′′′.𝑎𝑎𝛼𝛼′′, 𝑏𝑏′′〉 

 = 〈𝑤𝑤∗ − lim
𝛼𝛼

(𝑎𝑎′′′.𝑎𝑎𝛼𝛼′′),𝑏𝑏′′〉. 
 

Hence, the mappings 𝑎𝑎′′ ↦ 𝑎𝑎′′.𝑎𝑎′′′ and 𝑎𝑎′′ ↦ 𝑎𝑎′′′.𝑎𝑎′′ are weak ∗-weak ∗-
continuous from 𝐴𝐴∗∗ into 𝐴𝐴∗∗∗. Thus, 𝐴𝐴∗∗∗ is a normal Banach 𝐴𝐴∗∗-bimodule. For 
each 𝑎𝑎 ∈ 𝐴𝐴, we define 𝐷𝐷�:𝐴𝐴 ⟶ 𝐴𝐴∗ by  

𝐷𝐷�(𝑎𝑎) = 𝐷𝐷(𝑎𝑎�)|𝐴𝐴, 
where 𝑎𝑎� ∈ 𝐴𝐴∗∗ with 𝑎𝑎�(𝑎𝑎′) = 𝑎𝑎′(𝑎𝑎), for all 𝑎𝑎 ∈ 𝐴𝐴. As the following equalities 𝐷𝐷� 
is a continuous derivation from 𝐴𝐴 into 𝐴𝐴∗.  

 𝐷𝐷�(𝑎𝑎𝑎𝑎) = 𝐷𝐷(𝑎𝑎𝑎𝑎�) = 𝐷𝐷(𝑎𝑎�. 𝑏𝑏�) = 𝑎𝑎.𝐷𝐷(𝑏𝑏�) + 𝐷𝐷(𝑎𝑎�). 𝑏𝑏 = 𝑎𝑎.𝐷𝐷�(𝑏𝑏) + 𝐷𝐷�(𝑎𝑎).𝑏𝑏,  
 where 𝑎𝑎, 𝑏𝑏 ∈ 𝐴𝐴. By weak amenability of 𝐴𝐴, we have 𝐷𝐷�  is inner. Then 
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there exist 𝑎𝑎′′′ ∈ 𝐴𝐴∗∗∗ such that  
 𝐷𝐷(𝑎𝑎�) = 𝐷𝐷�(𝑎𝑎) = 𝑎𝑎. 𝑎𝑎′′′|𝐴𝐴 − 𝑎𝑎′′′|𝐴𝐴.𝑎𝑎 = 𝑎𝑎�. 𝑎𝑎′′′|𝐴𝐴 − 𝑎𝑎′′′|𝐴𝐴.𝑎𝑎�.  

 
We consider the canonical mapping 𝐸𝐸:𝐴𝐴∗ ⟶ 𝐴𝐴∗∗∗. Then there exists 𝑏𝑏′′′ ∈

𝐴𝐴∗∗∗ such that 𝐸𝐸(𝑎𝑎′′′|𝐴𝐴) = 𝑏𝑏′′′. So  
 𝐷𝐷(𝑎𝑎�) = 𝑎𝑎�. 𝑏𝑏′′′ − 𝑏𝑏′′′.𝑎𝑎�.  

 
Then 𝐷𝐷 is inner. It follows that 𝐻𝐻𝑤𝑤∗

1 (𝐴𝐴∗∗,𝐴𝐴∗∗∗) = {0}.  
Corollary 2.4. Let 𝐴𝐴(2𝑛𝑛+2) be a two sided ideal in 𝐴𝐴(2𝑛𝑛+4) and 𝐴𝐴(2𝑛𝑛+3) factors. 
If 𝐴𝐴(2𝑛𝑛) is weakly amenable, then 𝐻𝐻𝑤𝑤∗

1 (𝐴𝐴(2𝑛𝑛+2),𝐴𝐴(2𝑛𝑛+3)) = {0}.   
Proof. Apply Lemma 2 and Theorem 2.  

 Weak ∗-continuous derivations from dual Banach algebras into their ideals 
are studied in [8].   
Remark 2.1. If 𝑀𝑀 is subspace of 𝐴𝐴 and 𝑁𝑁 is subspace of 𝐴𝐴∗, then 𝑀𝑀⊥ = {𝑥𝑥∗ ∈
𝑋𝑋∗: 〈𝑥𝑥∗, 𝑥𝑥〉 = 0,    ∀𝑥𝑥 ∈ 𝑀𝑀} and  ⊥𝑁𝑁 = {𝑥𝑥 ∈ 𝐴𝐴: 〈𝑥𝑥∗, 𝑥𝑥〉 = 0,    ∀𝑥𝑥∗ ∈ 𝑁𝑁}. If 𝐴𝐴 is a 
dual Banach algebra and 𝐼𝐼 is 𝑤𝑤∗ −closed ideal of 𝐴𝐴, then 𝐼𝐼 is dual with predual 
𝐼𝐼∗ = 𝐴𝐴∗

 ⊥𝐼𝐼
 that (𝐼𝐼∗)∗ = (𝐴𝐴∗

 ⊥𝐼𝐼
)∗ = (⊥𝐼𝐼)⊥ = 𝐼𝐼 and 𝐼𝐼∗ = 𝐴𝐴∗

𝐼𝐼⊥
, see [5].    

Proposition 2.4. Let 𝐴𝐴 be a dual Banach algebra and 𝐼𝐼 be an arbitrary 𝑤𝑤∗-closed 
ideal of 𝐴𝐴 such that 𝐻𝐻1(𝐴𝐴, 𝐼𝐼∗∗) = {0}. Then 𝐻𝐻𝑤𝑤∗

1 (𝐴𝐴, 𝐼𝐼) = {0}.   
Proof. Let 𝐷𝐷 ∈ 𝑍𝑍𝑤𝑤∗

1 (𝐴𝐴, 𝐼𝐼)  and 𝐸𝐸: 𝐼𝐼 → 𝐼𝐼∗∗  be the natural embedding. Then 𝐸𝐸 ∘
𝐷𝐷:𝐴𝐴 → 𝐼𝐼∗∗ is a bounded derivation. Since 𝐻𝐻1(𝐴𝐴, 𝐼𝐼∗∗) = {0}, there exists 𝑎𝑎∗∗ ∈ 𝐼𝐼∗∗ 
such that 𝐸𝐸 ∘ 𝐷𝐷 = 𝛿𝛿𝑎𝑎∗∗ . Consider the decomposition 𝐼𝐼∗∗ = 𝐼𝐼 ⊕ 𝐼𝐼∗⊥  as an 𝐴𝐴 -
bimodule. If 𝑃𝑃: 𝐼𝐼∗∗ → 𝐼𝐼 is a projection, we have 𝐷𝐷 = 𝛿𝛿𝑝𝑝(𝑎𝑎∗∗). Then 𝐻𝐻𝑤𝑤∗

1 (𝐴𝐴, 𝐼𝐼) =
{0}.  

 A Banach algebra 𝐴𝐴  is without of order if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐴𝐴 , 𝑎𝑎𝑎𝑎 = 0 
implies that 𝑎𝑎 = 0 or 𝑏𝑏 = 0. Semisimple and unital Banach algebras are without 
of order Banach algebras. Now by Proposition 2 and [8, Theorem 3.1], we have the 
following result.   
Corollary 2.5. Let 𝐴𝐴 be a dual Banach algebra and 𝐼𝐼 be a closed two-sided ideal 
in 𝐴𝐴  such that 𝐼𝐼  is without order. If 𝐻𝐻1(𝐴𝐴, 𝐼𝐼∗∗) = {0} , then 𝐻𝐻𝑤𝑤∗

1 (𝐼𝐼, 𝐼𝐼) = {0} . 
Example 2.5.  (i) Let 𝐺𝐺 be a locally compact group. A linear subspace 𝑆𝑆1(𝐺𝐺) of 
𝐿𝐿1(𝐺𝐺) is said to be a Segal algebra, if it satisfies the following conditions:   
(S1) 𝑆𝑆1(𝐺𝐺) is dense in 𝐿𝐿1(𝐺𝐺);  
(S2) If 𝑓𝑓 ∈ 𝑆𝑆1(𝐺𝐺), then 𝐿𝐿𝑥𝑥𝑓𝑓 ∈ 𝑆𝑆1(𝐺𝐺), i.e. 𝑆𝑆1(𝐺𝐺) is left translation invariant;  
(S3) 𝑆𝑆1(𝐺𝐺) is a Banach space under some norm ∥⋅∥𝑆𝑆 and ∥ 𝐿𝐿𝑥𝑥𝑓𝑓 ∥𝑠𝑠=∥ 𝑓𝑓 ∥𝑠𝑠, for 
all 𝑓𝑓 ∈ 𝑆𝑆1(𝐺𝐺) and 𝑥𝑥 ∈ 𝐺𝐺;  
(S4) 𝑥𝑥 ↦ 𝐿𝐿𝑥𝑥𝑓𝑓 from 𝐺𝐺 into 𝑆𝑆1(𝐺𝐺) is continuous.  

 
For more details about Segal algebras, see [22, 23]. Now, let 𝐺𝐺  be an 
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abelian locally compact group. Then 𝐻𝐻1(𝐿𝐿1(𝐺𝐺),𝑆𝑆1(𝐺𝐺)∗∗) = {0} . Then by 
Proposition 2 and Corollary 2, we have 𝐻𝐻𝑤𝑤∗

1 (𝐿𝐿1(𝐺𝐺), 𝑆𝑆1(𝐺𝐺)) = {0}  and 
𝐻𝐻𝑤𝑤∗
1 (𝑆𝑆1(𝐺𝐺), 𝑆𝑆1(𝐺𝐺)) = {0}. 

(ii) Let 𝛬𝛬 be a non-empty, totally ordered set, and regard it as a semigroup 
by defining the product of two elements to be their maximum. The resulting 
semigroup, which we denote by 𝛬𝛬∨, is a semilattice. We may then form the ℓ1-
convolution algebra ℓ1(𝛬𝛬∨) . For every 𝑡𝑡 ∈ 𝛬𝛬∨  we denote the point mass 
concentrated at 𝑡𝑡 by 𝑒𝑒𝑡𝑡. The definition of multiplication in ℓ1(𝛬𝛬∨) ensures that 
𝑒𝑒𝑠𝑠𝑒𝑒𝑡𝑡 = 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠,𝑡𝑡) for all 𝑠𝑠 and 𝑡𝑡. 

The semilattice 𝛬𝛬∨, is a commutative semigroup in which every element is 
idempotent. If we denote the set of idempotent elements of 𝛬𝛬∨  by 𝐸𝐸(𝛬𝛬∨), then 
𝐸𝐸(𝛬𝛬∨) = 𝛬𝛬∨ . The ℓ1 -convolution algebras of semilattices provide interesting 
examples of commutative Banach algebras. By [14, Proposition 3.3], 
𝐻𝐻1(ℓ1(𝛬𝛬∨), 𝐼𝐼∗∗) = {0}, for any closed two-sided 𝐼𝐼 of ℓ1(𝛬𝛬∨). Then by Corollary 
2, 𝐻𝐻𝑤𝑤∗

1 (𝐼𝐼, 𝐼𝐼) = {0}, for any closed two-sided 𝐼𝐼 of ℓ1(𝛬𝛬∨). 
(iii) Let 𝐾𝐾 be an infinite compact metric space, 𝛼𝛼 ∈ (0,1) and 𝑙𝑙𝑙𝑙𝑝𝑝𝛼𝛼𝐾𝐾 be 

the small Lipschitz algebra (see Example 2). By [14, Proposition 3.4], 
𝐻𝐻1(𝑙𝑙𝑙𝑙𝑝𝑝𝛼𝛼𝐾𝐾, 𝐼𝐼∗∗) = {0}, for any closed two-sided 𝐼𝐼 of 𝑙𝑙𝑙𝑙𝑝𝑝𝛼𝛼𝐾𝐾. Then by Corollary 2, 
𝐻𝐻𝑤𝑤∗
1 (𝐼𝐼, 𝐼𝐼) = {0}, for any closed two-sided 𝐼𝐼 of 𝑙𝑙𝑙𝑙𝑝𝑝𝛼𝛼𝐾𝐾.  

  
3. Representations of derivations and Arens regularity 

  
 Let 𝐴𝐴  be a Banach algebra and 𝐵𝐵  be a Banach 𝐴𝐴-bimodule with the 

module action “•”. Then for every 𝑏𝑏 ∈ 𝐵𝐵, we define  
 𝐿𝐿𝑏𝑏(𝑎𝑎) = 𝑏𝑏 • 𝑎𝑎    and    𝑅𝑅𝑏𝑏(𝑎𝑎) = 𝑎𝑎 • 𝑏𝑏, 

for every 𝑎𝑎 ∈ 𝐴𝐴. These are the operation of left and right multiplication by 𝑏𝑏 on 
𝐴𝐴. In the following by using the super-amenability of Banach algebra 𝐴𝐴, we give a 
representation for 𝑍𝑍1(𝐴𝐴,𝐶𝐶), where 𝐶𝐶 is a Banach 𝐴𝐴-bimodule. 

For a Banach 𝐴𝐴-bimodule 𝐵𝐵 and for a derivation 𝐷𝐷:𝐴𝐴 → 𝐵𝐵∗, we show that 
the left module action 𝜋𝜋ℓ:𝐴𝐴 × 𝐵𝐵 → 𝐵𝐵 is Arens regular whenever 𝐷𝐷′′:𝐴𝐴∗∗ → 𝐵𝐵∗∗∗ 
is a derivation and 𝐵𝐵∗ ⊆ 𝐷𝐷′′(𝐴𝐴∗∗). On the other hand, if 𝐴𝐴 is a left strongly Arens 
irregular and 𝐴𝐴∗∗  is amenable Banach algebra with respect to the first Arens 
product, then 𝐴𝐴 is unital. Moreover, if 𝐴𝐴 is a dual Banach algebra, it follows that 
𝐴𝐴 is reflexive.   
Theorem 3.1. Assume that 𝐴𝐴 is an amenable Banach algebra. Then there are 
Banach 𝐴𝐴-bimodules 𝐶𝐶, 𝐷𝐷 and elements 𝔞𝔞, 𝔟𝔟 ∈ 𝐴𝐴∗∗ such that  

𝑍𝑍1(𝐴𝐴,𝐶𝐶∗) = {𝑅𝑅𝐷𝐷′′(𝔞𝔞): 𝐷𝐷 ∈ 𝑍𝑍1(𝐴𝐴,𝐶𝐶∗)} = {𝐿𝐿𝐷𝐷′′(𝔟𝔟): 𝐷𝐷 ∈ 𝑍𝑍1(𝐴𝐴,𝐷𝐷∗)}. 
  
Proof. Suppose that 𝐵𝐵 is a Banach 𝐴𝐴-bimodule with a module action •. Every 
amenable Banach algebra has a BAI [25, Proposition 2.2.1], so 𝐴𝐴 has a BAI such 
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as (𝑒𝑒𝛼𝛼)𝛼𝛼. Then by Cohen factorization Theorem we have 𝐵𝐵 • 𝐴𝐴 = 𝐵𝐵 = 𝐴𝐴 • 𝐵𝐵, i.e., 
for every 𝑏𝑏 ∈ 𝐵𝐵 , there are 𝑦𝑦, 𝑧𝑧 ∈ 𝐵𝐵  and 𝑎𝑎, 𝑡𝑡 ∈ 𝐴𝐴  such that 𝑦𝑦 • 𝑎𝑎 = 𝑏𝑏 = 𝑡𝑡 • 𝑧𝑧 . 
Then we have  

lim
𝛼𝛼
𝑏𝑏 • 𝑒𝑒𝛼𝛼 = lim

𝛼𝛼
(𝑦𝑦 • 𝑎𝑎) • 𝑒𝑒𝛼𝛼 = lim

𝛼𝛼
𝑦𝑦 • (𝑎𝑎𝑒𝑒𝛼𝛼) = 𝑦𝑦 • 𝑎𝑎 = 𝑏𝑏 (1) 

 and  
lim
𝛼𝛼
𝑒𝑒𝛼𝛼 • 𝑏𝑏 = lim

𝛼𝛼
𝑒𝑒𝛼𝛼 • (𝑡𝑡 • 𝑧𝑧) = lim

𝛼𝛼
(𝑡𝑡𝑒𝑒𝛼𝛼) • 𝑧𝑧 = 𝑡𝑡 • 𝑧𝑧 = 𝑏𝑏. (2) 

 
It follows that 𝐵𝐵 has a BAI as (𝑒𝑒𝛼𝛼)𝛼𝛼 ⊆ 𝐴𝐴. Let 𝑒𝑒′′ and 𝑓𝑓′′ be the right and 

left unit for 𝐴𝐴∗∗, respectively such that 𝑒𝑒𝛼𝛼 →
𝑤𝑤∗

𝑒𝑒′′ and 𝑒𝑒𝛼𝛼 →
𝑤𝑤∗

𝑓𝑓′′ in 𝐴𝐴∗∗. 
Take 𝐶𝐶 = 𝐵𝐵 and define a module action “⋅” as 𝑎𝑎 ⋅ 𝑥𝑥 = 0 and 𝑥𝑥 ⋅ 𝑎𝑎 = 𝑥𝑥 •

𝑎𝑎, for all 𝑎𝑎 ∈ 𝐴𝐴 and 𝑥𝑥 ∈ 𝐶𝐶. Clearly, (𝐶𝐶,⋅) is a Banach 𝐴𝐴-bimodule. Suppose that 
𝐷𝐷 ∈ 𝑍𝑍1(𝐴𝐴,𝐶𝐶∗). Then there is an element 𝑐𝑐 ∈ 𝐶𝐶∗ such that 𝐷𝐷 = 𝛿𝛿𝑐𝑐. Then for every 
𝑎𝑎 ∈ 𝐴𝐴, we have  

𝐷𝐷(𝑎𝑎) = 𝛿𝛿𝑐𝑐(𝑎𝑎) = 𝑎𝑎 ⋅ 𝑐𝑐 − 𝑐𝑐 ⋅ 𝑎𝑎 = 𝑎𝑎 • 𝑐𝑐. 
From (1) and module actions of 𝐶𝐶, for any 𝑥𝑥 ∈ 𝐶𝐶 and 𝑥𝑥′ ∈ 𝐶𝐶∗, we have  

             lim
𝛼𝛼
〈𝑥𝑥, 𝑥𝑥′ ⋅ 𝑒𝑒𝛼𝛼〉 = lim

𝛼𝛼
〈𝑒𝑒𝛼𝛼 ⋅ 𝑥𝑥, 𝑥𝑥′〉 = 0               (3) 

 and  
lim
𝛼𝛼
〈𝑥𝑥, 𝑒𝑒𝛼𝛼 ⋅ 𝑥𝑥′〉 = lim

𝛼𝛼
〈𝑥𝑥 ⋅ 𝑒𝑒𝛼𝛼, 𝑥𝑥′〉 = lim

𝛼𝛼
〈𝑥𝑥 • 𝑒𝑒𝛼𝛼, 𝑥𝑥′〉 = 〈𝑥𝑥, 𝑥𝑥′〉. (4) 

 
It follows that 𝑒𝑒𝛼𝛼 ⋅ 𝑥𝑥′ →

𝑤𝑤∗

𝑥𝑥′  in 𝐶𝐶∗ . Since 𝐷𝐷′′  is a weak  ∗ -to-weak  ∗ 
continuous linear operator, we have  

𝐷𝐷′′(𝑒𝑒′′) = 𝐷𝐷′′(𝑤𝑤∗ − lim
𝛼𝛼
𝑒𝑒𝛼𝛼) = 𝑤𝑤∗ − lim

𝛼𝛼
𝐷𝐷′′(𝑒𝑒𝛼𝛼) = 𝑤𝑤∗ − lim

𝛼𝛼
𝐷𝐷(𝑒𝑒𝛼𝛼) 

 = 𝑤𝑤∗ − lim
𝛼𝛼

(𝑒𝑒𝛼𝛼𝑥𝑥′) = 𝑥𝑥′. 
 

Thus we conclude that 𝐷𝐷(𝑎𝑎) = 𝑎𝑎 ⋅ 𝐷𝐷′′(𝑒𝑒′′) = 𝑎𝑎 • 𝐷𝐷′′(𝑒𝑒′′) for all 𝑎𝑎 ∈ 𝐴𝐴. It 
follows that 𝐷𝐷 = 𝑅𝑅𝐷𝐷′′(𝑒𝑒′′).  On the other hand, since for every derivation 𝐷𝐷 ∈
𝑍𝑍1(𝐴𝐴,𝐶𝐶∗), 𝑅𝑅𝐷𝐷′′(𝑒𝑒′′) ∈ 𝑍𝑍1(𝐴𝐴,𝐶𝐶∗), the result holds. 

Now, again consider 𝐵𝐵 as a Banach 𝐴𝐴-bimodule with the module action 
“•” and set 𝐷𝐷 = 𝐵𝐵 with the module action ⊲ such that 𝑎𝑎 ⊲ 𝑦𝑦 = 𝑎𝑎 • 𝑦𝑦 and 𝑦𝑦 ⊲
𝑎𝑎 = 0, for all 𝑎𝑎 ∈ 𝐴𝐴 and 𝑦𝑦 ∈ 𝐷𝐷. By a similar argument that we have discussed 
above, and setting 𝔟𝔟 = 𝑓𝑓′′, the proof completes.  

    
Example 3.1. (i) Let 𝐺𝐺 be an amenable locally compact group. Then by Johnson 
Theorem 𝐻𝐻1(𝐿𝐿1(𝐺𝐺),𝑋𝑋∗) = {0}, for every Banach 𝐴𝐴-bimodule 𝑋𝑋. Then by defining 
the similar module actions of 𝐿𝐿∞(𝐺𝐺) as a Banach 𝐿𝐿1(𝐺𝐺)-bimodule in the proof of 
Theorem 3 and by this Theorem, we have  

 𝑍𝑍1(𝐿𝐿1(𝐺𝐺), 𝐿𝐿∞(𝐺𝐺)) = {𝑅𝑅𝐷𝐷(𝑒𝑒′′):𝐷𝐷 ∈ 𝑍𝑍1(𝐿𝐿1(𝐺𝐺),𝐿𝐿∞(𝐺𝐺))} 
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 = {𝐿𝐿𝐷𝐷(𝑓𝑓′′):𝐷𝐷 ∈ 𝑍𝑍1(𝐿𝐿1(𝐺𝐺), 𝐿𝐿∞(𝐺𝐺))}, 
 where 𝑒𝑒′′  and 𝑓𝑓′′  are the left and right units of 𝐿𝐿1(𝐺𝐺)∗∗ , indeed they 𝑤𝑤∗ -
accumulations of the BAI of 𝐿𝐿1(𝐺𝐺).  
(ii) Let 𝐺𝐺  be locally compact group. Then by [20, Corollary 1.2] 
𝐻𝐻1(𝐿𝐿1(𝐺𝐺),𝑀𝑀(𝐺𝐺)) = {0}. Then by applying the module actions defined in the proof 
of Theorem 3, we can see 𝑀𝑀(𝐺𝐺) as a Banach 𝐿𝐿1(𝐺𝐺)-bimodule. Then by Theorem 
3, we have  

 𝑍𝑍1(𝐿𝐿1(𝐺𝐺), 𝐿𝐿∞(𝐺𝐺)) = {𝑅𝑅𝐷𝐷(𝑒𝑒′′):𝐷𝐷 ∈ 𝑍𝑍1(𝐿𝐿1(𝐺𝐺),𝐿𝐿∞(𝐺𝐺))} 
             = {𝐿𝐿𝐷𝐷(𝑓𝑓′′):𝐷𝐷 ∈ 𝑍𝑍1(𝐿𝐿1(𝐺𝐺),𝐿𝐿∞(𝐺𝐺))}, 

 where 𝑒𝑒′′ and 𝑓𝑓′′ are the left and right units of 𝐿𝐿1(𝐺𝐺)∗∗.  
Theorem 3.2. Let 𝐴𝐴  be a Banach algebra, 𝐵𝐵  be a Banach 𝐴𝐴 -bimodule and 
𝐷𝐷:𝐴𝐴 ⟶ 𝐵𝐵∗  be a continuous derivation. If 𝐷𝐷′′:𝐴𝐴∗∗ ⟶ 𝐵𝐵∗∗∗  is a derivation and 
𝐵𝐵∗ ⊆ 𝐷𝐷′′(𝐴𝐴∗∗), then 𝑍𝑍𝐴𝐴∗∗

ℓ (𝐵𝐵∗∗) = 𝐵𝐵∗∗.   
Proof. Since 𝐷𝐷′′:𝐴𝐴∗∗ → 𝐵𝐵∗∗∗ is a derivation, by [26, Theorem 4.2], 𝐷𝐷′′(𝐴𝐴∗∗)𝐵𝐵∗∗ ⊆
𝐵𝐵∗ . Due to 𝐵𝐵∗ ⊆ 𝐷𝐷′′(𝐴𝐴∗∗) , we have 𝐵𝐵∗𝐵𝐵∗∗ ⊆ 𝐵𝐵∗ . Let (𝑎𝑎𝛼𝛼′′)𝛼𝛼 ⊆ 𝐴𝐴∗∗  such that 
𝑎𝑎𝛼𝛼′′ →

𝑤𝑤∗

𝑎𝑎′′ in 𝐴𝐴∗∗. Assume that 𝑏𝑏′′ ∈ 𝐵𝐵∗∗. Then for every 𝑏𝑏′ ∈ 𝐵𝐵∗, since 𝑏𝑏′𝑏𝑏′′ ∈
𝐵𝐵∗, we have  

〈𝑏𝑏′′.𝑎𝑎𝛼𝛼′′, 𝑏𝑏′〉 = 〈𝑎𝑎𝛼𝛼′′𝑏𝑏′, 𝑏𝑏′′〉 → 〈𝑎𝑎′′, 𝑏𝑏′𝑏𝑏′′〉 = 〈𝑏𝑏′′.𝑎𝑎′′, 𝑏𝑏′〉. 
Thus 𝑏𝑏′′.𝑎𝑎𝛼𝛼′′ →

𝑤𝑤∗

𝑏𝑏′′. 𝑎𝑎′′ is in 𝐵𝐵∗∗, and so 𝑏𝑏′′ ∈ 𝑍𝑍𝐴𝐴∗∗
ℓ (𝐵𝐵∗∗).  

Corollary 3.1. Let 𝐴𝐴  be a Banach algebra and 𝐷𝐷:𝐴𝐴 ⟶ 𝐴𝐴∗  be a continuous 
derivation such that 𝐴𝐴∗ ⊆ 𝐷𝐷′′(𝐴𝐴∗∗). If 𝐷𝐷′′:𝐴𝐴∗∗ ⟶ 𝐴𝐴∗∗∗ is a derivation, then 𝐴𝐴 is 
Arens regular. 
Example 3.2. Let 𝐺𝐺  be an infinite locally compact group. Thus, 𝐿𝐿1(𝐺𝐺) is not 
Arens regular. Then Corollary 3 implies that there is no 𝐷𝐷 ∈ 𝑍𝑍1(𝐿𝐿1(𝐺𝐺), 𝐿𝐿1(𝐺𝐺)∗) 
such that 𝐿𝐿1(𝐺𝐺)∗ ⊆ 𝐷𝐷′′(𝐿𝐿1(𝐺𝐺)∗∗) and its second transpose 𝐷𝐷′′ is a derivation. 
Lemma 3.1. Let 𝐵𝐵 be a Banach left 𝐴𝐴-module and 𝐵𝐵∗∗ has a LBAI with respect 
to 𝐴𝐴∗∗. Then 𝐵𝐵∗∗ has a left unit with respect to 𝐴𝐴∗∗.   
Proof. Assume that (𝑒𝑒𝛼𝛼′′)𝛼𝛼 ⊆ 𝐴𝐴∗∗  is a LBAI for 𝐵𝐵∗∗ . By passing to a suitable 
subnet, we may suppose that there is an 𝑒𝑒′′ ∈ 𝐴𝐴∗∗ such that 𝑒𝑒𝛼𝛼′′ →

𝑤𝑤∗

𝑒𝑒′′ in 𝐴𝐴∗∗. Then 
for every 𝑏𝑏′′ ∈ 𝐵𝐵∗∗ and 𝑏𝑏′ ∈ 𝐵𝐵∗, we have  

〈𝜋𝜋ℓ∗∗∗(𝑒𝑒′′, 𝑏𝑏′′), 𝑏𝑏′〉 = 〈𝑒𝑒′′,𝜋𝜋ℓ∗∗(𝑏𝑏′′, 𝑏𝑏′)〉 = lim
𝛼𝛼
〈𝑒𝑒𝛼𝛼′′,𝜋𝜋ℓ∗∗(𝑏𝑏′′, 𝑏𝑏′)〉 

 = lim
𝛼𝛼
〈𝜋𝜋ℓ∗∗∗(𝑒𝑒𝛼𝛼′′, 𝑏𝑏′′), 𝑏𝑏′〉 = 〈𝑏𝑏′′, 𝑏𝑏′〉. 

 
It follows that 𝜋𝜋ℓ∗∗∗(𝑒𝑒′′, 𝑏𝑏′′) = 𝑏𝑏′′.  
 

Theorem 3.3. Let 𝐴𝐴 be a left strongly Arens irregular and suppose that 𝐴𝐴∗∗ is an 
amenable Banach algebra. Then we have the following assertions.    
(i) A has an identity. 
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(ii) If 𝐴𝐴 is a dual Banach algebra, then 𝐴𝐴 is reflexive.  
   

Proof. (i) Amenability of 𝐴𝐴∗∗ implies that it has a BAI. By using Lemma 3, 𝐴𝐴∗∗ 
has an identity say that 𝑒𝑒′′ . So, the mapping 𝑥𝑥′′ → 𝑒𝑒′′. 𝑥𝑥′′ = 𝑥𝑥′′  is weak  ∗ -to-
weak  ∗  continuous from 𝐴𝐴∗∗  into 𝐴𝐴∗∗ . It follows that 𝑒𝑒′′ ∈ 𝑍𝑍1(𝐴𝐴∗∗) = 𝐴𝐴 . This 
means that 𝐴𝐴 has an identity. 

(ii) Assume that 𝐸𝐸 is a predual of 𝐴𝐴. Then we have 𝐴𝐴∗∗ = 𝐴𝐴⊕ 𝐸𝐸⊥. Since 
𝐴𝐴∗∗ is amenable, by [12, Theorem 1.8] or [13, Theorem 2.3], 𝐴𝐴 is amenable, and 
so 𝐸𝐸⊥  is amenable. Thus 𝐸𝐸⊥  has a 𝐵𝐵𝐵𝐵𝐵𝐵  such as (𝑒𝑒𝛼𝛼′′)𝛼𝛼 ⊆ 𝐸𝐸⊥ . Since 𝐸𝐸⊥  is a 
closed and weak ∗-closed subspace of 𝐴𝐴∗∗, without loss generality, there is 𝑒𝑒′′ ∈
𝐸𝐸⊥ such that  

𝑒𝑒𝛼𝛼′′ ⟶
𝑤𝑤∗

𝑒𝑒′′        and        𝑒𝑒𝛼𝛼′′ ⟶
∥⋅∥

𝑒𝑒′′. 
 

Then 𝑒𝑒′′ is a left identity for 𝐸𝐸⊥. On the other hand, for every 𝑥𝑥′′ ∈ 𝐸𝐸⊥, since 𝐸𝐸⊥ 
is an ideal in 𝐴𝐴∗∗, we have 𝑥𝑥′′. 𝑒𝑒′′ ∈ 𝐸𝐸⊥. Thus, for every 𝑎𝑎′ ∈ 𝐴𝐴∗,  

 〈𝑥𝑥′′. 𝑒𝑒′′,𝑎𝑎′〉 = lim
𝛼𝛼
〈(𝑥𝑥′′. 𝑒𝑒′′). 𝑒𝑒𝛼𝛼′′,𝑎𝑎′〉 = lim

𝛼𝛼
〈𝑥𝑥′′. (𝑒𝑒′′. 𝑒𝑒𝛼𝛼′′),𝑎𝑎′〉 

 = lim
𝛼𝛼
〈𝑥𝑥′′. 𝑒𝑒𝛼𝛼′′,𝑎𝑎′〉 = 〈𝑥𝑥′′,𝑎𝑎′〉. 

 
It follows that 𝑥𝑥′′. 𝑒𝑒′′ = 𝑥𝑥′′ , and so 𝑒𝑒′′  is a right identity for 𝐸𝐸⊥ . 

Consequently, 𝑒𝑒′′ is a two-sided identity for 𝐸𝐸⊥. Now, let 𝑎𝑎′′ ∈ 𝐴𝐴∗∗. Then  
 𝑒𝑒′′.𝑎𝑎′′ = (𝑒𝑒′′.𝑎𝑎′′). 𝑒𝑒′′ = 𝑒𝑒′′. (𝑎𝑎′′. 𝑒𝑒′′) = 𝑎𝑎′′. 𝑒𝑒′′. 

Hence 𝑒𝑒′′ ∈ 𝑍𝑍1(𝐴𝐴∗∗) = 𝐴𝐴. It follows that 𝑒𝑒′′ = 0, and so 𝐸𝐸⊥ = 0. This implies 
that 𝐴𝐴∗∗ = 𝐴𝐴.  
 
Example 3.3. Let 𝐺𝐺 be a locally compact group. If 𝑀𝑀(𝐺𝐺)∗∗ is amenable, then by 
Theorem 3(ii), because 𝐶𝐶0(𝐺𝐺)∗ = 𝑀𝑀(𝐺𝐺), we conclude that 𝑀𝑀(𝐺𝐺) is reflexive. This 
means that 𝐺𝐺 is a finite group, moreover see [12, Corollary 1.4].  
 

Acknowledgment 
We would like to thank the referee for her/his careful reading of our paper 

and many valuable suggestions. 

R E F E R E N C E S 

[1] R. E. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc., 2 (1951), No. 6, 839-
848.  

[2] W. G. Bade, P. C. Curtis and H. G. Dales, Amenability and weak amenability for Beurling and 
Lipschitz algebras, Proc. London Math. Soc., 55 (1987), No. 3, 359-377.  

[3] A. Bagheri Vakilabad, K. Haghnejad Azar and A. Jabbari, Arens regularity of module actions 
and weak amenability of Banach algebras, Period. Math. Hung., 71 (2015), No. 2, 224-235.  

[4] A. Connes, Classification of injective factors, Ann. Math.,  104 (1976),73-114.  



224               Kazem Haghnejad Azar, Ali Jabbari, Hossein Eghbali Sara 

[5] J. B. Conway, A course in functional analysis, Springer-Verlag, New York, 1985.  
[6] H. G. Dales, Banach algebra and automatic continuity, Oxford 2000. 
[7] H. G. Dales, A. Rodr13�053′𝑓𝑓gues-Palacios and M. V. Velasco, The second transpose of a 

derivation, J. London. Math. Soc., 64 (2001), No. 2, 707-721. 
[8] A. Ebadian and A. Jabbari, Weak ∗-continuous derivations on module extension of dual Banach 

algebras, South. Asian Bull. Math., 39 (2015), No. 3, 347â€“363.  
[9] M. Eshaghi Gordji and M. Filali, Arens regularity of module actions, Studia Math., 181 (2007), 

No. 3, 237-254.  
[10] M. Eshaghi Gordji and M. Filali, Weak amenability of the second dual of a Banach algebra, 

Studia Math., 182 (2007), No. 3, 205-213.  
[11] F. Ghahramani and J. Laali, Amenability and topological centers of the second duals of Banach 

algebras, Bull. Austral. Math. Soc., 65 (2002), 191-197.  
[12] F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability of second 

conjugate Banach algebras, Proc. Amer. Math. Soc.,  129 (1996), 1489-1497.  
[13] F. Gourdeau, Amenability and the second dual of a Banach algebra, Studia Math., 125 (1997), 

No. 1, 75-81.  
[14] A. Jabbari, On ideal amenability of Banach algebras, J. Math. Physics, Analysis, Geometry, 8 

(2012), No. 2, 135-143.  
[15] B. E. Johnson, Cohomology in Banach algebra, Mem. Amer. Math. Soc.,  127, 1972. 
[16] B. E. Johnson, Weak amenability of group algebra, Bull. London. Math. Soc., 23 (1991), No. 

3, 281-284. 
[17] B. E. Johnson, R. V. Kadison, and J. Ringrose, Cohomology of operator algebras, III, Bull. Soc. 

Math. France., 100 (1972),73-79. 
[18] A. Ya. Helemskii, Homological essence of amenability in the sense of A. Connes: the injectivity 

of the predual bimodule (traslated from the Russian), Math.USSR-Sb, 68 (1991), 555-566. 
[19] A. T. Lau and A. Ülger, Topological center of certain dual algebras, Trans. Amer. Math. Soc., 

348 (1996), 1191-1212. 
[20] V. Losert, The derivation problem for group algebra, Ann. Math., 168 (2008), 221-246.  
[21] S. Mohamadzadih and H. R. E. Vishki, Arens regularity of module actions and the second 

adjoint of a derivation, Bull. Aust. Math. Soc.,  77 (2008), 465-476.  
[22] H. Reiter, L 𝑙𝑙-algebras and Segal algebras, Lecture notes in Mathematics, Vol. 231, Springer, 

Berlin, 1971.  
[23] H. Reiter and J. D. Stegeman, Classical harmonic analysis and locally compact groups, London 

Math. Soc. Mono. Ser. Vol. 22, Oxford, 2000. 
[24] V. Runde, Amenability for dual Banach algebras, Studia Math., 148 (2001), 47-66.  
[25] V. Runde, Lectures on amenability, Lecture Note in Mathematics, Vol.  1774, Springer Verlag, 

2001. 
[26] A. Ülger,  Arens regularity of weakly sequentialy compact Banach algebras, Proc. Amer. Math. 

Soc., 127 (1999), No. 11, 3221-3227. 


	1. Introduction
	2. Weak, -∗.-weak, -∗. continuous derivations
	3. Representations of derivations and Arens regularity
	Acknowledgment

