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BOUNDS OF FRACTIONAL INTEGRAL OPERATORS CONTAINING

MITTAG-LEFFLER FUNCTION

Ghulam Farid1

Recently, an extended Mittag-Leffler function has been utilized in the ex-

tension of fractional integral operators. This paper investigates bounds of the generalized
fractional integral operators. The bounds of extended generalized fractional integral op-

erators are calculated by using (α,m)-convex functions. By fixing parameters involved

in the Mittag-Leffler function bounds of various well known fractional integral operators
have been obtained. Furthermore, Hadamard type inequalities have been established by

imposing an additional condition to a differentiable function f such that |f ′| is (α,m)-
convex.
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1. Introduction

Mittag-Leffler was a Swedish mathematician. In 1903, he introduced a function which
is now well known as Mittag-Leffler function [10]

Eα(z) =

∞∑
n=0

zn

Γ(αn+ 1)
; z ∈ C

where Γ(.) is the Gamma function and α ∈ C,<(α) > 0.
Mittag-Leffler function arises in the solution of fractional order differential and integral

equations same as exponential function appears in the solution of integer order differential
equations. In the recent past, due to rapid development in the subject of fractional calculus,
the Mittag-Leffler function gets much importance and fame on account of its wide applica-
tions in the diverse fields of sciences. For the last two decades scientist and engineers have
paid their great interest in this function due to its wide applications in various problems of
applied nature such as; fluid flow, control systems, electric networks, archeology, statistical
distribution. For a detailed and comprehensive study of this function and its further conse-
quences, readers are suggested [6] and references therein.

Recently, in [1] Andrić et al. defined an extended generalized Mittag-Leffler function

Eγ,δ,k,cµ,σ,l (.; p) as follows:

Definition 1.1. [1, p. 1381, Eq. (2.8)] Let µ, σ, l, γ, c ∈ C, <(µ),<(σ),<(l) > 0, <(c) >
<(γ) > 0 with p ≥ 0, δ > 0 and 0 < k ≤ δ + <(µ). Then the extended generalized Mittag-
Leffler function is defined by

Eγ,δ,k,cµ,σ,l (t; p) =

∞∑
n=0

βp(γ + nk, c− γ)

β(γ, c− γ)

(c)nk
Γ(µn+ σ)

tn

(l)nδ
, (1)
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where βp is the generalized beta function defined as follows:

βp(x, y) =

∫ 1

0

tx−1(1− t)y−1e−
p

t(1−t) dt

and (c)nk is the Pochhammer symbol, (c)nk = Γ(c+nk)
Γ(c) .

Lemma 1.1. [1, p. 1384, Eq. (2.12)] If m ∈ N, ω, µ, α, l, γ, c ∈ C,<(µ),<(α),<(l) >
0,<(c) > <(γ) > 0 with p ≥ 0, δ > 0 and 0 < k < δ + <(µ), then(

d

dt

)m
[tα−1Eγ,δ,k,cµ,α,l (ωtµ; p)] = tα−m−1Eγ,δ,k,cµ,α−m,l(ωt

µ; p) <(α) > m. (2)

Remark 1.1. (1) is a generalization of the following functions:

(i) setting p = 0, it reduces to the Salim-Faraj function Eγ,δ,k,cµ,σ,l (t) defined in [13, p. 2, Eq.

(6)],
(ii) setting l = δ = 1, it reduces to the function Eγ,k,cµ,σ (t; p) defined by Rahman et al. in [12,
p. 4247, Eq. (2.1)],
(iii) setting p = 0 and l = δ = 1, it reduces to the Shukla-Prajapati function Eγ,kµ,σ(t) defined
in [15, p. 798, Eq. (1.4)] see also [16, p. 3, Eq. (1.13)],
(iv) setting p = 0 and l = δ = k = 1, it reduces to the Prabhakar function Eγµ,σ(t) defined in
[11, p. 7, Eq. (1.3)].

The corresponding left-sided and right-sided generalized fractional integral operators

εγ,δ,k,cµ,σ,l,ω,a+f and εγ,δ,k,cµ,σ,l,ω,b−f are defined as follows:

Definition 1.2. [1, p. 1385, Eq. (2.13)] Let ω, µ, σ, l, γ, c ∈ C, <(µ),<(σ),<(l) > 0,
<(c) > <(γ) > 0 with p ≥ 0, δ > 0 and 0 < k ≤ δ + <(µ). Let f ∈ L1[a, b] and x ∈ [a, b].
Then the generalized fractional integral operators are defined by:(

εγ,δ,k,cµ,σ,l,ω,a+f
)

(x; p) =

∫ x

a

(x− t)σ−1Eγ,δ,k,cµ,σ,l (ω(x− t)µ; p)f(t)dt, (3)

(
εγ,δ,k,cµ,σ,l,ω,b−f

)
(x; p) =

∫ b

x

(t− x)σ−1Eγ,δ,k,cµ,σ,l (ω(t− x)µ; p)f(t)dt. (4)

Remark 1.2. (3) and (4) are the generalizations of the following fractional integral opera-
tors:
(i) setting p = 0, they reduce to the fractional integral operators defined by Salim-Faraj in
[13, p. 2, Eq. (8)],
(ii) setting l = δ = 1, they reduce to the fractional integral operators defined by Rahman et
al. in [12, p. 4247, Eq. (2.2)],
(iii) setting p = 0 and l = δ = 1, they reduce to the fractional integral operators defined by
Srivastava-Tomovski in [16, p. 5, Eq. (2.12)],
(iv) setting p = 0 and l = δ = k = 1, they reduce to the fractional integral operators defined
by Prabhakar in [11, p. 7, Eqs. (1.2) and (1.4)],
(v) setting p = ω = 0, they reduce to the left-sided and right-sided Riemann-Liouville frac-
tional integrals.

Fractional integral and differential operators have played a key role in the development
of the theory and applications of fractional differential equations and other subjects of
sciences and engineering. In [1], several properties of the extended generalized Mittag-
Leffler function and corresponding generalized fractional operators have been studied. In
particular in [5], it is noted that(

εγ,δ,k,cµ,σ,l,ω,a+1
)

(x; p) = (x− a)σEγ,δ,k,cµ,σ+1,l(w(x− a)µ; p) (5)
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εγ,δ,k,cµ,τ,l,ω,b−1

)
(x; p) = (b− x)τEγ,δ,k,cµ,τ+1,l(w(b− x)µ; p). (6)

Furthermore, the following notations have been used:

Cσω,a+(x; p) =
(
εγ,δ,k,cµ,σ,l,ω,a+1

)
(x; p) (7)

Cτω,b−(x; p) =
(
εγ,δ,k,cµ,τ,l,ω,b−1

)
(x; p). (8)

These notations will be also used frequently in this paper.
After introducing the extended Mittag-Lefller function and corresponding fractional integral
operators, in the following convex function, and one of its generalization named (α,m)-
convex function are given:

Definition 1.3. Let I ba an interval of real numbers. Then a function f : I → R is said to
be convex, if the following inequality holds:

f(ta+ (1− t)b) ≤ tf(a) + (1− t)f(b),

for all a, b ∈ I and t ∈ (0, 1).

Definition 1.4. [9] A function f : [0, b] ⊂ R→ R, b > 0 is said to be (α,m)-convex, where
(α,m) ∈ [0, 1]2, if the following inequality holds:

f(tx+m(1− t)y) ≤ tαf(x) +m(1− tα)f(y), (9)

for all x, y ∈ [0, b] and t ∈ (0, 1).

Remark 1.3. (i) If (α,m) = (1,m), then (9) provides the definition of m-convex function.
(ii) If (α,m) = (1, 1), then (9) provides the definition of convex function.
(iii) If (α,m) = (1, 0), then (9) provides the definition of star-shaped function.

Convex functions have proved a catalyst in the development of various subjects of
pure and applied fields of mathematics and statistics, like optimization theory, mathematical
analysis, functional analysis, graph theory, probability etc. A convex function is also defined
equivalently by the well known Hadamard inequality. The Hadamard inequality has been
studied by various researchers using generalized convex functions. For example, for (α,m)-
convex functions see [2, 7, 14, 17]. We are interested to produce a generalized fractional
integral inequality of Hadamard type for (α,m)-convex functions (see Theorem 2.3) and
study its special cases.

The aim of this research is to establish the bounds of fractional integrals defined in
Definition 1.2. For getting these bounds, the definition of (α,m)-convex function has been
utilized. By the simultaneous use of Definition 1.2 and (α,m)-convexity, the obtained results
are much general and provide the all possible outcomes of fractional integrals (deduced in
Remark 1.2) and functions (deduced in Remark 1.3).
The rest of the paper is organized as follows:

In Section 2, the first result provides the bounds of fractional integral operators defined
in (3) and (4) for (α,m)-convex functions and further their consequences are discussed. Then
by using (α,m)-convexity of a differentiable function f in absolute (i.e. |f ′| is (α,m)-convex),
bounds of fractional integrals in modulus form are established and some implications are
identified. The last result of Section 2 provides estimations of Hadamard type which produce
some interesting Hadamard type fractional inequalities. In Section 3, the present research
has been concluded.

2. Bounds of generalized fractional integral operators via (α,m)-convex
function

Firstly, bounds of sum of left and right generalized fractional operators (3) and (4)
are studied as follows:
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Theorem 2.1. Let f : [a, b] −→ R, a < b, be a real valued function. If f is positive and
(α,m)-convex, then for (α,m) ∈ [0, 1]× (0, 1], the following fractional inequality holds:(

εγ,δ,k,cµ,σ,l,ω,a+f
)

(x; p) +
(
εγ,δ,k,cµ,τ,l,ω,b−f

)
(x; p) (10)

≤ 1

α+ 1

(
(x− a)Cσ−1

ω,a+(x; p)f(a) + (b− x)Cτ−1
ω,b−(x; p)f(b)

+αmf
( x
m

)(
(x− a)Cσ−1

ω,a+(x; p) + (b− x)Cτ−1
ω,b−(x; p)

))
for all x ∈ (a, b) and σ, τ ≥ 1.

Proof. By applying (α,m)-convexity of the function f , the following inequality can be ob-
tained:

f(t) ≤
(
x− t
x− a

)α
f(a) +m

(
1−

(
x− t
x− a

)α)
f
( x
m

)
. (11)

For x ∈ [a, b] and σ > 1, the following inequality holds true:

(x− t)σ−1Eγ,δ,k,cµ,σ,l (ω(x− t)µ; p) ≤ (x− a)σ−1Eγ,δ,k,cµ,σ,l (ω(x− a)µ; p), t ∈ [a, x]. (12)

From (11) and (12), one can obtain the following integral inequality:∫ x

a

(x− t)σ−1Eγ,δ,k,cµ,σ,l (ω(x− t)µ; p)f(t)dt

≤ (x− a)σ−1Eγ,δ,k,cµ,σ,l (ω(x− a)µ; p)

(
f(a)

∫ x

a

(
x− t
x− a

)α
dt

+mf
( x
m

)∫ x

a

(
1−

(
x− t
x− a

)α)
dt

)
, x ∈ (a, b).

By using (3) of Definition 1.2, (5) and (7), bound of left fractional operator (3) is obtained(
εγ,δ,k,cµ,σ,l,ω,a+f

)
(x; p) ≤ (x− a)Cσ−1

ω,a+(x; p)

(
f(a) + αmf

(
x
m

)
α+ 1

)
. (13)

Again by using (α,m)-convexity of the function f , the following inequality can be obtained:

f(t) ≤
(
t− x
b− x

)α
f(b) +m

(
1−

(
t− x
b− x

)α)
f
( x
m

)
. (14)

Further for x ∈ [a, b] and τ > 1, the following inequality holds true:

(t− x)τ−1Eγ,δ,k,cµ,τ,l (ω(t− x)µ; p) ≤ (b− x)τ−1Eγ,δ,k,cµ,τ,l (ω(b− x)µ; p), t ∈ [x, b]. (15)

From (14) and (15), one can obtain the following integral inequality:∫ b

x

(t− x)τ−1Eγ,δ,k,cµ,τ,l (ω(t− x)µ; p)f(t)dt

≤ (b− x)τ−1Eγ,δ,k,cµ,τ,l (ω(b− x)µ; p)

(
f(b)

∫ b

x

(
t− x
b− x

)α
dt

+mf
( x
m

)∫ b

x

(
1−

(
t− x
b− x

)α)
dt

)
.

By using (4) of Definition 1.2, (6) and (8), bound of right fractional operator (4) is obtained(
εγ,δ,k,cµ,τ,l,ω,b−f

)
(x; p) ≤ (b− x)Cτ−1

ω,b−(x; p)

(
f(b) + αmf

(
x
m

)
α+ 1

)
. (16)

By adding (13) and (16), bound required in (10) can be achieved. �
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Corollary 2.1. If σ = τ in (10), then we get the following fractional inequality:(
εγ,δ,k,cµ,σ,l,ω,a+f

)
(x; p) +

(
εγ,δ,k,cµ,σ,l,ω,b−f

)
(x; p) (17)

≤ 1

α+ 1

(
(x− a)Cσ−1

ω,a+(x; p)f(a) + (b− x)Cσ−1
ω,b−(x; p)f(b)

+αmf
( x
m

)(
(x− a)Cσ−1

ω,a+(x; p) + (b− x)Cσ−1
ω,b−(x; p)

))
.

Remark 2.1. (i) By setting ω = p = 0 and α = m = 1 in (10), one can obtain [4, Theorem
1].
(ii) By setting ω = p = 0 and α = m = 1 in (17), one can obtain [4, corollary 1].

In the next result, bounds of sum of left and right fractional operators (3) and (4) are
studied in modulus form.

Theorem 2.2. Let f : [a, b] −→ R, a < b, be a real valued function. If f is differentiable
and |f ′| is (α,m)-convex, then for (α,m) ∈ [0, 1] × (0, 1], the following fractional integral
inequality holds:∣∣∣(εγ,δ,k,cµ,σ−1,l,ω,a+f

)
(x; p) +

(
εγ,δ,k,cµ,τ−1,l,ω,b−f

)
(x; p) (18)

−
(
Cσ−1
ω,a+(x; p)f(a) + Cτ−1

ω,b−(x; p)f(b)
)∣∣∣

≤ 1

α+ 1

(
(x− a)Cσ−1

ω,a+(x; p)|f ′(a)|+ (b− x)Cτ−1
ω,b−(x; p)|f ′(b)|

+αm
∣∣∣f ′ ( x

m

)∣∣∣ ((x− a)Cσ−1
ω,a+(x; p) + (b− x)Cτ−1

ω,b−(x; p)
))

for all x ∈ (a, b) and σ, τ ≥ 1.

Proof. By using (α,m)-convexity of the function |f ′|, it follows that:

|f ′(t)| ≤
(
x− t
x− a

)α
|f ′(a)|+m

(
1−

(
x− t
x− a

)α) ∣∣∣f ′ ( x
m

)∣∣∣ . (19)

From (19), one can obtain

f ′(t) ≤
(
x− t
x− a

)α
|f ′(a)|+m

(
1−

(
x− t
x− a

)α) ∣∣∣f ′ ( x
m

)∣∣∣ . (20)

From (12) and (20), one can obtain the following integral inequality:∫ x

a

(x− t)σ−1Eγ,δ,k,cµ,σ,l (ω(x− t)µ; p)f ′(t)dt (21)

≤ (x− a)σ−1Eγ,δ,k,cµ,σ,l (ω(x− a)µ; p)

(
|f ′(a)|

∫ x

a

(
x− t
x− a

)α
dt

+m
∣∣∣f ′ ( x

m

)∣∣∣ ∫ x

a

(
1−

(
x− t
x− a

)α)
dt

)
= (x− a)σEγ,δ,k,cµ,σ,l (ω(x− a)µ; p)

(
|f ′(a)|+ αm

∣∣f ′ ( xm)∣∣
α+ 1

)
.

The left hand side calculated as follows:∫ x

a

(x− t)σ−1Eγ,δ,k,cµ,σ,l (ω(x− t)µ; p)f ′(t)dt (22)
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by putting x− t = u, that is t = x− u, and applying the derivative property (2) of Mittag-
Leffler function, one obtains∫ x−a

0

uσ−1Eγ,δ,k,cµ,σ,l (ωuµ; p)f ′(x− u)du

= −(x− a)σ−1Eγ,δ,k,cµ,σ,l (ω(x− a)µ; p)f(a) +

∫ x−a

0

uσ−2Eγ,δ,k,cµ,σ−1,l(ωu
µ; p)f(x− u)du.

Using the change of variable x − u = t, in the second term on the right hand side of the
above equality, by (3) one obtains∫ x−a

0

uσ−1Eγ,δ,k,cµ,σ,l (ωuµ; p)f ′(x− u)du

=
(
εγ,δ,k,cµ,σ−1,l,ω,a+f

)
(x; p)− (x− a)σ−1Eγ,δ,k,cµ,σ,l (ω(x− a)µ; p)f(a).

Therefore, by using (5) and (7), (21) takes the following form:(
εγ,δ,k,cµ,σ−1,l,ω,a+f

)
(x; p)− Cσ−1

ω,a+(x; p)f(a) (23)

≤ (x− a)Cσ−1
ω,a+(x; p)

(
|f ′(a)|+ αm

∣∣f ′ ( xm)∣∣
α+ 1

)
.

Also from (19), one can obtain

f ′(t) ≥ −
((

x− t
x− a

)α
|f ′(a)|+m

(
1−

(
x− t
x− a

)α) ∣∣∣f ′ ( x
m

)∣∣∣) . (24)

Following the same procedure as we did for (20), the following inequality can be obtained:

Cσ−1
ω,a+(x; p)f(a)−

(
εγ,δ,k,cµ,σ−1,l,ω,a+f

)
(x; p) (25)

≤ (x− a)Cσ−1
ω,a+(x; p)

(
|f ′(a)|+ αm

∣∣f ′ ( xm)∣∣
α+ 1

)
.

From (23) and (25), the following modulus inequality can be obtained:∣∣∣(εγ,δ,k,cµ,σ−1,l,ω,a+f
)

(x; p)− Cσ−1
ω,a+(x; p)f(a)

∣∣∣ (26)

≤ (x− a)Cσ−1
ω,a+(x; p)

(
|f ′(a)|+ αm

∣∣f ′ ( xm)∣∣
α+ 1

)
.

By using (α,m)-convexity of |f ′|, the following inequality can be obtained:

|f ′(t)| ≤
(
t− x
b− x

)α
|f ′(b)|+m

(
1−

(
t− x
b− x

)α) ∣∣∣f ′ ( x
m

)∣∣∣ . (27)

On the same lines as we have done for (12), (20) and (24), one can obtain from (15) and
(27), the following modulus inequality:∣∣∣(εγ,δ,k,cµ,τ−1,l,ω,b−f

)
(x; p)− (b− x)τ−1Eγ,δ,k,cµ,τ,l (ω(b− x)µ; p)f(b)

∣∣∣ (28)

≤ (b− x)Cτ−1
ω,b−(x; p)

(
|f ′(b)|+ αm

∣∣f ′ ( xm)∣∣
α+ 1

)
.

From inequalities (26) and (28) via triangular inequality, (18) can be achieved. �

In the following corollary and remark consequences of above theorem have been dis-
cussed in detail:
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Corollary 2.2. If σ = τ in (18), then we get the following fractional inequality:∣∣∣(εγ,δ,k,cµ,σ−1,l,ω,a+f
)

(x; p) +
(
εγ,δ,k,cµ,σ−1,l,ω,b−f

)
(x; p) (29)

−
(
Cσ−1
ω,a+(x; p)f(a) + Cσ−1

ω,b−(x; p)f(b)
)∣∣∣

≤ 1

α+ 1

(
(x− a)Cσ−1

ω,a+(x; p)|f ′(a)|+ (b− x)Cσ−1
ω,b−(x; p)|f ′(b)|

+αm
∣∣∣f ′ ( x

m

)∣∣∣ ((x− a)Cσ−1
ω,a+(x; p) + (b− x)Cσ−1

ω,b−(x; p)
))

.

Remark 2.2. (i) By setting ω = p = 0, α = m = 1, and replacing σ with σ + 1 in (18),
one can obtain [4, Theorem 2].
(ii) By setting ω = p = 0, α = m = 1 and replacing σ with σ+ 1 in (29), one can obtain [4,
Corollary 4].
(iii) By setting ω = p = 0, σ = α = m = 1 and x = a+b

2 , in (29), one can obtain [4,
Corollary 5].
(iv) By setting ω = p = 0, σ = 1 in (29), and f ′ passes through x = a+b

2 , one can obtain [3,
Theorem 2.2].

For the sake of Hadamard type bounds of generalized fractional operators, the fol-
lowing lemma is useful.

Lemma 2.1. Let f : [0,∞) → R be a (α,m)-convex function. If f(x) = f
(
a+b−x
m

)
, then

the following inequality holds:

f

(
a+ b

2

)
≤ 1

2α
(1 +m(2α − 1))f(x) x ∈ [a, b]. (30)

Theorem 2.3. Let f : [a, b] −→ R, a < b, be a real valued function. If f is positive, (α,m)-
convex and f(x) = f

(
a+b−x
m

)
, then for (α,m) ∈ [0, 1]× (0, 1], the following inequality holds:

2α

(1 +m(2α − 1))
f

(
a+ b

2

)(
Cτ+1,b−(a; p) + Cσ+1,a+(b; p)

)
(31)

≤
(
εγ,δ,k,cµ,τ+1,l,ω,b−f

)
(a; p) +

(
εγ,δ,k,cµ,σ+1,l,ω,a+f

)
(b; p)

≤ (b− a)2
(
Cτ−1,b−(a; p) + Cσ−1,a+(b; p)

)(f(a) + αmf
(
b
m

)
α+ 1

)
for all x ∈ [a, b] and σ, τ > 0.

Proof. By using (α,m)-convexity of the function f , the following inequality can be obtained:

f(x) ≤
(
b− x
b− a

)α
f(a) +m

(
1−

(
b− x
b− a

)α)
f

(
b

m

)
. (32)

For x ∈ [a, b] and τ > 0, the following inequality holds true:

(x− a)τEγ,δ,k,cµ,τ,l (ω(x− a)µ; p) ≤ (b− a)τEγ,δ,k,cµ,τ,l (ω(b− a)µ; p). (33)

From (32) and (33), one can obtain the following integral inequality:∫ b

a

(x− a)τEγ,δ,k,cµ,τ,l (ω(x− a)µ; p)f(x)dx

≤ (b− a)τEγ,δ,k,cµ,τ,l (ω(b− a)µ; p)

(
f(a)

∫ b

a

(
b− x
b− a

)α
dx

+mf

(
b

m

)∫ b

a

(
1−

(
b− x
b− a

)α)
dx

)
.
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By using (4) of Definition 1.2, (6) and (8), the following bound of right fractional operator
is obtained:(

εγ,δ,k,cµ,τ+1,l,ω,b−f
)

(a; p) ≤ (b− a)2Cτ−1,b−(a; p)

(
f(a) + αmf

(
b
m

)
α+ 1

)
. (34)

Now for x ∈ [a, b] and σ > 0, the following inequality holds true:

(b− x)σEγ,δ,k,cµ,σ,l (ω(b− x)µ; p) ≤ (b− a)σEγ,δ,k,cµ,σ,l (ω(b− a)µ; p). (35)

From (32) and (35), one can obtain the following integral inequality:∫ b

a

(b− x)σEγ,δ,k,cµ,σ,l (ω(b− x)µ; p)f(x)dx

≤ (b− a)σEγ,δ,k,cµ,σ,l (ω(b− a)µ; p)

(
f(a)

∫ b

a

(
b− x
b− a

)α
dx

+mf

(
b

m

)∫ b

a

(
1−

(
b− x
b− a

)α)
dx

)
.

By using (3) of Definition 1.2, (5) and (7), the following bound of left fractional operator is
obtained: (

εγ,δ,k,cµ,σ+1,l,ω,a+f
)

(b; p) ≤ (b− a)2Cσ−1,a+(b; p)

(
f(a) + αmf

(
b
m

)
α+ 1

)
. (36)

By adding (34) and (36), following bound for sum of left and right fractional operators holds:(
εγ,δ,k,cµ,τ+1,l,ω,b−f

)
(a; p) +

(
εγ,δ,k,cµ,σ+1,l,ω,a+f

)
(b; p) (37)

≤ (b− a)2
(
Cτ−1,b−(a; p) + Cσ−1,a+(b; p)

)(f(a) + αmf
(
b
m

)
α+ 1

)
.

Multiplying (30) with (x− a)τEγ,δ,k,cµ,τ,l (ω(x− a)µ; p), one can obtain

f

(
a+ b

2

)∫ b

a

(x− a)τEγ,δ,k,cµ,τ,l (ω(x− a)µ; p)dx (38)

≤ 1

2α
(1 +m(2α − 1))

∫ b

a

(x− a)τEγ,δ,k,cµ,τ,l (ω(x− a)µ; p)f(x)dx.

By using (4) and (8), one can obtain a bound for right fractional operator

2α

(1 +m(2α − 1))
f

(
a+ b

2

)
Cτ+1,b−(a; p) ≤

(
εγ,δ,k,cµ,τ+1,l,ω,b−f

)
(a; p). (39)

Multiplying (30) with (b − x)σEγ,δ,k,cµ,σ,l (ω(b − x)µ; p), and then integrating over [a, b], and

using (3), one can obtain the bound for left fractional operator:

2α

(1 +m(2α − 1))
f

(
a+ b

2

)
Cσ+1,a+(b; p) ≤

(
εγ,δ,k,cµ,σ+1,l,ω,a+f

)
(b; p). (40)

By adding (39) and (40), the bound for sum of fractional operators is obtained:

2α

(1 +m(2α − 1))
f

(
a+ b

2

)(
Cτ+1,b−(a; p) + Cσ+1,a+(b; p)

)
(41)

≤
(
εγ,δ,k,cµ,τ+1,l,ω,b−f

)
(a; p) +

(
εγ,δ,k,cµ,σ+1,l,ω,a+f

)
(b; p).

From inequalities (37) and (41), inequality (31) can be achieved. �
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Corollary 2.3. If σ = τ in (31), then we get the following fractional inequality:

2α

(1 +m(2α − 1))
f

(
a+ b

2

)(
Cσ+1,b−(a; p) + Cσ+1,a+(b; p)

)
(42)

≤
(
εγ,δ,k,cµ,σ+1,l,ω,b−f

)
(a; p) +

(
εγ,δ,k,cµ,σ+1,l,ω,a+f

)
(b; p)

≤ (b− a)2
(
Cσ−1,b−(a; p) + Cσ−1,a+(b; p)

)(f(a) + αmf
(
b
m

)
α+ 1

)
.

Remark 2.3. (i) By setting ω = p = 0 and α = m = 1 in (31), one can obtain [4, Theorem
3].
(ii) By setting ω = p = 0, α = m = 1 in (42), one can obtain [4, Corollary 6].
(iii) By taking σ → 0, ω = p = 0 and α = m = 1, one can obtain the Hadamard inequality.

3. Concluding Remarks

The results obtained in this work provide bounds of various fractional integral oper-
ators simultaneously, which have been independently defined by various authors of recent
decades. For example in Theorem 2.1 selecting p = 0, bounds for fractional integral oper-
ators defined by Salim and Faraj in [13], selecting l = δ = 1, bounds for fractional integral
operators defined by Rahman et al. in [12], selecting p = 0 and l = δ = 1, bounds for frac-
tional integral operators defined by Shukla and Prajapati in [15] and see also [16], selecting
p = 0 and l = δ = k = 1, bounds for fractional integral operators defined by Prabhakar
in [11], selecting p = ω = 0, bounds for Riemann-Liouville fractional integrals are achieved
for (α,m)-convex, m-convex, convex, star-shaped functions. Moreover, Theorems 2.2 and
2.3 are applicable for all fractional integrals comprised in Remark 1.2 and for all functions
comprised in Remark 1.3.
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