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APPLICATION-AWARE ESTIMATION OF THE JUNCTION
TEMPERATURE SWING UNDER ACTIVE CYCLING

Ciprian V. Pop1, Andi Buzo2, Cristian Diaconu3, Georg Pelz4, Horia Cucu5

, Corneliu Burileanu6

This paper presents a methodology for application-aware estimation
of the junction temperature swing of smart power devices under active cy-
cling, based on electro-thermal simulation. According to the most known
lifetime model, i.e. the Coffin-Manson law, the maximum junction temper-
ature swing within a fast thermal cycle (∆T ) represents the main stress-
factor of the lifetime. Consequently, for application-aware lifetime estima-
tion of power devices an important step is to estimate ∆T in the space of
application operating conditions. The proposed application-aware ∆T model
is fitted from data on a grid of electro-thermal simulations based on esti-
mated power profiles over a wide space of operating conditions. The model
is validated on electro-thermal simulation data based on the power profiles
corresponding to the active cycling experimental scenarios, showing a maxi-
mum unsigned relative prediction error of 6.56%. With the proposed model,
the dependencies of ∆T with the operating parameters can be observed and
predictions on different application operating conditions can be done.

Keywords: active cycling, junction temperature swing, lifetime estima-
tion, reliability, smart power devices.

1. Introduction

The reliability assessment of power devices is an essential concern. In
automotive, for instance, very strong safety regulations are imposed and “zero
defects” on the entire vehicle’s life are required. On the other hand, as the
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power products are used in many different applications, the lifetime estimation
of the power devices is required in the space of application operating conditions.

According to the classical Coffin-Manson lifetime model [1], presented
in (1), the maximum junction temperature swing within a fast thermal cycle
(∆T ) is the main stress-factor of the lifetime. So, for estimation of the lifetime
at different operating conditions, an important step is to analyse and model
the ∆T in the space of application operating conditions (application-aware).

Nf ∼ [∆T ]−q (1)

where: Nf is the lifetime (expressed in Cycles-To-Failure), ∆T represents the
maximum junction temperature swing and q is a constant. In logarithm, this
relation shows a linear dependence of the lifetime with ∆T .

In general, a limited amount of reliability data is available. Consequently,
it is not possible to develop a complex and accurate ∆T model directly from
the available active cycling scenarios.

The goal of this research is to develop a methodology for application-
aware estimation of ∆T (estimation that depends on the application operating
conditions), based on data from a grid of electro-thermal simulations performed
in the space of the operating conditions. For that, the power profiles param-
eters required for the electro-thermal simulations are modeled in the space of
operating conditions, based on the power pulses parameters corresponding to
the active cycling scenarios. The electro-thermal simulations corresponding to
different power profiles are performed based on the methodology described in
[2]. The presented methodology is applied on smart power devices comprising
DMOS (double-diffused MOS) structures.

The paper is organized as follows: Section 2 presents an overview of
the related work, the description of the proposed methodology is provided
in Section 3, then Section 4 describes how the methodology is applied and
provides the results. In Section 5 the conclusions are drawn.

2. Related Work

In the literature, there are several methods for measurement or estima-
tion of ∆T . We present the features and limitations of the most widespread
and practical solutions. An analytical approach is proposed in [3], where ∆T in
DMOS corresponding to a triangular-shape power pulse is estimated with 2.

∆Tpeak =
Ppeak · ktherm

ADMOS

·
√

2

3
·
√

tpulse (2)

where: Ppeak is the power pulse peak amplitude, ktherm represents a material
coefficient, ADMOS is DMOS active area and tpulse is the power pulse duration.
The model was used for power switches in mixed bipolar-CMOS-DMOS (BCD)
technology, with a prediction accuracy of 10%. The main limitation of this
method is that it is valid only for short pulses and moderate temperature rise.
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Other methods are based on thermal imaging. The works [4, 5] present
the experimental results of dynamic thermal mapping based on a radiometric
2D measurement system. The measurement setup consists of a radiometric
microscope with a cooled InSb sensor, working in the first Infrared window. A
x-y step motor controlled by a PC is used for scanning of the mapped surface.

The main shortcoming of the thermal mapping system based on radio-
metric sensor is that the fast thermal transients cannot be acquired. Also, if a
high spatial resolution is required, the measurement time could be very long,
because of the point by point acquisition of the targeted grid area.

Another thermal mapping method, presented in [6, 7], is based on ther-
moreflectance measurement system, which measures the reflection coefficient
variation due to a temperature change in metals and semiconductors. This
method permits the analysis of fast thermal transients. However, the diffi-
culties in preparation of the samples and the complexity of the experimental
setup do not allow this thermal mapping system to be an easy-to-use solution.

The work [8] introduces a novel temperature mapping system using an
Infrared thermo-camera, capable to map ultrafast temperature transients dis-
tribution on power devices. In [9] the temperature measurements based on the
same system are compared with the results of Finite Elements Method (FEM)
thermal simulations, resulting less than 10% inaccuracies.

As in the case of previously presented systems based on Infrared sensors,
this approach has the problem of the emissivity contrast, due to the presence
of different metal and passivation layers. So, an initial stage for preparation
of the samples is required to overcome this problem. Moreover, when DMOS
structures consist of thick power metal on top the junction temperature is
obscured so, the Infrared measurements can not be used.

Other methods are based on temperature sensors. The approach pre-
sented in [10] estimates ∆T by means of the intrinsic body diode of MOSFETs.
For that, a specific test structure is required, in order to forward bias the body
diode, after applying the ramp power pulse. For estimation of ∆T of smart
power devices under repetitive clamping this approach is not proper because
the back body diode method does not actually provide the maximum ∆T , but
a weighted average temperature of the MOS. Moreover, the temperature mea-
surement within the energy pulse is not possible as the required forward current
for the back body diode cannot be provided within the clamping period.

A similar approach is presented in [11], where the parasitic n-p-n transis-
tor of DMOS power devices fabricated in BCD technology is used as temper-
ature sensor. Access to the sensor is gained by cutting the connection to the
n+ source region of one DMOS cell and connecting a dedicated terminal to the
emitter. The temperature is measured based on the voltage of the base-emitter
junction, while it is forward biased with a constant current by means of a dedi-
cated setup. Also, dedicated test structures were built and measured on wafer.
So, using this concept on a real assembled power device is not appropriate.
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3. The Proposed Approach

For estimation of the lifetime main stress-factor, i.e. the junction temper-
ature swing, in the space of application operating conditions (load current - IL,
ambient temperature - Tamb, repetitive energy - ER), the following ∆Tmodeling
methodology is proposed. Because the available data corresponding to the ac-
tive cycling scenarios are not enough for fitting an accurate model, the idea
is to fit the ∆T model from data on a grid of electro-thermal simulations,
performed in the space of the operating conditions.

First, the electro-thermal simulations corresponding to active cycling sce-
narios are performed, based on the methodology described in [2]. As inputs,
the electro-thermal simulator requires the power pulse corresponding to the
experimental power profile and the ambient temperature.

The parameters that characterize the power pulse within a fast thermal
cycle are extracted from the measurements corresponding to the active cycling
experiment. An example of the power pulse shape is presented in Fig. 1. The
power pulse is provided to the electro-thermal simulator in Piece-Wise Linear
(PWL) format. It consists of consecutive (time, power) pairs. For an optimal
compromise between the simulation time and the results accuracy, six (time,
power) pairs are considered in this case. They are the red points of the power
pulse, marked by letters (A - F) in Fig. 1. The points A and C correspond to
the moments when the power switch is turned on and off, respectively. The
point D corresponds to the peak power (Ppeak). E is the point when IL reaches
the zero value and the point F corresponds to the end of the cycle. The point
B is added only for improvement of the simulation accuracy.

Figure 1. The power pulse within a fast thermal cycle.
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From the electro-thermal simulations the maximum junction temperature
swings, defined as in (3), are determined.

∆T = Tpeak − Tmin (3)

where: Tpeak is the maximum junction temperature within one thermal cycle;
Tmin is the steady-state case temperature, from the end of the thermal cycle.

3.1. ∆T Modeling Methodology Flow

The methodology flow for ∆T modeling is presented in Fig. 2.
The first step consists in the extraction of the power profiles for all scenar-

ios of active cycling experiments and of the corresponding PWL parameters,
required for the electro-thermal simulations.

In the second step the electro-thermal simulations for the experimental
scenarios are performed as presented in the introductory part of this section,
resulting the corresponding ∆T values from DMOS.

Then, in order to run electro-thermal simulations in points of operating
conditions where no power pulse parameters are available from experimental
measurements, the PWL parameters required for the electro-thermal simula-
tions need to be modeled in the space of operating conditions. For that, based
on the PWL parameters of the experimental operating conditions scenarios,
data-driven models or analytical approximations for PWL parameters in the
space of operating conditions are built, in the third step.

Figure 2. The methodology flow for ∆T modeling.
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The forth step consists of generating the operating conditions grid (De-
sign of Experiments - DoE). On the resulted grid the PWL parameters (re-
quired for the electro-thermal simulations) are predicted with the models or
analytical approximations built in the previous step.

In step five, electro-thermal simulations on the grid in the space of op-
erating conditions are performed based on the estimated PWL parameters,
resulting the corresponding ∆T values.

The sixth step consists of fitting the ∆T model as a function of the
operating conditions, based on the grid data. Also, the model validation on the
training data set is done by means of leave-k-out and bootstrapping methods.

In step seven the ∆T model is evaluated on the experimental data. Also,
the maximum relative error is determined.

In the last step, the influences of the operating conditions on ∆T can
be observed and predictions of the junction temperature swing in the space of
application operating conditions can be made, based on the developed model.

The most important methodology stages will be described in details, in
the following subsections.

3.2. Estimation of PWL Parameters for Grid Data

For running electro-thermal simulations on a grid of operating condi-
tions, including in points where no power pulse parameters are available from
experimental measurements, the PWL parameters are estimated in the space
of operating conditions by means of direct data-driven models or analytically.

Switching-ON Time (tON) and Cool-Down Time (tcool−down). These two pa-
rameters depend on all operating conditions. Consequently, it has been chosen
to model them with metamodels of type interaction, as presented in 4, having
the operating conditions as factors. Apart from the main effects, this type of
metamodel takes into account also the interactions of the factors.

tx = c0+c1 ·IL+c2 ·Tamb+c3 ·ER+c12 ·IL ·Tamb+c13 ·IL ·ER+c23 ·Tamb ·ER (4)

The coefficients of the models are fitted from experimental data (the PWL
parameters of the experimental scenarios), with the least squares method.

Pulse Time (tpulse). The pulse time represents the clamping period. It can
be estimated from the approximation formula of the energy discharged (ER)
when the power switch is turned off. As ER is the integral of the triangle-shape
power pulse in clamping (see Fig. 1), tpulse is analytically approximated by 5:

tpulse ≈
2 · ER

Ppeak

≈ 2 · ER

IL · Vclamp

(5)

Switching Time (tswitching). It is very small in comparison with the others time
parameters. For this reason, it is considered constant and is computed as the
average of the switching times from all active cycling experiments scenarios.
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Intermediate Time (tintermediate). The intermediate point B on the power pulse
(see Fig. 1) is added only for improvement of the accuracy of the input power
pulse and, consequently, of the electro-thermal simulation. The intermediate
time is chosen at an arbitrary percentage from tON period.

Power Values. The power values in points A - F of the power pulse (see Fig. 1)
are given by the following relations: PA = PE = PF = 0; PD = Ppeak =
IL · Vclamp; PC and PB are estimated based of the average percentage of the
ON-period energy from the total energy (within the total cycle period).

3.3. Generating the Grid of Operating Conditions (DoE)

The DoE for the grid of operating conditions, where electro-thermal sim-
ulations will be performed, has to be done taking into account that ER can
not take any value at specified (IL, Tamb) operating conditions. For (IL, Tamb)
factors, a p2 full factorial design [12] can be used. For the 3rd factor (the
repetitive energy), a fixed set of values at different (IL, Tamb) pairs can not
be considered, because ER is limited by the value of the Single Pulse Energy
(EAS) corresponding to each (IL, Tamb) scenario. The solution is to build the
interaction model (6) of the maximum allowed ER in active cycling experi-
ments, as function of IL and Tamb, in order to predict the maximum ER value
for any (IL, Tamb) data-point. The rest ER values for each (IL, Tamb) data-point
are chosen relative to the predicted maximum ER.

ER−max = c0 + c1 · IL + c2 · Tamb + c12 · IL · Tamb (6)

where: the model coefficients (c0, c1, c2, c12) are extracted from the experimen-
tal data with the least squares method.

3.4. ∆T Model Fitting based on Grid Data

Based on the metamodels and approximations described in the subsec-
tion 3.2, a grid of power pulses in the space of operating conditions is gener-
ated. Then, electro-thermal simulations are performed on this grid, resulting
the corresponding ∆T values.

The model of ∆T in DMOS, having the operating conditions as factors,
is build by fitting from grid data the metamodel 7 (3rd order polynomial with
interactions).

∆T = c0 + c1IL + c2Tamb + c3ER + c4ILTamb + c5ILER + c6TambER + c7I
2
L +

+ c8T
2
amb + c9E

2
R + c10ILTambER + c11I

2
LTamb + c12I

2
LER + c13T

2
ambIL +

+ c14T
2
ambER + c15E

2
RIL + c16E

2
RTamb + c17I

3
L + c18T

3
amb + c19E

3
R

(7)

where: the coefficients c0 - c19 are extracted with the least squares method.
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3.5. ∆T Model Validation

With Leave-K-Out Method. The leave-k-out method is used for validation of
∆T model with the training data set (grid data). It consists in getting-out a
number (k) of data points from the available observations and fitting the model
based on the rest data points. Then, the model is evaluated on the left-out data
points and the corresponding prediction relative errors are computed. These
steps are repeated for all combinations of k data points, out of all available
ones. At the end, the maximum unsigned relative error is considered.

With Bootstrapping Method. The confidence interval of ∆T model prediction
is estimated with the bootstrapping technique. Instead of the original set of
observations, a bootstrapp sample is generated from the original data set by
randomly picking observations, with replacement. The size of the bootstrapp
sample is 1÷3 times the size of the original data set. Typically, a number
of 10 000 iterations are performed. The number of left-out observations for
each iteration is not fixed, but randomly chosen. The confidence limits are
computed from the histogram of the prediction relative errors, corresponding
to the desired confidence level (typically 95%).

On the Experimental Scenarios - based Electro-Thermal Simulations Data.
The model is also evaluated on the operating conditions of the active cycling
scenarios and the prediction relative errors of the corresponding ∆T values are
computed. Eventually, the maximum unsigned relative error is considered.

4. Experimental Results

4.1. Electro-Thermal Simulations on Active Cycling Scenarios

The active cycling experiments and the corresponding electro-thermal
simulations are performed as described in [2]. The active cycling experi-
ments are made on 12 different operating conditions scenarios, consisting of
5 (IL, Tamb) pairs, each on 2-3 values of ER. The load current takes values
from the device nominal current (INOM) to double of INOM . The ambient
temperatures are 5◦C , 45◦C and 85◦C .

The electro-thermal simulations are performed based on the power pro-
files extracted from the active cycling experiments.

4.2. The Application of the Proposed Methodology

Generating the Operating Conditions for Grid Data. The DoE for the
electro-thermal simulations on the grid of operating conditions consists in 125
data-points (5 values for each factor). In terms of (IL, Tamb) factors, a 52 (2
factors, each at 5 levels) full factorial design is used. IL takes equally-spaced
values from the nominal current (INOM) to the double of INOM . For each value
of the current, the ambient temperature takes values from 5◦C to 85◦C, with
an increment of 20◦C. For ER (the 3rd factor), the interaction model (6) of
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the maximum ER is fitted from the experimental data. Based on the ER−max

model, the maximum ER is estimated for all (IL, Tamb) data-points from the
grid. The rest 4 values (of ER) for each (IL, Tamb) data-point are considered
the 60%, 70%, 80% and 90% of the estimated ER−max.

Electro-Thermal Simulations on the Grid Scenarios. Electro-thermal
simulations are performed based on the estimated PWL parameters on the grid
in the space of the operating conditions, resulting the corresponding ∆T values.
Fig. 3 shows the simulated values of ∆T corresponding to the grid of power
profiles scenarios, as well as the ∆T values resulted from the simulations on
the active cycling measurements power profiles. The grid simulations values
are drawn with circles, while the values corresponding to active cycling sce-
narios are represented with dots. The ∆T values are displayed in the space of
operating conditions and are coded by the color of the markers.

∆TModel Fitting. The ∆T values resulted from the grid simulations are used
to fit the ∆T model (7), which has the operating conditions as factors. Before
fitting, because the operating conditions span on different magnitude orders,
the factors are normed in [-1, 1] interval. The model coefficients (C0 − C19),
which are extracted from the simulation data with the least squares method,
are presented in Table 1. From the resulted values of the coefficients, one can
observe that ER (by coefficient c3) has the biggest impact on ∆T and the fol-
lowing significant terms are IL (by coefficient c1) and the interaction between
ILand ER(by coefficient c5). Note that c0 is the coefficient of the constant term.

Figure 3. The resulted ∆T values for the grid of power profiles scenarios.
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Table 1. The coefficients of the ∆T model

Coeff. Value Coeff. Value Coeff. Value Coeff. Value

c0 287.56 c5 52.11 c10 20.79 c15 29.91
c1 58.90 c6 37.67 c11 2.23 c16 29.03
c2 17.95 c7 -5.08 c12 2.38 c17 1.94
c3 133.69 c8 5.46 c13 2.61 c18 1.08
c4 11.94 c9 38.63 c14 9.86 c19 25.74

Validation of the ∆T Model.

With Leave-K-Out Method. In this case, the value chosen for k is 3. In total,
a number of 317 750 (the number of combinations of 125 chosen by 3) meta-
models are built, each of them being evaluated on 3 different observations.
Fig. 4 presents the histogram of the resulted prediction relative errors of the
∆T model, with leave-3-out validation method. From the distribution of the
relative errors resulted the maximum unsigned relative error of 1.34%.

With Bootstrapping Method. For this case, the bootstrapp sample size is chosen
to be the same as the original data set. The mean number of left-out data
points is 46 (out of 125), meaning that, on average, 63% of the data-points
are used for metamodels fitting, while 37% of them are used for validation.
Fig. 5 presents the histogram of the resulted prediction relative errors of the
∆T model. According to this, the 95% confidence level interval spreads over
relative errors between -0.65% (lower limit) and 0.64% (upper limit).

Figure 4. The histogram of relative errors with leave-3-out method.
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Figure 5. The histogram of relative errors with bootstrapping method.

On the Experimental Scenarios - based Electro-Thermal Simulation Data. Apart
from the training data set, the ∆T model is evaluated on the operating con-
ditions of the active cycling scenarios (validation data set) and the prediction
relative errors of the corresponding ∆T values are computed. The results are
shown in Fig. 6. The maximum unsigned relative error obtained is 6.56%.

Discussion. The ∆T model is fitted on a training data set obtained by mod-
eling and approximating the power profiles parameters with the experimental
operating conditions. The model validation on this training data set (with
leave-k-out and bootstrapping methods) shows small prediction errors (less
than 2%). The evaluation of the model on the experimental operating condi-
tions (power profiles) reveals higher prediction errors (up to 6.56%) because of
additional errors introduced by the models of the power profiles parameters.

Figure 6. The prediction relative errors on validation data set.
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5. Conclusions

To meet the current requirements of estimating the lifetime of the power
devices within the application operating conditions, the paper presents a method-
ology for application-aware estimation of the lifetime main stress-factor, i.e.
the junction temperature swing within a fast thermal cycle (∆T ), based on
electro-thermal simulation. The proposed application-aware ∆T model is fit-
ted from data on a grid of electro-thermal simulations based on estimated
power profiles over a wide space of operating conditions. The methodology
requires the electro-thermal model of the device and involves the development
of several data-driven models. The overall prediction error, computed on data
corresponding to the experimental scenarios, is 6.56%. The prediction of ∆T on
different operating conditions with the proposed methodology can help esti-
mating the lifetime of the power devices used in a wide range of applications.
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