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NONLINEAR VARIATIONAL INEQUALITY PROBLEMS INVOLVING

UNCERTAIN VARIABLE

Cunlin Li1, Zhifu Jia2

Variational inequality problems have been extensively studied and applied
in the area of optimization theory, but much of it has been developed in a determinis-

tic domain. In this paper, the uncertain variational inequality is studied. Under the

compact uncertain event space, we establish an uncertain nonlinear expected residual
minimization (UNERM) model. Considering that uncertain variable usually has no den-

sity function, we propose integration by parts method to solve UNERM model. Under

reasonable assumptions and Slater’s constraint qualification, two kinds of convergence,
such as convergence of global optimal solutions and convergence of stationary points, are

investigated.
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1. Introduction

A nonempty closed convex set S ∈ Rn and a mapping f : S → Rn, in a deterministic
environment, the classical variational inequality problem (denoted by VIP(f, S) below) is to
find a vector x∗ ∈ S such that

(x− x∗)T f(x∗) ≥ 0, x ∈ S.
Variational inequality problem is one of the basic problems in the optimization theory.

In 2010, Yao et al. [1] Studied minimum-norm solutions of variational inequalities. In 2012,
Postolache et al. [2] introduced an iterative scheme to find a common element of the set of
solution of a pseudomonotone, Lipschitz-continuous variational inequality problem and fixed
points. In 2013, Yao et al. [3] put forward composite schemes for variational inequalities over
equilibrium problems and variational inclusions. Postolache et al. [4] studied a new class
of generalized extended nonlinear quasi-variational inequality problems involving set-valued
relaxed monotone operators and proved it equivalent to the fixed point problem. Posto-
lache et al. [5] proposed a variant extra gradient-type method to solve monotone variational
inequalities. In 2016, Postolache et al. [6] constructed algorithms for a class of monotone
variational inequalities. In 2017, Yao et al. [7] considered the split variational inequality
and fixed point problem. In the same year, Yao et al. [8] considered the split variational
inequality problem under a nonlinear transformation. However, there are many examples in
reality that the basic problem not only involves deterministic data, but also contains some
stochastic data. For example random signal process, supply chain, etc. Therefore, in order
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to reflect those stochastic phenomenons, many researchers extend to the stochastic varia-
tional inequality problem (SVIP for short). SVIP was investigated involving many aspects.
In 2008, Jiang et al. [9] applied stochastic approximation approaches to the stochastic vari-
ational inequality problems. In the same year, Shapiro et al. [10] discussed the sample
average approximation method applied to a class of stochastic mathematical programs with
variational (equilibrium) constraints. In 2010, Xu [11] further investigated sample average
approximation methods for a class of stochastic variational inequality problems. In 2011,
Luo et al. [12] did the research about stochastic variational inequality problems with ad-
ditional constraints. Unlucky, there are some circumstances when no historical data are
available in many practical problems of the real world, many examples inevitably contain
some uncertain data, such as a new stock, emergencies, devastating military experiments,
etc. In computer science, uncertain data is the data that contains noise that makes it deviate
from the correct, intended or original values. In uncertainty theory, uncertain data is the
data that contains belief degree representing the strength with which we believe the event
will happen. It is usually described as uncertain variable. Hence, in order to rationally deal
with belief degree, uncertainty theory was founded by Liu [14], subsequently the uncertain
variational inequality problem was proposed by Chen and Zhu [15]. In their paper,they
propose a new class of variational inequality problems, which is to find x∗ ∈ S

M {γ ∈ Γ|(x− x∗)TF (x∗, ξ(γ)) ≥ 0,∀x ∈ S} = 1, (1)

where ξ(γ) is the uncertain variable, Γ is a nonempty set, F : Rn × Γ → Rn is a mapping.
They solve expected value model based on uncertainty theory.
In a recent work [16], a new model presented by Li and Jia minimized an expected residual
given by the regularized gap function based on uncertainty theory. The model is written as

min θ(x) := E[g(x, ξ)] =

∫
T

g(x, t)dΦ(t), s.t. x ∈ S, (2)

here, ξ ∈ B, E stands for the expectation with respect to the uncertain variable ξ, Φ(t)
stands for the uncertain distribution function with respect to the uncertain variable ξ. T
stands for domain of Φ(t). Recall that, for any x ∈ Rn and any ξ ∈ B,

g(x, ξ) = (x−H(x, ξ))TF (x, ξ)− α

2
‖x−H(x, ξ)‖2G, (3)

where

H(x, ξ) := ProjS.G(x− α−1G−1F (x, ξ))

F : Rn×R→ Rn is a mapping. α is a positive parameter, G is an n×n symmetric positive-

definite matrix, and ‖.‖G means the G-norm defined by ‖x‖G =
√
xTGx for x ∈ Rn.

In [16], Li and Jia considered an linear uncertain variational inequality problem. The
properties and convergence analysis of the ERM problem were discussed. Integration by
parts method is proposed to solve (2). The purpose of this paper is to introduce UNERM
model for dealing with nonlinear uncertain variational inequality problem.

The paper is organized as following. We recall some preliminary results about uncer-
tainty theory and other preliminaries in Section 2. Then, the convergence of global optimal
solutions and convergence of stationary points of UNERM model are discussed in Section 3.

2. Preliminaries

Definition 2.1. (Liu [14]) Suppose ξ is an uncertain variable. Then the uncertainty distri-
bution of ξ is defined by

Φ(t) = M {ξ ≤ t}
for any real number t.
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Definition 2.2. (Liu [14]) Let ξ be an uncertain variable. Then the expected value of ξ is
defined by

E[ξ] =

∫ +∞

0

M {ξ ≥ t}dt−
∫ 0

−∞
M {ξ ≤ t}dt

provided that at least one of the two integrals is finite.

Theorem 2.1. (Liu [14]) Let ξ be an uncertain variable with uncertainty distribution Φ. If
the expected value exists, then

E[ξ] =

∫ +∞

−∞
tdΦ(t).

Corollary 2.1. (Liu [14]) Let ξ be an uncertain variable with uncertainty distribution Φ.
and let f(t) be a strictly monotone function , then we have

E[f(ξ)] =

∫ +∞

−∞
f(t)dΦ(t).

Following from the continuity of (F,∇xF ) and Theorem 4.2 of [16] that the function
θ is continuously differentiable over S and

∇θ(x) = E[∇xg(x, ξ)],∀x ∈ S. (4)

Uncertain variable usually has no density function, so Φ(x) usually is not differentiable in
uncertainty theory. But we can use the differentiable properties of g(x, ξ). By the results
given in [17], g(·, ξ) is continuously differentiable over S for any ξ ∈ B, and

∇xg(x, ξ) = F (x, ξ)− (∇xF (x, ξ)− αG)(H(x, ξ)− x) (5)

Definition 2.3. [16] Let θk(x) minimum be as follows:

min θk(x) = g(x, t)Φ(t)|t∈T −
1

Nk

∑
ti∈Tk

Φ(ti)g
′(x, ti) (6)

where Tk = {ti|i = 1, 2, · · · , Nk} be a set of observations generated by [18] satisfying Nk →∞
as k →∞, we call T uncertain event space, theoretically T is domain of Φ(t), g(x, t)Φ(t)|t∈T
is a function merely related to x.

we will study the behavior of the following approximations to the ERM problem (2)
as follows:

θk(x) = g(x, t)Φ(t)|t∈T −
1

Nk

∑
ti∈Tk

Φ(ti)g
′(x, ti), s.t. x ∈ S. (7)

We consider the limiting behavior of problems (7) in latter section.

Theorem 2.2. Through [18], we can get the following conclusion

lim
k→∞

1

Nk

∑
ti∈Tk

Φ(ti)g
′(x, ti) =

∫
T

Φ(t)g′(x, t)dt (8)

For any x ∈ Rn, we also have√
λmin‖x‖ ≤ ‖x‖G ≤

√
λmax‖x‖ (9)

where λmin and λmax indicate the smallest and largest eigenvalues of the positive definite
matrix G, respectively. For a given matrix A, we let ‖A‖ denote its spectral norm and ‖A‖F
denote its Frobenius matrix norm. The relationship between ‖A‖ and ‖A‖F , ‖x‖ and ‖x‖G
are as follows,

‖A‖ ≤ ‖A‖F . (10)
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‖A‖F ≤
n∑
j=1

‖Aj‖. (11)

where Aj is the jth column vector of A.

3. Convergence Analysis

3.1. ERM Model Hypothesis

In this paper, we still consider model (2). It has been mentioned that the function F
is supposed to be affine in [16]. Some assumptions such as square integrability and positive
definiteness are given, see [16] for details. The difference of this article is that we suppose
that F of (3) is a nonlinear function.

To prove the latter theorem, we need suppose that the uncertain distribution function
Φ(t) is continuous on t ∈ T , three-order derivative of the function F exists (denoted by
F ′′′xtx). Owing to H(x, t) := ProjS.G(x − α−1G−1F (x, t)) and H ′(x, t) := ProjS.G(x −
α−1G−1F ′(x, t)), it is easy to get H, H ′x and H ′t are continuous.

3.2. Convergence of Global Optimal Solutions

For convenience, we denote by S∗ and S∗k the sets of optimal solutions of problems
(2) and (7), respectively.

Lemma 3.1. For any fixed x ∈ S, it holds that θ(x) = lim
k→∞

θk(x).

Proof It is known from the definition of θ(x) function of (2) and integration by parts method
that

θ(x) = E[g(x, ξ)] =

∫
T

g(x, t)dΦ(t)

= g(x, t)Φ(t)|t∈T −
∫
T

Φ(t)g′(x, t)dt,

Thus we can get the conclusion from (7) and (8) easily.

Theorem 3.1. Assume that xk ∈ S∗k for each sufficiently large k. and x∗ is an accumulation
point of {xk}. Then, we have x∗ ∈ S∗
Proof Let x∗ be an accumulation point of {xk}. Without loss of generality, we assume that
{xk} converges to x∗. It is obvious that x∗ ∈ S. We first show that

lim
k→∞

(θk(xk)− θk(x∗)) = 0.

Let B ⊂ S be a compact convex set containing the sequence xk. By the continuity of g′′tx on
the compact set B × T , there exists a constant C > 0 such that

‖g′′tx(yki, ti)‖ ≤ C, ∀(x, ξ) ∈ B × T. (12)

Moreover, we have from the mean-value theorem that, for each xk and each ξi, there exists
yki = αkixk + (1− αki)x∗ ∈ B with αki ∈ [0, 1] such that

|g′t(xk, ti)− g′t(x∗, ti)| = |g′′tx(yki, ti)
T (xk − x∗)|.

So we have

|θk(xk)− θk(x∗)| =|g(xk, t)Φ(t)|t∈T −
1

Nk

∑
ti∈Tk

Φ(ti)g
′
t(xk, ti)

− g(x∗, t)Φ(t)|t∈T −
1

Nk

∑
ti∈Tk

Φ(ti)g
′
t(x
∗, ti)|

≤|g(xk, t)Φ(t)|t∈T − g(x∗, t)Φ(t)|t∈T |
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+
1

Nk

∑
ti∈Tk

Φ(ti)|(g′t(xk, ti)− g′t(x∗, ti))|

=|g(xk, t)Φ(t)|t∈T − g(x∗, t)Φ(t)|t∈T |

+
1

Nk

∑
ti∈Tk

Φ(t)|g′′tx(yki, ti)
T (xk − x∗)|

≤|g(xk, t)Φ(t)|t∈T − g(x∗, t)Φ(t)|t∈T |

+ C‖(xk − x∗)‖
1

Nk

∑
ti∈Tk

Φ(ti)

Because the facts that the sequence {xk} converges to {x∗}, thus

|θk(xk)− θk(x∗)| k→∞−−−−→ 0, (13)

On the other hand, noting that

|θk(xk)− θ(x∗)| ≤ |θk(xk)− θk(x∗)|+ |θk(x∗)− θ(x∗)|, (14)

so we have from lemma 3.1 and (13) that

lim
k→∞

θk(xk) = θ(x∗). (15)

Since, for each sufficiently large k, xk ∈ S∗k , then exist ε > 0 such that

θk(xk) ≤ θk(x) + ε (16)

holds for any x ∈ S. Letting k → +∞ in (16) and taking (15) and lemma 3.1 into account,
we get θ(x∗) ≤ θ(x) + ε,∀x ∈ S, which means x∗ ∈ S∗.

3.3. Convergence of Stationary Points

Theorem 3.2. If lim
k→∞

xk = x∗, then lim
k→∞

∇θk(xk) = ∇θ(x∗).
Proof Let B ⊆ S be a compact convex set containing the sequence xk. By the con-
tinuity of F ′t , F

′′
tx, H,H

′
t, and ∇2

xFj on the compact set B × T , there exists a constant
C ≥ sup{‖xk‖, k = 1, 2, . . .} such that, for any (x, t) ∈ B × T ,

‖F ′t‖ ≤ C, (17)

‖F ′′tx‖ ≤ C, (18)

‖F ′′′xtx‖ ≤ C, (19)

‖H‖ ≤ C, j = 1, · · · , n, (20)

‖H ′t‖ ≤ C, j = 1, · · · , n, (21)

where F ′′tx denotes the derivative of F (x, t) with respect to x,t. We first show that

lim
k→0

1

Nk

∑
ti∈Tk

Φ(ti)‖F ′t (xk, ti)− F ′t (x∗, ti)‖ = 0. (22)

In fact, from (10) and (11), we have

1

Nk

∑
ti∈Tk

Φ(ti)‖F ′t (xk, ti)− F ′t (x∗, ti)‖ (23)

≤ 1

Nk

∑
ti∈Tk

Φ(ti)‖F ′t (xk, ti)− F ′t (x∗, ti)‖F (24)
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≤
n∑
j=1

1

Nk

∑
ti∈Tk

Φ(ti)‖F ′t (xk, ti)j − F ′t (x∗, ti)j‖. (25)

Moreover, for each xk, ξi and any fixed j, from the mean-value theorem, there exists ykij =
αkijxk + (1− αkij)x̄ ∈ B with αkij ∈ [0, 1] such that

1

Nk

∑
ti∈Tk

Φ(ti)‖F ′t (xk, ti)j − F ′t (x∗, ti)j‖ (26)

≤ 1

Nk

∑
ti∈Tk

Φ(ti)‖F ′′tx(ykij , ti)‖‖xk − x∗‖ (27)

≤C‖xk − x∗‖
1

Nk

∑
ti∈Tk

Φ(ti) (28)

k→∞−−−−→ 0, (29)

where the second inequality follows from (18). (22) holds immediately from (23)-(29). In a
similar way, it holds that

lim
k→0

1

Nk

∑
ti∈Tk

Φ(ti)‖F (xk, ti)− F (x∗, ti)‖ = 0 (30)

and

lim
k→0

1

Nk

∑
ti∈Tk

Φ(ti)‖F ′x(xk, ti)− F ′x(x∗, ti)‖ = 0 (31)

and

lim
k→0

1

Nk

∑
ti∈Tk

Φ(ti)‖F ′′xt(xk, ti)− F ′′xt(x∗, ti)‖ = 0. (32)

It then follows from (9), (30) and the non-expansive property of ProjS,G that

1

Nk

∑
ti∈Tk

Φ(ti)‖H(x∗, ti)−H(xk, ti)‖

≤λ−
1
2

min

1

Nk

∑
ti∈Tk

Φ(ti)‖H(x∗, ti)−H(xk, ti)‖G

≤λ−
1
2

min

1

Nk

∑
ti∈Tk

Φ(ti)‖(x∗ − α−1G−1F (x∗, ti)

− (xk − α−1G−1F (xk, ti)‖G

≤λ
1
2
maxλ

− 1
2

min

1

Nk

∑
ti∈Tk

Φ(ti)(‖xk − x∗‖

+ α−1‖G−1‖‖F (xk, ti)− F (x∗, ti)‖)

So

1

Nk

∑
ti∈Tk

Φ(ti)‖H(x∗, ti)−H(xk, ti)‖
k→∞−−−−→ 0. (33)

On the other hand, by (18), (20), (32) and (33), we have

1

Nk

∑
ti∈Tk

Φ(ti)‖F ′′xt(xk, ti)H(xk, ti)− F ′′xt(x∗, ti)H(x∗, ti)‖
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=
1

Nk

∑
ti∈Tk

Φ(ti)‖F ′′xt(xk, ti)(H(xk, ti)−H(x∗, ti))

+ (F ′′xt(xk, ti)− F ′′xt(x∗, ti)H(x∗, ti)‖

≤ 1

Nk

∑
ti∈Tk

Φ(ti)(‖F ′′xt(xk, ti)‖(H(xk, ti)−H(x∗, ti)‖

+ ‖F ′′xt(xk, ti)− F ′′xt(x∗, ti)‖‖H(x∗, ti)‖)

≤C · 1

Nk

∑
ti∈Tk

Φ(ti)(‖(H(xk, ti)−H(x∗, ti)‖

+ ‖F ′′xt(xk, ti)− F ′′xt(x∗, ti)‖)
k→∞−−−−→ 0.

Noting that C ≥ sup{‖xk‖, k = 1, 2, . . .}, from (19) and (33), it implies that

1

Nk

∑
ti∈Tk

Φ(ti)‖F ′′xt(xk, ti)xk − F ′′xt(x∗, ti)x∗‖

≤ 1

Nk

∑
ti∈Tk

Φ(ti)(‖F ′′xt(xk, ti)xk − F ′′xt(x∗, ti)‖‖xk‖) + ‖F ′′xt(x∗, ξi)‖‖xk − x∗‖

≤C · 1

Nk

∑
ti∈Tk

Φ(ti)(‖F ′′xt(xk, ti)− F ′′xt(x∗, ti)‖+ ‖xk − x∗‖)
k→∞−−−−→ 0.

By the same way as (33), we have

lim
k→0

1

Nk

∑
ti∈Tk

Φ(ti)‖H ′t(xk, ti)−H ′t(x∗, ti)‖ = 0. (34)

Thus, following from (17), (21), (31) and (34), we can get

1

Nk

∑
ti∈Tk

Φ(ti)‖F ′x(xk, ti)H
′
t(xk, ti)− F ′x(x∗, ti)H

′
t(x
∗, ti)‖

=
1

Nk

∑
ti∈Tk

Φ(ti)‖F ′x(xk, ti)(H
′
t(xk, ti)−H ′t(x∗, ti))

+ (F ′x(xk, ti)− F ′x(x∗, ti)‖H ′t(x∗, ti)‖

≤ 1

Nk

∑
ti∈Tk

Φ(ti)(‖F ′x(xk, ti)‖(H ′t(xk, ti)−H ′t(x∗, ti)‖

+ ‖F ′x(xk, ti)− F ′x(x∗, ti)‖‖H ′t(x∗, ti)‖)

≤C · 1

Nk

∑
ti∈Tk

Φ(ti)(‖(H ′t(xk, ti)

−H ′t(x∗, ti)‖+ ‖F ′x(xk, ti)− F ′x(x∗, ti)‖).

Hence

1

Nk

∑
ti∈Tk

Φ(ti)‖F ′x(xk, ti)H
′
t(xk, ti)− F ′x(x∗, ti)H

′
t(x
∗, ti)‖

k→∞−−−−→ 0. (35)

By (33)-(35), we have following naturally

‖∇θk(xk)−∇θk(x∗)‖

=‖∇xg(xk, t)Φ(t)|t∈T −
1

Nk

∑
ti∈Tk

Φ(ti)g
′′
xt(xk, ti)
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−∇xg(x∗, t)Φ(t)|t∈T +
1

Nk

∑
ti∈Tk

Φ(ti)g
′′
xt(x

∗, ti)‖

≤|∇xg(xk, t)Φ(t)|t∈T −∇xg(x∗, t)Φ(t)|t∈T |

+ ‖ 1

Nk

∑
ti∈Tk

Φ(ti)(g
′′
xt(xk, ti)− g′′xt(x∗, ti))‖

≤|∇xg(xk, t)Φ(t)|t∈T −∇xg(x∗, t)Φ(t)|t∈T |

+ ‖ 1

Nk

∑
ti∈Tk

Φ(ti)([F
′
t (xk, ti)− F ′′xt(xk, ti)(H(xk, ti)− xk)

− (F ′x(xk, ti)− αG)H ′t(xk, ti)]− [F ′t (x
∗, ti)− F ′′xt(x∗, ti)(H(x∗, ti)− x∗)

− (F ′x(x∗, ti)− αG)H ′t(x
∗, ti)])‖

≤|(∇xg(xk, t)−∇xg(x∗, t))Φ(t)|t∈T |+ ‖
1

Nk

∑
ti∈Tk

Φ(ti)(‖F ′t (xk, ti)− F ′t (x∗, ti)‖

+ ‖F ′′xt(xk, ti)H(xk, ti)− F ′′xt(x∗, ti)H(x∗, ti)‖
+ ‖F ′′xt(xk, ti)xk)− F ′′xt(x∗, ti)x∗)‖
+ ‖(F ′x(xk, ti)H

′
t(xk, ti)− (F ′x(x∗, ti)H

′
t(x
∗, ti)‖

+ α‖G‖‖H ′t(xk, ti)−H ′t(x∗, ti)])‖
k→∞−−−−→ 0.

Through integration by parts, we also know that

∇θ(x∗) =E[∇xg(x∗, ξ)] =

∫
T

∇xg(x∗, t)dΦ(t)

=∇xg(x∗, t)Φ(t)|t∈T −
∫
T

Φ(t)g′′xt(x
∗, t)dt.

Notice that

∇θk(x∗) = ∇xg(x∗, t)Φ(t)|t∈T −
1

Nk

∑
ti∈Tk

Φ(ti)g
′′
xt(x

∗, ti).

Owing to

lim
k→∞

1

Nk

∑
ti∈Tk

Φ(ti)g
′′
xt(x

∗, ti) =

∫
T

Φ(t)g′′xt(x
∗, t)dt.

So it is easy to see that lim
k→∞

∇θk(x∗) = ∇θ(x∗). Thus, It is clear that

lim
k→∞

∇θk(xk) = ∇θ(x∗).

Definition 3.1. Suppose that S = {x ∈ Rn|c(x) ≤ 0}, where ci : Rn → R, i = 1, 2, · · · ,m,
are all continuously differentiable convex functions. A point xk is said to be stationary of
(7) if there exists a Lagrange multiplier vector µk ∈ Rm such that

∇θk(xk) +

m∑
i=1

(µi)k∇ci(xk) = 0, (36)

0 ≤ µk, c(xk) ≤ 0 and (µk)T c(xk) = 0. (37)

x∗ is said to be a stationary point of (2) if there exists a Lagrange multiplier vector µ∗ ∈ Rm
such that

∇θ(x∗) +

m∑
i=1

µ∗i∇ci(x∗) = 0, (38)
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0 ≤ µ∗, c(x∗) ≤ 0 and (µ∗)T c(x∗) = 0. (39)

Definition 3.2. The Slater’s constraint qualification holds if there exists a vector y ∈ Rn
such that ci(y) < 0 for each i = 1, 2, · · · ,m.

Theorem 3.3. Let xk be stationary to (7) for each k and x∗ be an accumulation point of
{xk}. If the Slater constraint qualification holds, then x∗ is stationary to problem (2).
Proof Without loss of generality, we assume that lim

k→∞
xk = x∗. Let µk be the corresponding

multiplier vector satisfying (36)-(37).
(i) We first show that the sequence {µk} is bounded. To this end, we denote

υk :=
m∑
i=1

(µi)k. (40)

Let {µk} be unbounded, which means lim
k→∞

υk = +∞. Taking a subsequence, we may assume

that the limits µ∗i := lim
k→∞

(µi)k
υk

(i = 1, 2, · · · ,m) exist. For every i 6∈ Υ(x∗) := {i|ci(x∗) =

0, 1 ≤ i ≤ m}, it holds ci(x
∗) ≤ 0 by (37), further more (µ∗i )

T ci(x
∗) = 0, it holds µ∗i = 0.

Then, from (40),

∑
i∈Υ(x∗)

µ∗i =

m∑
i=1

µ∗i = 1. (41)

Note that ∇ci is continuous for each i and {∇θk(xk)} is convergent by theorem 3.2. Because

of lim
k→∞

υk = +∞, lim
k→∞

∇θk(xk)
υk

→ 0. Dividing (36) by υk and taking a limit, we obtain

∑
i∈Υ(x∗)

µ∗i∇ci(x∗) =

m∑
i=1

µ∗i∇ci(x∗) = 0. (42)

Owing to the Slater’s constraint qualification, there exists a vector y ∈ Rn such that ci(y) < 0
for each i = 1, 2, · · · ,m. Noting that each ci is convex, we have

(y − x∗)T∇ci(x∗) ≤ ci(y)− ci(x∗) = ci(y) < 0, (43)

∀i ∈ Υ(x∗). (44)

From (42) and µ∗i ≥ 0 for each i by (37), we get µ∗i∇ci(x∗) = 0. Furthermore, ∇ci(x∗) 6= 0
from (43), it implies that µ∗i = 0 for each i ∈ Υ(x∗). This contradicts (41). Hence {µk} is
bounded.
(ii) By (i), µk exists a subsequence such that µ∗ := lim

k→∞
µk, we still denote it as µk. Note

that both ci and ∇ci are continuous for each i, by Theorem 3.2, it holds lim
k→∞

∇θk(x∗) =

∇θ(x∗). Taking a limit in (36) and (37), we obtain (38) and (39) immediately. Therefore,
x∗ is stationary to problem (2).
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