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ADDITIVE σ-RANDOM OPERATOR INEQUALITY AND

RHOM-DERIVATIONS IN FUZZY BANACH ALGEBRAS
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In this paper, we solve an additive σ-random operator inequality and by the
fixed point technique we get an approximation of mentioned additive σ-random operator
in fuzzy Banach spaces. Also, we get an approximation of rhom-derivations in fuzzy
complex Banach algebras.
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1. Introduction

Let (Ω,U, µ) be a probability measure space. Assume that (U,BU ) and (V,BV ) are
Borel measureable spaces, in which U and V are complete FN spaces and T : Ω×U → V is
a random operator. In FN-spaces, first we solve the additive σ-random operator inequality

η(T (ω, u+ v)− T (ω, u)− T (ω, v), t) (1)

≥ η(σ(T (ω, u− v)− T (ω, u)− T (ω,−v)), t),

where 0 6= σ ∈ C is fixed and |σ| < 1.
By the fixed point technique, we get an approximation of the above additive σ-random

operator inequality (1) in FB-spaces. Also, we get an approximation of hom-derivations in
FB-algebras.

2. Preliminaries

In this paper, we let I = [0, 1] and J = (0, 1].

Definition 2.1. ([1, 2]) A continuous triangular norm (shortly, a ct-norm) is a continuous
mapping κ from I2 to I such that

(a) κ(ς, τ) = κ(τ, ς) and κ(ς, κ(τ, σ)) = κ(κ(ς, τ), σ) for all ς, τ, σ ∈ I;
(b) κ(ς, 1) = ς for all ς ∈ I;
(c) κ(ς, τ) ≤ κ(σ, ι) whenever ς ≤ σ and τ ≤ ι for all ς, τ, σ, ι ∈ I.

Some examples of the ct-norms are as follows:

(1) κP (ς, τ) = ςτ ;
(2) κM (ς, τ) = min{ς, τ};
(3) κL(ς, τ) = max{ς + τ − 1, 0} (: the Lukasiewicz t-norm).

Definition 2.2. ([3, 4]) Suppose that κ is a ct-norm, V is a linear space and η is a fuzzy set
from V × (0,∞) to J . In this case, the ordered tuple (V, η, κ) is said a fuzzy normed space
(in short, FN-space) if the following conditions are satisfied:

(FN1) η(v, t) = 1 for all t > 0 if and only if v = 0;
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(FN2) η(αv, t) = η
(
v, t
|α|

)
for all v ∈ V and α ∈ C with α 6= 0;

(FN3) η(u+ v, t+ s) ≥ κ(η(u, t), η(v, s)) for all u, v ∈ V and t, s ≥ 0.
(FN4) η(v, .) : (0,∞)→ J is continuous for all v ∈ V .

Example 2.3. Consider linear normed space (V, ‖ · ‖). Then

η(v, s) = exp(−‖v‖
s

)

for all s > 0 defines a fuzzy norm and (V, η, κM ) is a FN-space.

Let (V, η, κ) be a FN-space. We define the open ball Bv(r, t) with center v ∈ V and
radius 0 < r < 1 for all t > 0 as follows:

Bv(r, t) = {u ∈ V : η(v − u, t) > 1− r}.
In [5, 6] the authors show, every open ball Bv(r, t) is open set. Now, different kinds of
topologies can be introduced in a FN-space. The (r, t)-topology is introduced by a family of
neighborhoods

{Bv(r, t)}v∈V,t>0,r∈(0,1).

In fact, every fuzzy norm η on V generates a topology ((r, t)-topology) on V which
has as a base the family of open sets of the form

{Bv(r, t)}v∈V,t>0,r∈(0,1).

A sequence {vn} in V is said to be convergent to a point v ∈ V if, for any ε > 0 and λ > 0,
there exists a positive integer N such that

η(vn − v, ε) > 1− λ
whenever n ≥ N . Also, a sequence {vn} in V is called a Cauchy sequence if, for any ε > 0
and λ > 0, there exists a positive integer N such that

η(vn − vm, ε) > 1− λ
whenever n ≥ m ≥ N . A FN-space (V, η, κ) is said to be complete if every Cauchy sequence
in V is convergent to a point in V .

Definition 2.4. [7, 8] A fuzzy normed algebra (in short FN-algebra) (V, η, κ, κ′) is an
FN-space (V, η, κ) with the structure of an algebra such that

(FN-5) η(uv, ts) ≥ κ′(η(u, t), η(v, s)) for all u, v ∈ V and all t, s > 0. in which κ′ is a
ct-norm.

Example 2.5. Every normed algebra (V, ‖ · ‖) defines a FN-algebra (V, η, κM , κP ), where

η(v, s) = exp(−‖v‖
s

)

for all s > 0 if and only if

‖uv‖ ≤ ‖u‖‖v‖+ s‖v‖+ t‖u‖ (u, v ∈ V ; t, s > 0).

This space is called the induced FN-algebra. A complete FN-algebra is called fuzzy Banach
algebra, in short FB-algebra.

Let (Ω,U, µ) be a probability measure space. Assume that (U,BU ) and (V,BV )
are Borel measureable spaces, in which U and V are complete FN spaces. A mapping
T : Ω × U → V is said to be a random operator if {ω : T (ω, u) ∈ B} ∈ U for all u in U
and B ∈ BV . Also, T is random operator, if T (ω, u) = v(ω) be a V -valued random variable
for every u in U . A random operator T : Ω × U → V is called linear if T (ω, αu1 + βu2) =
αT (ω, u1) + βT (ω, u2) almost every where for each u1, u2 in U and α, β scalers, and fuzzy
random bounded (in short FR-bounded) if there exists a nonnegative real-valued random
variable M(ω) such that

η(T (ω, u1)− T (ω, u2),M(ω)t) ≥ η(u1 − u2, t),
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almost every where for each u1, u2 in U and t > 0. The set of all linear FR-bounded random
operator from U to V showed by R(U, V ). Also, the random operator T : Ω × U → V is
homomorphism if T (ω, .) is homomorphism.

Mirzavaziri and Moslehian [9, 10] introduced the concept of h-derivation. Recently,
Park et. al. [11], generalized the concept of h-derivation and introduced the concept of
hom-derivations in a Banach algebra.

Definition 2.6. Let V be a complex FB-algebra and ζ : V → V be a homomorphism. A
C-linear operator R : V → V is called a rhom-derivation on V if R satisfies

R(ω, uv) = R(ω, u)ζ(ω, v) + ζ(ω, u)R(ω, v)

for all u, v ∈ V and ω ∈ Ω.

When we consider stability process of a random operator equation we get an ap-
proximation of random operator, the similar process done for functional equation first time
introduced by Ulam [12] and solved by Hyers [13], next some mathematician got important
results of this subject, Aoki [14], Rassias [15], Găvruta [16], Skof [17], Cholewa [18] and Park
[19, 20] and et. al. [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].

Theorem 2.7. ([37, 38]) Consider a complete generalized metric space (Γ,∆) and a strictly
contractive function L : Γ → Γ with Lipschitz constant β < 1. So, for every given element
γ ∈ Γ, either

∆(Lmγ, Lm+1γ) =∞
for each m ∈ N or there is m0 ∈ N such that

(1) ∆(Lmγ, Lm+1γ) <∞, ∀m ≥ m0;
(2) the fixed point $∗ of L is the convergent point of sequence {Lmγ};
(3) in the set Υ = {$ ∈ Γ | ∆(Lm0γ,$) <∞}, $∗ is the unique fixed point of L;
(4) (1− β)∆($,$∗) ≤ ∆($,L$) for every $ ∈ Υ.

3. Additive σ-random operator inequality: FPT

Lemma 3.1. Let the random operator T : Ω× U → V satisfies (1), then T is additive.

Proof. Let T satisfies (1). Replacing v by −v in (1), implies that

η(T (ω, u− v)− T (ω, u)− T (ω,−v), t) ≥ η(σ(T (ω, u+ v)− T (ω, u)− T (ω, v)), t) (2)

for all u, v ∈ U , ω ∈ Ω and t > 0. (1) and (2) imply that

η(T (ω, u+ v)− T (ω, u)− T (ω, v), t) ≥ η
(
T (ω, u− v)− T (ω, u)− T (ω,−v),

t

σ2

)
and hence T (ω, u+ v) = T (ω, u) + T (ω, v) for each u, v ∈ U and ω ∈ Ω, since |σ| < 1. Thus
T is additive. �

By fixed point technique we get an approximation of the additive σ-random operator
inequality (1) in FB-spaces.

Theorem 3.2. Let (V, η, κM ) be an FB-space. Assume that ψ : U2× (0,∞)→ J be a fuzzy
set such that there exists an β < 1 with

ψ

(
u

2
,
v

2
,
βt

2

)
≥ ψ (u, v, t) (3)

and

lim
p→∞

ψ

(
u

2p
,
v

2p
,
t

2p

)
= 1

for all u, v ∈ U and t > 0. Suppose that T : Ω× U → V is a random operator, where

η(T (ω, u+ v)− T (ω, u)− T (ω, v), t) (4)

≥ κM (η(σ(T (ω, u− v)− T (ω, u)− T (ω,−v)), t), ψ (u, v, t))
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for each u, v ∈ U , ω ∈ Ω and t > 0. So, there is a unique additive random operator
S :: Ω× U → V such that

η(T (ω, u)− S(ω, u), t) ≥ ψ
(
u, u,

2(1− β)

β
t

)
almost every where for each u ∈ U and t > 0.

Proof. Putting u = v in (4), we have that

η(2T (ω, u)− T (ω, 2u), t) ≥ ψ (u, u, t) (5)

almost every where for each u ∈ U , ω ∈ Ω and t > 0.
On

Γ := {H : Ω× U → V, H(ω, 0) = 0}
we define the following generalized metric:

∆(G,H) = inf {α ∈ R+ : η(G(ω, u)−H(ω, u), αt) ≥ ψ (u, u, t) , ∀u ∈ U, t > 0} .
In [39], Mihet and Radu proved that (Γ,∆) is complete (see also [40]).
Now we consider the linear mapping L : Γ→ Γ such that

LG(ω, u) := 2G
(
ω,
u

2

)
almost every where for each u ∈ U and ω ∈ Ω. Consider G,H ∈ Γ such that ∆(G,H) = ε.
So,

η(G(ω, u)−H(ω, u), εt) ≥ ψ (u, u, t)

almost every where for each u ∈ U and t > 0. Also,

η(LG(ω, u)− LH(ω, u), βεt) = η

(
G
(
ω,
u

2

)
−H

(
ω,
u

2

)
,
βεt

2

)
≥ ψ

(
u

2
,
u

2
,
βt

2

)
≥ ψ(u, u, t)

almost every where for each u ∈ U , ω ∈ Ω and t > 0. Then, from ∆(G,H) = ε we conclude
that ∆(LG,LH) ≤ βε and so

∆(LG,LH) ≤ β∆(G,H)

for each G,H ∈ Γ.
By (5) we have that

η

(
2T
(
ω,
u

2

)
− T (ω, u),

βt

2

)
≥ ψ(u, u, t)

almost every where for each u ∈ U and t > 0, which implies that ∆(T, LT ) ≤ β
2 .

Theorem 2.7 implies that, there exists a random operator S : Ω× U → V such that:
(1) A fixed point for function L, is S,

S (ω, u) = 2S
(
ω,
u

2

)
(6)

almost every where for each u ∈ U , which is unique in the set

Υ = {G ∈ Γ : ∆(G,H) <∞};
(2) ∆(LpT, S)→ 0 as p→∞, which implies that

lim
p→∞

2pT
(
ω,

u

2p

)
= S(ω, u) (7)

almost every where for each u ∈ U and ω ∈ Ω;
(3) ∆(T, S) ≤ 1

1−β∆(T, LT ), which implies

η(T (ω, u)− S(ω, u), t) ≥ ψ
(
u, u,

2(1− β)

β
t

)



Additive σ-random operator inequality and rhom-derivations in fuzzy Banach algebras 7

almost every where for each u ∈ U , ω ∈ Ω and t > 0.
Using (4) and (7) imply that

η(S(ω, u+ v)− S(ω, u)− S(ω, v), t)

= lim
p→∞

η

(
T

(
ω,
u+ v

2p

)
− T

(
ω,

u

2p

)
− T

(
ω,

v

2p

)
,
t

2p

)
≥ lim
p→∞

κM

(
η

(
σ

(
T

(
ω,
u− v

2p

)
− T

(
ω,

u

2p

)
− T

(
ω,
−v
2p

))
,
t

2p

)
, ψ

(
u

2p
,
v

2p
,
t

2p

))
= η(σ(S(ω, u− v)− S(ω, u)− S(ω, v)), t)

almost every where for each u, v ∈ U , ω ∈ Ω and t > 0. Then

η(S(ω, u+ v)− S(ω, u)− S(ω, v), t)

≥ η(σ(S(ω, u− v)− S(ω, u)− S(ω, v)), t)

almost every where for each u, v ∈ U , ω ∈ Ω and t > 0. Now, Lemma 3.1, implies that S is
additive random operator. �

Corollary 3.3. Let (V, η, κM ) be a FB-space, ρ > 1 and τ > 0. Suppose that T : Ω×U → V
is a random operator, where

η(T (ω, u+ v)− T (ω, u)− T (ω, v), t) (8)

≥ κM

(
η(σ(T (ω, u− v)− T (ω, u)− T (ω,−v)), t),

t

t+ τ(‖u‖ρ + ‖v‖ρ)

)
,

in which |σ| < 1. So, there is a unique additive random operator S : Ω× U → V such that

η(T (ω, u)− S(ω, u), t) ≥ (1− 21−ρ)t

(1− 21−ρ)t+ τ21−ρ‖u‖ρ

for each u ∈ U , ω ∈ Ω and t > 0.

Proof. In Theorem 3.2 put ψ (u, v, t) = t
t+τ(‖u‖ρ+‖v‖ρ) for each u ∈ U and t > 0 and

β = 21−ρ. �

Theorem 3.4. Let (V, η, κM ) be an FB-space. Assume that ψ : U2× (0,∞)→ J be a fuzzy
set such that there exists an β < 1 with

ψ (u, v, 2βt) ≥ ψ
(u

2
,
v

2
, t
)

(9)

and

lim
p→∞

ψ (2pu, 2pv, 2pt) = 1

for all u, v ∈ U and t > 0. Suppose that T : Ω× U → V is a random operator, where
satisfies in (4). So, there is a unique additive random operator S :: Ω× U → V such that

η(T (ω, u)− S(ω, u), t) ≥ ψ (u, u, 2(1− β)t)

almost every where for each u ∈ U and t > 0.

Proof. Consider the generalized metric space (Γ,∆) defined in the proof of Theorem 3.2.
Now we consider the linear mapping L : Γ→ Γ such that

LG(ω, u) :=
1

2
G (ω, 2u)

almost every where for all u ∈ U . It follows from (5) that

η

(
T (ω, 2u)

2
− T (ω, u), t

)
≥ ψ

(
u

2
,
u

2
,
t

β

)
almost every where for each u ∈ U and t > 0.
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The proof of Theorem 3.2 leads the rest of the proof. �

Corollary 3.5. Let (V, η, κM ) be a FB-space, ρ < 1 and τ > 0. Suppose that T : Ω×U → V
be a random operator satisfies (8). So, there is a unique additive random operator S :
Ω× U → V such that

η(T (ω, u)− S(ω, u), t) ≥ (1− 21−ρ)t

(1− 21−ρ)t+ τ‖u‖ρ

for each u ∈ U and t > 0.

Proof. In Theorem 3.4 put ψ (u, u, t) = t
t+τ(‖u‖ρ+‖v‖ρ) for each u ∈ U and t > 0 and

β = 2ρ−1. �

4. Additive σ-random operator inequality: DT

By direct technique we get an approximation of the additive σ-random operator in-
equality (1) in FB-spaces.

Theorem 4.1. Let (V, η, κM ) be a FB-space. Let ϕ : U2 × (0,∞)→ J be a fuzzy map such
that such that there exists an β < 1 with

ψ

(
u

2
,
v

2
,
βt

2

)
≥ ψ (u, v, t) (10)

and

lim
p→∞

ψ

(
u

2p
,
v

2p
,
t

2p

)
= 1 (11)

for all u, v ∈ U and t > 0. Suppose that T : Ω× U → V is a random operator, where
satisfies in (4). So, there is a unique additive random operator S : Ω× U → V such that

η(T (ω, u)− S(ω, u), t) ≥ ψ
(
u, u,

2(1− β)

β
t

)
(12)

almost every where for each u ∈ U , ω ∈ Ω and t > 0.

Proof. Putting u = v in (4), we have that

η(2T (ω, u)− T (ω, 2u), t) ≥ ψ (u, u, t) (13)

and

η
(

2T
(
ω,
u

2

)
− T (ω, u), t

)
≥ ψ

(u
2
,
u

2
, t
)

(14)

and so

η

(
2T
(
ω,
u

2

)
− T (ω, u),

β

2
t

)
≥ ψ (u, u, t) (15)

almost every where for each u ∈ U , ω ∈ Ω and t > 0. Replacing u by u
2`

in (15) and applying
(10) we get

η

(
2`+1T

(
ω,

u

2`+1

)
− 2`T

(
ω,

u

2`

)
,
β`+1

2
t

)
≥ ψ (u, u, t) (16)

which implies that

η

(
2`T

(
ω,

u

2`

)
− T (ω, u),

∑̀
k=1

βk

2
t

)
≥ ψ (u, u, t) (17)

Replacing u by u
2m in (17) we get

η
(

2`+mT
(
ω,

u

2`+m

)
− 2mT

(
ω,

u

2m

)
, t
)
≥ ψ

(
u, u,

t∑`+m
k=m+1

βk

2

)
(18)
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which tend to 1 when m, ` tend to ∞ and so the sequence
{

2`T
(
ω, u

2`

)}
is Cauchy in the

FB-space (V, η, κM ) and converges to a point S(x) ∈ V . Now, for every ς > 0 we have that,

η(T (ω, u)− S(ω, u), t+ ς) (19)

≥ κM

(
η(T (ω, u)− 2`T

(
ω,

u

2`

)
, t), η(S(ω, u)− 2`T

(
ω,

u

2`

)
, ς)
)

≥ κM

(
ψ

(
u, u,

t∑`
k=1

βk

2

)
, η(S(ω, u)− 2`T

(
ω,

u

2`

)
, ς)

)
when when ` tend to ∞ in (19) we have that

η(T (ω, u)− S(ω, u), t+ ς) ≥ ψ
(
u, u,

2(1− β)

β
t

)
. (20)

Since ς > 0 is arbitrary in (20) we have that

η(T (ω, u)− S(ω, u), t) ≥ ψ
(
u, u,

2(1− β)

β
t

)
. (21)

Replacing u and v by u
2m and v

2m in (4) and using (11) implies that S satisfies Lemma
3.1 and hence is additive. Now, let S′ be another additive satisfies (12). For a arbitrary
u ∈ U and ω ∈ Ω, we have that 2mS

(
ω, u

2m

)
= S(ω, u) and 2mS′

(
ω, u

2m

)
= S′(ω, u) for

each natural element m. Using (12), we have that,

η(S(ω, u)− S′(ω, u), t)

= lim
m→∞

η
(

2mS
(
ω,

u

2m

)
− 2mS′

(
ω,

u

2m

)
, t
)

≥ lim
m→∞

κM

(
η

(
2mS

(
ω,

u

2m

)
− 2mT

(
ω,

u

2m

)
,
t

2

)
,

η

(
2mT

(
ω,

u

2m

)
− 2mS′

(
ω,

u

2m

)
,
t

2

))
≥ lim

m→∞
ψ

(
u

2m
,
u

2m
,

1− β
β

t

)
≥ lim

m→∞
ψ

(
u, u,

2m

βm
1− β
β

t

)
→ 1,

which implies that S(ω, u) = S′(ω, u) shows the uniqueness.
�

Corollary 4.2. Let (V, η, κM ) be a FB-space, ρ > 1 and τ > 0. Suppose that T : Ω×U → V
is a random operator, hold in (8). So, there is a unique additive random operator S : Ω×U →
V such that

η(T (ω, u)− S(ω, u), t) ≥ (2− 22−ρ)t

(2− 22−ρ)t+ τ22−ρ‖u‖ρ

for each u ∈ U , ω ∈ Ω and t > 0.

Proof. In Theorem 4.1 put ψ (u, u, t) = t
t+τ(‖u‖ρ+‖v‖ρ) for each u ∈ U and t > 0 and

β = 21−ρ. �

Theorem 4.3. Let (V, η, κM ) be an FB-space. Assume that ψ : U2× (0,∞)→ J be a fuzzy
set hold in (9) and

lim
p→∞

ψ (2pu, 2pv, 2pt) = 1
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for all u, v ∈ U and t > 0. Suppose that T : Ω× U → V is a random operator, where
satisfies in (4). So, there is a unique additive random operator S :: Ω× U → V such that

η(T (ω, u)− S(ω, u), t) ≥ ψ (u, u, 2(1− β)t)

almost every where for each u ∈ U , ω ∈ Ω and t > 0.

Proof. Putting u = v in (4), we have that

η

(
T (ω, u)− T (ω, 2u)

2
, t

)
≥ ψ (u, u, 2t) (22)

and so

η

(
T (ω, u)− T (ω, 2u)

2
, βt

)
≥ ψ

(u
2
,
u

2
, t
)

(23)

almost every where for each u ∈ U , ω ∈ Ω and t > 0. Replacing u by u
2`

in (23) and applying
(10) we get

η

(
T (ω, u)

2`
− T (ω, 2u)

2`+1
),
β`

2
t

)
≥ ψ (u, u, t) (24)

which implies that

η

(
T (2`u)

2`
− T (u),

`−1∑
k=0

βk

2
t

)
≥ ψ (u, u, t) . (25)

The rest of the proof is similar to the proof of Theorem 4.1. �

5. Approximation of rhom-derivations in FB-algebras

By fixed point technique, we get an approximation of rhom-derivations in FB-algebras,
associated to the additive σ-random operator inequality (1).

Theorem 5.1. Let (V, η, κM , κM ) be a FB-algebra. Let ϕ : V 2× (0,∞)→ J be a fuzzy map
such that such that there exists an β < 1 with

ψ

(
u

2
,
v

2
,
βt

2

)
≥ ψ

(
u

2
,
v

2
,
βt

4

)
≥ ψ (u, v, t) (26)

and

lim
p→∞

ψ

(
u

2p
,
v

2p
,
t

2p

)
= lim
p→∞

ψ

(
u

2p
,
v

2p
,
t

4p

)
= 1 (27)

for all u, v ∈ U and t > 0. Suppose that T, S : Ω× V → V are odd random operator,
where satisfies in

η(T (ω, c(u+ v))− c(T (ω, u)− T (ω, v)), t) (28)

≥ κM (η(σ(T (ω, u− v)− T (ω, u)− T (ω,−v)), t), ψ (u, v, t)),

η(S(ω, c(u+ v))− c(S(ω, u)− S(ω, v)), t) (29)

≥ κM (η(σ(S(ω, u− v)− S(ω, u)− S(ω,−v)), t), ψ (u, v, t)),

η(S(ω, uv)− S(ω, u)S(ω, v), t) ≥ ψ (u, v, t) , (30)

η(T (ω, uv)− T (ω, u)S(ω, v)− S(ω, u)T (ω, v), t) ≥ ψ (u, v, t) , (31)

almost every where for each u, v ∈ V , ω ∈ Ω and t > 0 and for all c ∈ T1 := {d ∈ C : |d| =
1}.
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So, there is a unique random homomorphism ζ : Ω × V → V and a unique rhom-
derivation R : Ω× V → V such that

η(T (ω, u)−R(ω, u), t) ≥ ψ
(
u, u,

2(1− β)

β
t

)
, (32)

η(S(ω, u)− ζ(ω, u), t) ≥ ψ
(
u, u,

2(1− β)

β
t

)
, (33)

R(ω, uv) = R(ω, u)ζ(ω, v) + ζ(ω, u)R(ω, v), (34)

almost every where for each u, v ∈ V , ω ∈ Ω, t > 0.

Proof. Put c = 1 in (28) and (29). According proof of Theorem 3.2, there are unique random
operators ζ,R : Ω× V → V hold in (32) and (33), respectively, where made by

ζ(ω, u) = lim
n→∞

2nS
(
ω,

u

2n

)
,

R(ω, u) = lim
n→∞

2nT
(
ω,

u

2n

)
for each u ∈ V , ω ∈ Ω.

Putting v = 0 in (28), implies that

η(T (ω, cu)− cT (ω, u), t) ≥ ψ (u, 0, t) ,

for each u ∈ V , ω ∈ Ω and t > 0 and for all c ∈ T1 := {d ∈ C : |d| = 1}. Then

η(R(ω, cu)− cR(ω, u), t) = η
(

2pT
(
ω, c

u

2p

)
− 2pcT

(
ω,

u

2p

)
, t
)

= η

(
T
(
ω, c

u

2p

)
− cT

(
ω,

u

2p

)
,
t

2p

)
≥ ψ

(
u

2p
, 0,

t

2p

)
→ 1,

and so R (ω, cu) = cR(ω, u) for each u ∈ V , ω ∈ Ω and t > 0 and for all c ∈ T1 := {d ∈ C :
|d| = 1}. By the same reasoning as in the proof of [41, Theorem 2.1], the random operator
R : Ω× V → V is C-linear.

By similar method we can prove that the additive random operator ζ : Ω×V → V is
C-linear.

From inequality (30) we have that

η(ζ(ω, uv)− ζ(ω, u)ζ(ω, v), t) = η
(

4pS
(
ω,
uv

4p

)
− 4pS

(
ω,

u

2p

)
S
(
ω,

v

2p

)
, t
)

= η

(
S
(
ω,
uv

4p

)
− S

(
ω,

u

2p

)
S
(
ω,

v

2p

)
,
t

4p

)
≥ ψ

(
u

2p
, 0,

t

4p

)
,

η(R(ω, uv)−R(ω, u)ζ(ω, v)− ζ(ω, u)R(ω, v), t)

= η
(

4pT
(
ω,
uv

4p

)
− 4pT

(
ω,

u

2p

)
S
(
ω,

v

2p

)
− 4pS

(
ω,

u

2p

)
T
(
ω,

v

2p

)
, t
)

= η

(
T
(
ω,
uv

4p

)
− T

(
ω,

u

2p

)
S
(
ω,

v

2p

)
− S

(
ω,

u

2p

)
T
(
ω,

v

2p

)
,
t

4p

)
≥ ψ

(
u

2p
, 0,

t

4p

)
→ 1,

for each u, v ∈ V , ω ∈ Ω and t > 0 and for all c ∈ T1 := {d ∈ C : |d| = 1}. Then,
ζ(ω, uv) = ζ(ω, u)ζ(ω, v) for each u, v ∈ V , ω ∈ Ω. Therefore the C-linear random operator
ζ : Ω× V → V is a random homomorphism hold in (33).
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From inequality (31) we have that

η(R(ω, uv)−R(ω, u)ζ(ω, v)− ζ(ω, u)R(ω, v), t)

= η
(

4pT
(
ω,
uv

4p

)
− 4pT

(
ω,

u

2p

)
S
(
ω,

v

2p

)
− 4pS

(
ω,

u

2p

)
T
(
ω,

v

2p

)
, t
)

= η

(
T
(
ω,
uv

4p

)
− T

(
ω,

u

2p

)
S
(
ω,

v

2p

)
− S

(
ω,

u

2p

)
T
(
ω,

v

2p

)
,
t

4p

)
≥ ψ

(
u

2p
, 0,

t

4p

)
→ 1,

for each u, v ∈ V , ω ∈ Ω and t > 0 and for all c ∈ T1 := {d ∈ C : |d| = 1}. Then,
R(ω, uv) = R(ω, u)ζ(ω, v) − ζ(ω, u)R(ω, v) for each u, v ∈ V , ω ∈ Ω. Thus the C-linear
random operator R : Ω× V → V is a rhom-derivation hold in (32) and (34). �

Corollary 5.2. Let (V, η, κM , κM ) be a FB-algebra, ρ > 1 and τ > 0. Suppose that T, S :
Ω× V → V is a random operators, where hold in

η(T (ω, c(u+ v))− c(T (ω, u)− T (ω, v)), t) (35)

≥ κM

(
η(σ(T (ω, u− v)− T (ω, u)− T (ω,−v)), t),

t

t+ τ(‖u‖ρ + ‖v‖ρ)

)
,

η(S(ω, c(u+ v))− c(S(ω, u)− S(ω, v)), t) (36)

≥ κM

(
η(σ(S(ω, u− v)− S(ω, u)− S(ω,−v)), t),

t

t+ τ(‖u‖ρ + ‖v‖ρ)

)
,

η(S(ω, uv)− S(ω, u)S(ω, v), t) ≥ t

t+ τ(‖u‖ρ + ‖v‖ρ)
, (37)

η(T (ω, uv)− T (ω, u)S(ω, v)− S(ω, u)T (ω, v), t) ≥ t

t+ τ(‖u‖ρ + ‖v‖ρ)
, (38)

almost every where for each u, v ∈ V , ω ∈ Ω and t > 0 and for all c ∈ T1 := {d ∈ C : |d| =
1}.

So, there is a unique random homomorphism ζ : Ω × V → V and a unique rhom-
derivation R : Ω× V → V such that

η(T (ω, u)−R(ω, u), t) ≥ (2− 22−ρ)t

(2− 22−ρ)t+ τ22−ρ‖u‖ρ
, (39)

η(S(ω, u)− ζ(ω, u), t) ≥ (2− 22−ρ)t

(2− 22−ρ)t+ τ22−ρ‖u‖ρ
, (40)

R(ω, uv) = R(ω, u)ζ(ω, v) + ζ(ω, u)R(ω, , v), (41)

almost every where for each u, v ∈ V , ω ∈ Ω, t > 0.

Proof. In Theorem 5.1 put ψ (u, u, t) = t
t+τ(‖u‖ρ+‖v‖ρ) for each u ∈ U and t > 0 and

β = 21−ρ. �

Theorem 5.3. Let (V, η, κM , κM ) be a FB-algebra. Let ϕ : V 2× (0,∞)→ J be a fuzzy map
such that such that there exists an β < 1 with

ψ (u, v, 4βt) ≥ ψ (u, v, 2βt) ≥ ψ
(u

2
,
v

2
, t
)

(42)

and

lim
p→∞

ψ (2pu, 2pv, 2pt) = lim
p→∞

ψ (2pu, 2pv, 4pt) = 1 (43)
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for all u, v ∈ U and t > 0. Suppose that T, S : Ω× V → V are odd random operator,
where satisfies in (28), (29), (30) and (31). So, there is a unique random homomorphism
ζ : Ω× V → V and a unique rhom-derivation R : Ω× V → V such that

η(T (ω, u)−R(ω, u), t) ≥ ψ (u, u, 2(1− β)t) , (44)

η(S(ω, u)− ζ(ω, u), t) ≥ ψ (u, u, 2(1− β)t) , (45)

R(ω, uv) = R(ω, u)ζ(ω, v) + ζ(ω, u)R(ω, v), (46)

almost every where for each u, v ∈ V , ω ∈ Ω, t > 0.

Proof. By similar method used in the proof of Theorem 5.1, we can get the results. �

Corollary 5.4. Let (V, η, κM , κM ) be a FB-algebra, ρ < 1 and τ > 0. Suppose that T, S :
Ω× V → V is a random operators, where hold in (35), (36), (37) and (38).

So, there is a unique random homomorphism ζ : Ω × V → V and a unique rhom-
derivation R : Ω× V → V such that

η(T (ω, u)−R(ω, u), t) ≥ (1− 21−ρ)t

(1− 21−ρ)t+ τ‖u‖ρ
, (47)

η(S(ω, u)− ζ(ω, u), t) ≥ (1− 21−ρ)t

(1− 21−ρ)t+ τ‖u‖ρ
, (48)

R(ω, uv) = R(ω, u)ζ(ω, v) + ζ(ω, u)R(ω, v), (49)

almost every where for each u, v ∈ V , ω ∈ Ω, t > 0.

Proof. In Theorem 5.3 put ψ (u, u, t) = t
t+τ(‖u‖ρ+‖v‖ρ) for each u ∈ U and t > 0 and

β = 2ρ−1. �
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