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In this paper, we establish necessary and sufficient optimality conditions

for (local) strongly isolated and (local) positively properly efficient solutions of a non-

smooth semi-infinite multiobjective fractional optimization problem with infinite number

of inequality constraints by employing some advanced tools of variational analysis and

generalized differentiation. Some non-trivial examples to justify the existence of opti-

mality theorems are provided.
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1. Introduction

The root of optimization theory is infiltrating under various other branches of applied

sciences at a fast pace. The analysis of mathematical problems of optimizing several ratios

of functions simultaneously are commonly known as multiobjective fractional programming

problems. The importance of such types of problems is well known in optimization theory

as they occur in enormous numbers of applications in science, economics and engineering.

Over the last decade, much research has been conducted on necessary/sufficient optimality

conditions and duality theorems for multiobjective fractional programming problems, which

are not necessarily smooth. For more details, we refer the interested reader to [1, 3, 5, 8,

14, 18, 19, 20, 27, 28, 29, 30, 31, 33].

During the most recent two decades, there has been a vastly fast evolution in subdiffer-

ential calculus of nonsmooth analysis which is well-recognized for its numerous applications

to optimization theory. The Mordukhovich subdifferential is a highly vital concept in non-

smooth analysis and closely related to optimality conditions of locally Lipschitzian functions

of optimization theory (see, [16, 24, 32]). The Mordukhovich subdifferential is a closed sub-

set of the Clarke subdifferential and these subdifferentials are in general nonconvex sets,

unlike the well-known Clarke subdifferentials. Therefore, keeping the importance of opti-

mization problems and its wide applications, the explanations of the optimality conditions
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and calculus rules in terms of Mordukhovich subdifferentials provide more sharp results than

those given in terms of the Clarke generalized gradient (see e.g., [22]). Chuong and Kim

[8] derived optimality conditions and duality relations that are expressed in terms of lim-

iting/Mordukhovich subdifferentials for nonsmooth multiobjective fractional programming

problems.

The specialty of a multiobjective fractional optimization problem is that its objective

functions are generally not convex functions. Indeed under all the more restrictive con-

cavity/convexity assumptions, multiobjective fractional optimization problems are generally

nonconvex ones. While, the (approximate) extremal principle [22], which plays a central role

in variational analysis and generalized differentiation, has been well-recognized as a varia-

tional counterpart of the separation theorem for nonconvex sets. Subsequently, utilizing the

extremal principle and other advanced techniques of variational analysis and generalized

differentiation to prove optimality conditions appears to be appropriate for nonconvex and

nonsmooth optimization problems.

Despite phenomenal research advance in several areas of optimization problems, we

observe that the field of optimization problems with finite number of variables and infin-

itely many constraints (called also semi-infinite optimization problems) seems to be still

less explored compared to the mathematical programming problem with a finite number of

constraints. Kanzi and Nobakhtian [17] introduced several kinds of constraint qualifications

of a nonsmooth multiobjective semi-infinite programming problem and discussed the opti-

mality conditions for efficient and weak efficient solutions of a nonsmooth multiobjective

semi-infinite programming problem. Choung and Yao [9] established optimality and duality

results for semi-infinite multiobjective optimization problem. Ardali and Nobakhtian [4]

studied the Fritz John and strong Kuhn-Tucker conditions for properly efficient and isolated

efficient solutions of a nonsmooth vector optimization problem. Sufficient conditions also

discussed under pseudoconvex sublevel sets. Very recently, Chuong [6] have supplied the

optimality conditions and studied duality relation for local (weakly) efficient solutions of a

nonsmooth fractional semi-infinite multiobjective optimization problem.

In this communication, motivated by the earlier works, we use the nonsmooth version

of Fermat’s rule, the sum rule for the Fréchet subdifferentials, and the sum rule as well

as the quotient rule for limiting/Mordukhovich subdifferentials given in [22, 23] to prove

necessary optimality theorems for (local) strongly isolated solutions and (local) positively

properly efficient solutions of a nonsmooth semi-infinite multiobjective fractional optimiza-

tion problem. Thereafter, we also give sufficient optimality theorems for such solutions to

the considered problem by assuming (local) convex functions and generalized convex func-

tions. Even though numerous deliberations have been done on this topic, it still remains a

very interesting and demanding area of research. There are several approaches developed in

the literature, see [2, 6, 15, 19, 20, 22, 23, 25] and the references therein.

The summary of the paper is as follows. Section 2 contains some basic definitions from

variational analysis and several auxiliary results, which will be needed later in the sequel.

Section 3 is devoted to the optimality conditions for (local) strongly isolated solutions and

(local) positively properly efficient solutions, respectively. The final Section 4 contains the

concluding remarks and further developments.
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2. Preliminaries

In this section, we recall a number of basic definitions, lemmas and some auxiliary

results which will be helpful in proving our mains results in the sequel of the paper.

Let Rn be the n-dimensional Euclidean space and Rn+ be its non-negative orthant.

Unless otherwise stated, all the spaces in this paper are required to be Asplund (i.e., Banach

spaces whose separable subspaces have separable duals), whose norms are denoted by ‖.‖.
Given a space X, its dual is denoted by X∗ and the canonical pairing between X and X∗ is

denoted by 〈., .〉. The symbol BX stands for the closed unit ball in X. As usual, the polar

cone of a set S ⊂ X is defined by S◦ = {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 0, ∀x ∈ S} and the notation

clS and intS represent the closure and respectively, the interior of S.

Definition 2.1 (Mordukhovich [22]). Given a multifunction F : X ⇒ X∗ between a Banach

space and its dual, the notation

Lim sup
x→x̄

F (x) = {x∗ ∈ X∗ : ∃ sequences xn → x̄ and x∗n
w∗→ x∗

with x∗n ∈ F (xn) for all n ∈ N}
signifies the sequential Painlevé-Kuratowski upper/outer limit of F as x→ x̄ with respect to

the norm topology of X and the weak∗ topology of X∗, where the notation
w∗→ indicates the

convergence in the weak∗ topology of X∗ and N denotes the set of all natural numbers.

A set S ⊂ X is locally closed if for each x̄ ∈ S, there is a neighborhood U of x̄ such

that S ∩ clU is closed.

Definition 2.2 (Mordukhovich [22]). Given a locally closed set S, define the set of normals

to S at x̄ ∈ S by

N̂(x̄, S) = {x∗ ∈ X∗ : Lim sup
x

S→x̄

〈x∗, x− x̄〉
‖x− x̄‖

≤ 0}, (2.1)

where x
S→ x̄ means that x → x̄ with x ∈ S. The set N̂(x̄, S) in (2.1) is a cone called the

Fréchet normal cone to S at x̄. If x̄ /∈ S, we put N̂(x̄, S) = ∅.

Definition 2.3 (Mordukhovich [22]). The limiting/Mordukhovich normal cone to S at x̄ ∈
S, denoted by N(x̄, S), is obtained from N̂(x, S) by taking the sequential Painlevé-Kuratowski

upper limits as

N(x̄, S) = Lim sup
x

S→x̄

N̂(x, S) (2.2)

If x̄ /∈ S, we put N(x̄, S) = ∅. Specially, when S is locally convex around x̄, i.e., there

is a neighborhood U ⊂ X of x̄ such that S ∩ U is convex, then it holds (see Mordukhovich

[22], Theorem 1.5) that

N(x̄, S) = {x∗ ∈ X∗ : 〈x∗, x− x̄〉 ≤ 0, ∀x ∈ S ∩ U}. (2.3)

Definition 2.4 (Mordukhovich [22]). The limiting/Mordukhovich subdifferential and the

Fréchet subdifferentials of an extended real-valued function ψ : X → R̄ = [−∞,∞], at

x̄ ∈ X with |ψ(x̄)| <∞ are respectively defined by

∂ψ(x̄) = {x∗ ∈ X∗ : (x∗,−1) ∈ N((x̄, ψ(x̄)), epiψ)} (2.4)

and

∂̂ψ(x̄) = {x∗ ∈ X∗ : (x∗,−1) ∈ N̂((x̄, ψ(x̄)), epiψ)}, (2.5)

where epiψ = {(x, α) ∈ X × R : α ≥ ψ(x)}.
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If |ψ(x̄)| = ∞, one puts ∂ψ(x̄) = ∂̂ψ(x̄) = ∅. We get by Definitions 2.2, 2.4 and 2.5

that for any x̄ ∈ X, ∂̂ψ(x̄) ⊂ ∂ψ(x̄). It is known (cf. Mordukhovich [22]) that when ψ

is a convex function, then the subdifferentials defined in (2.4) and (2.5) coincide with the

subdifferentials in the sense of convex analysis (cf. Rockafellar [26]).

The relation between the Mordukhovich normal cone and the Mordukhovich subdif-

ferential of the indicator function can be described as (see Mordukhovich [22], Proposition

1.79)

N(x̄, S) = ∂δ(x̄, S), ∀x̄ ∈ S, (2.6)

where δ(., S) is the indicator function associated with S given by

δ(x, S) =

{
0, x ∈ S
∞, otherwise,

The nonsmooth version of Fermat’s rule (see Mordukhovich [22], Proposition 1.114),

which is an important fact for many applications, can be formulated as follows: If x̄ is a

local minimizer for ψ : X → R̄, then

0 ∈ ∂̂ψ(x̄) ⊂ ∂ψ(x̄). (2.7)

We also consider the Fréchet upper subdifferential of ψ at x̄ with |ψ(x̄)| <∞, which

is defined by

∂̂+ψ(x̄) = −∂̂(−ψ)(x̄). (2.8)

The following Fréchet subdifferential sum rule is as follows.

Lemma 2.1 (Mordukhovich et al.[23], Theorem 3.1). Let ψi : X → R̄ be finite at x̄ ∈ X
for i = 1, 2. If ∂̂+ψ2(x̄) 6= ∅, then

∂̂(ψ1 + ψ2)(x̄) ⊂
⋂

x∗∈∂̂+ψ2(x̄)

[∂̂ψ1(x̄) + x∗].

Also, we recall the limiting subdifferential sum rule and the formula for the basic

subdifferential of maximum function.

Lemma 2.2 (Mordukhovich et al.[22], Theorem 3.36). Let ψi : X → R̄, i = 1, ..., n, n ≥ 2,

be lower semicontinous around x̄ ∈ X, and let all these functions, except possibly one, be

Lipschitz continuous around x̄. Then one has

∂(ψ1 + ψ2 + ...+ ψn)(x̄) ⊂ ∂ψ1(x̄) + ∂ψ2(x̄) + ...+ ∂ψn(x̄). (2.9)

Lemma 2.3 (Mordukhovich et al.[22], Theorem 3.46 (ii)). Let ψi : X → R̄ be lower semi-

continous around x̄ ∈ X for i ∈ I(x̄). Assume that each ψi is Lipschitz continuous around

x̄. Then

∂(max ψi)(x̄) ⊂
⋃∂( ∑

i∈I(x̄)

λiψi
)
(x̄) : (λ1, ..., λn) ∈ Π(x̄)

 ,

where the sets

I(x̄) = {i ∈ {1, ..., n} : ψ(x̄) = (max ψi)(x̄)},

Π(x̄) = {(λ1, ..., λn) : λi ≥ 0,

n∑
i=1

λi = 1, λi(ψ(x̄)− (max ψi)(x̄)) = 0}.

The following lemma which establishes the relation between the limiting subdifferen-

tial sum rule and the quotient rule (cf. Mordukhovich[22], Corollary 1.111(ii)) will play an

important role in our paper, for the proof.
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Lemma 2.4. Let ψi : X → R̄, i = 1, 2, be Lipschitz continuous around x̄. Assume that

ψ2(x̄) 6= 0. Then one has

∂

(
ψ1

ψ2

)
(x̄) ⊂ ∂ (ψ2(x̄)ψ1) (x̄) + ∂ (−ψ1(x̄)ψ2) (x̄)

[ψ2(x̄)]2
. (2.10)

In the sequel of the paper, assume that S is a nonempty locally closed subset of X,

and let J be an arbitrary (possibly infinite) index set.

The problem to be considered in the present analysis is the following semi-infinite

multiobjective fractional programming problem of the form:

(P) min
Rp

+

{
θ(x) =

(
f1(x)

g1(x)
, ...,

fp(x)

gp(x)

)
: x ∈ F

}
.

Here, the constraint set is defined by

F = {x ∈ S : hj(x) ≤ 0, j ∈ J}, (2.11)

and the functions fi, gi, i = 1, ..., p, and hj , j ∈ J , are locally Lipschitz on X. For the

purpose of convenience, we assume further that gi(x) > 0, i = 1, ..., p, for all x ∈ S, and

that fi(x̄) ≤ 0, i = 1, ..., p, for the reference point x̄ ∈ S. Hereafter, we use the notation

hJ = (hj)j∈J and θ = (θ1, θ2, ..., θp), where θi = fi
gi
, i = 1, ..., p.

By keeping in view, the definitions of local strongly isolated solution and local posi-

tively properly efficient solution in multiobjective optimization, given by Ginchev et al. [12]

and Göpfert et al. [13, p. 110], respectively, we present the following definitions.

Definition 2.5. (i) A point x̄ ∈ F is called a local efficient solution of problem (P) iff

there exists a neighborhood U of x̄ such that

∀x ∈ U ∩ F, θ(x)− θ(x̄) /∈ −Rp+ \ {0}.

(ii) A point x̄ ∈ F is called a local strongly isolated solution of problem (P) iff there exist a

neighborhood U of x̄ and a constant ν > 0 such that

∀x ∈ U ∩ F, max
1≤i≤p

{θi(x)− θi(x̄)} ≥ ν ‖x− x̄‖ .

(iii) A point x̄ ∈ F is called a local positively properly efficient solution of problem (P) iff

there exist a neighborhood U of x̄ and λ ∈ intRp+ such that

∀x ∈ U ∩ F, 〈λ, θ(x)〉 ≥ 〈λ, θ(x̄)〉 .

The set of local efficient solutions, local strongly isolated solutions, and local positively

properly efficient solutions of problem (P) are denoted by locE(P), locEiν(P), and locEp(P)

respectively. If U = X, one has the concepts of efficient solution, strongly isolated solution,

and positively properly efficient solution for problem (P), and in this case we denote these

solution sets by E(P), Eiν(P), and Ep(P) respectively.

It is known (see e.g., [11, 12]) that for our framework the inclusions

locEiν(P) ⊂ locE(P) and locEp(P) ⊂ locE(P)

are always valid, and the converse inclusions do not hold in general.

Let R(J)
+ be the collection of all the functions µ : J → R taking positive values µj only

at finitely many points of J , and equal to zero at other points. The set of active constraint

multipliers at x̄ ∈ S is defined by

Λ(x̄) = {µ ∈ R(J)
+ : µjhj(x̄) = 0, ∀j ∈ J}. (2.12)
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Definition 2.6 (Chuong and Yao[9]). Let x̄ ∈ F. We say that the limiting constraint

qualification (LCQ) is satisfied at x̄ iff

N(x̄,F) ⊂
⋃

µ∈Λ(x̄)

∑
j∈J

µj∂hj(x̄)

+N(x̄, S).

If we consider x̄ ∈ F, S = X, the above-defined (LCQ) is exactly the limiting con-

straint qualification introduced in [7] for fixed parameter. The reader is referred to [10] for

some sufficient conditions ensuring the (LCQ) in the case when hj is convex for all j ∈ J .

3. Optimality conditions

In this section, we derive necessary and sufficient conditions for local strongly isolated

solutions and local positively properly efficient solutions of problem (P).

Firstly, we give a necessary condition for local strongly isolated solutions of the prob-

lem (P) under the fulfillment of the (LCQ).

Theorem 3.1. Let the (LCQ), defined in Definition 2.6, be satisfied at x̄ ∈ F. If x̄ ∈
locEiν(P) for some ν > 0, then there exist λ = (λ1, ..., λp) ∈ intRp+ and µ ∈ Λ(x̄) such that

νBX∗ ⊂


p∑
i=1

λi
gi(x̄)

(
∂fi(x̄)− fi(x̄)

gi(x̄)
∂gi(x̄)

)
+
∑
j∈J

µj∂hj(x̄) : λi ≥ 0, i = 1, ..., p,

p∑
i=1

λi = 1, µ ∈ Λ(x̄)

}
+N(x̄, S).

(3.1)

Proof. Let x̄ ∈ locEiν(P). We define ψ(x) = max
1≤i≤p

{
fi(x)
gi(x) −

fi(x̄)
gi(x̄)

}
− ν ‖x− x̄‖, x ∈ X, and

consider the following scalar problem

min
x∈F

ψ(x) (3.2)

As x̄ ∈ locEiν(P), there exists a neighborhood U of x̄ such that

ψ(x) ≥ 0 = ψ(x̄), ∀x ∈ U ∩ F.

It means that x̄ is a local minimizer of problem (3.2). Thus x̄ is a local minimizer of the

following unconstrained scalar optimization problem

min
x∈X

ψ(x) + δ(x,F).

By using (2.7), the above defined problem can be rewritten as

0 ∈ ∂̂(ψ + δ(.,F))(x̄). (3.3)

Set ψ1(x) = max
1≤i≤p

{
fi(x)
gi(x) −

fi(x̄)
gi(x̄)

}
+ δ(x,F) and ψ2(x) = −ν ‖x− x̄‖. Then ψ(x) + δ(.,F) =

ψ1(x) + ψ2(x) and therefore, we get by (3.3) that

0 ∈ ∂̂(ψ1 + ψ2)(x̄). (3.4)

It is easy to see that −ψ2 is convex function, thus

∂̂+ψ2(x̄) = −∂̂+(−ψ2)(x̄) = −∂(ν ‖.− x̄‖)(x̄) = νBX∗ 6= ∅.
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Now, invoking Lemma 2.1 and taking (3.3) into account, we get

0 ∈
⋂

x∗∈νBX∗

[∂̂ψ1(x̄) + x∗].

This entails that νBX∗ ⊂ ∂ψ1(x̄), and thus

νBX∗ ⊂ ∂ψ1(x̄) = ∂

(
max

1≤i≤p

{
fi(x)

gi(x)
− fi(x̄)

gi(x̄)

}
+ δ(.,F)

)
(x̄). (3.5)

As the function max
1≤i≤p

{
fi(x)
gi(x) −

fi(x̄)
gi(x̄)

}
is Lipschitz continuous around x̄ and the function

δ(.,F) is lower semicontinuous around this point, it follows from the sum rule (cf. Mordukhovich[22],

Theorem 3.36) applied to (3.5) and from the relation in (2.6) that

νBX∗ ⊂ ∂
(

max
1≤i≤p

{
fi(x)

gi(x)
− fi(x̄)

gi(x̄)

})
(x̄) +N(x̄,F). (3.6)

On one hand, applying Lemma 2.2 and Lemma 2.3, we obtain

∂

(
max

1≤i≤p

{
fi
gi

(.)− fi(x̄)

gi(x̄)

})
(x̄) ⊂

{
p∑
i=1

λi∂

(
fi
gi

)
(x̄) : λi ≥ 0, i = 1, ..., p,

p∑
i=1

λi = 1

}
,

which by using (2.10), yields

∂

(
max

1≤i≤p

{
fi
gi

(.)− fi(x̄)

gi(x̄)

})
(x̄) ⊂

{
p∑
i=1

λi
∂(gi(x̄)fi)(x̄) + ∂(−fi(x̄)gi)(x̄)

[gi(x̄)]2
: λi ≥ 0,

i = 1, ..., p,

p∑
i=1

λi = 1

}

=

{
p∑
i=1

λi
gi(x̄)∂fi(x̄)− fi(x̄)∂gi(x̄)

[gi(x̄)]2
: λi ≥ 0, i = 1, ..., p,

p∑
i=1

λi = 1

}
, (3.7)

where the equality holds due to the fact that −fi(x̄) ≥ 0, gi(x̄) > 0 for i = 1, ..., p.

On the other hand, the (LCQ) being satisfied at x̄ entails that

N(x̄,F) ⊂
⋃

µ∈Λ(x̄)

∑
j∈J

µj∂hj(x̄)

+N(x̄, S), (3.8)

where the set Λ(x̄) is defined in (2.12). It follows from (3.6)-(3.8) that

νBX∗ ⊂


p∑
i=1

λi
gi(x̄)

(
∂fi(x̄)− fi(x̄)

gi(x̄)
∂gi(x̄)

)
+
∑
j∈J

µj∂hj(x̄) : λi ≥ 0, i = 1, ..., p,

p∑
i=1

λi = 1, µ ∈ Λ(x̄)

}
+N(x̄, S),

which completes the proof. �

Now, we give an example to show that the conclusion of the above Theorem 3.1. may

fail to hold if the (LCQ) is not satisfied at the point under consideration.
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Example 3.1. Let θ : R→ R2 be defined by θ(x) =
(
f1(x)
g1(x) ,

f2(x)
g2(x)

)
, where

f1(x) = x3, f2(x) = x− x2, g1(x) = g2(x) = |x|+ 1, x ∈ R,

and let hj : R→ R be given by

hj(x) = −jx2, x ∈ R, j ∈ J = (−∞, 0).

We consider problem (P) with p = 2 and S = (−∞, 0] ⊂ R. Then F = {0}, and thus

x̄ = 0 ∈ locEiν(P) for any arbitrary ν > 0. Since N(x̄, S) = [0,∞) and ∂hj(x̄) = 0 for all

j ∈ J , we have ⋃
µ∈Λ(x̄)

∑
j∈J

µj∂hj(x̄)

+N(x̄, S) = [0,∞),

while N(x̄,F) = R. Hence, the (LCQ) is not satisfied at x̄. In fact, (3.1) fails to hold.

Let f = (f1, ..., fp) and g = (g1, ..., gp). In the next theorem to formulate sufficient

conditions for local strongly isolated solutions of problem (P), we need to define local con-

vexity for a family of functions.

Definition 3.1. We say that the family of functions hJ = (hj)j∈J is locally convex at x̄ ∈ S
iff there exists a neighborhood U of x̄ such that S ∩ U is a convex set and hj , j ∈ J , are

convex functions on S ∩ U .

Theorem 3.2. Let x̄ ∈ F be a feasible solution satisfying (3.1) for some ν > 0. Assume

that (f, g, hJ) is locally convex at x̄. Then x̄ ∈ locEiν(P).

Proof. Let x̄ ∈ F be a feasible solution satisfying (3.1) for some ν > 0. As (f, g, hJ) is

locally convex at x̄, it follows that there exist a neighborhood U of x̄ such that U ∩ S it is

a convex set and fi, gi, i = 1, ..., p, hj , j ∈ J , are convex functions on U ∩ S. Note that, for

any y ∈ X, we have

‖y‖ = max
y∗∈BX∗

〈y∗, y〉 ,

and thus there is y∗ ∈ BX∗ such that ‖y‖ = 〈y∗, y〉.
Now, we arbitrarily choose x ∈ U ∩ F. Then there exists x∗ ∈ BX∗ such that

‖x− x̄‖ = 〈x∗, x− x̄〉 . (3.9)

Since x̄ ∈ F satisfies (3.1), there exist λi ≥ 0, i = 1, ..., p with
p∑
i=1

λi = 1, µ ∈ Λ(x̄) and

u∗i ∈ ∂fi(x̄), v∗i ∈ ∂gi(x̄), i = 1, ..., p, ξ∗j ∈ ∂hj(x̄), j ∈ J such that

νx∗ −

 p∑
i=1

λi
gi(x̄)

(
u∗i −

fi(x̄)

gi(x̄)
v∗i

)
+
∑
j∈J

µjξ
∗
j

 ∈ N(x̄, S).

It follows by (2.3) that

ν 〈x∗, x− x̄〉 −

 p∑
i=1

λi
gi(x̄)

(
〈u∗i , x− x̄〉 −

fi(x̄)

gi(x̄)
〈v∗i , x− x̄〉

)
+
∑
j∈J

µj
〈
ξ∗j , x− x̄

〉 ≤ 0,
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which by the local convexity of (f, g, hJ) at x̄ and equality (3.9), yields

ν ‖x− x̄‖ ≤
p∑
i=1

λi
gi(x̄)

[
fi(x)− fi(x̄)− fi(x̄)

gi(x̄)
(gi(x)− gi(x̄))

]
+
∑
j∈J

µj(hj(x)− hj(x̄))

=

p∑
i=1

λi
gi(x̄)

(
fi(x)− fi(x̄)

gi(x̄)
gi(x)

)
+
∑
j∈J

µj(hj(x)− hj(x̄))

≤
p∑
i=1

λi
gi(x̄)

(
fi(x)− fi(x̄)

gi(x̄)
gi(x)

)
,

Since µjhj(x̄) = 0, and µjhj(x) ≤ 0 for all j ∈ J , therefore

ν ‖x− x̄‖ ≤
p∑
i=1

λi
gi(x̄)

(
fi(x)− fi(x̄)

gi(x̄)
gi(x)

)
≤

p∑
i=1

λi max
1≤i≤p

{
1

gi(x̄)

(
fi(x)− fi(x̄)

gi(x̄)
gi(x)

)}
= max

1≤i≤p

{
gi(x)

gi(x̄)
(θi(x)− θi(x̄))

}
.

This implies that

ν
′
‖x− x̄‖ ≤ max

1≤i≤p
{(θi(x)− θi(x̄))} ,

where ν
′

= ν
γ and γ = max

{
gi(x)
gi(x̄) : 1 ≤ i ≤ p, x ∈ U ∩ F

}
> 0. This shows that x̄ ∈

locEiν(P) because x was arbitrarily chosen in U ∩ F. �

The following example asserts the importance of the local convexity of the objective

function (f, g) imposed in the above theorem. Namely, a feasible point x̄ satisfying (3.1)

is not necessarily a local strongly isolated solution of problem (P) if the local convexity of

(f, g) at x̄ is violated.

Example 3.2. Let θ : R2 → R2 be defined by θ(x) =
(
f1(x)
g1(x) ,

f2(x)
g2(x)

)
, where

f1(x) = max{0,−|x1|}, f2(x) = −x2
1 − |x2|,

g1(x) = g2(x) = x2
1 + x2

2 + 1, x = (x1, x2) ∈ R2,

and let hj : R2 → R be given by

hj(x) = j(x2
1 + x2

2), x = (x1, x2) ∈ R2, j ∈ J = (−∞, 0).

Let us consider problem (P) with p = 2, and S = R2. Then F = S. Note that f1, f2, g1, g2

are locally Lipschitz at x̄ = (x̄1, x̄2) = (0, 0) ∈ F, and ∂f1(x̄) = [−1, 1] × {0}, ∂f2(x̄) =

{0} × [−1, 1], ∂g1(x̄) = ∂g2(x̄) = {(0, 0)}, N(x̄, S) = {(0, 0)}. Thus, we have

νBX∗ = {x ∈ R2 : x2
1 + x2

2 ≤ ν2}

and 
p∑
i=1

λi
gi(x̄)

(
∂fi(x̄)− fi(x̄)

gi(x̄)
∂gi(x̄)

)
+
∑
j∈J

µj∂hj(x̄) : λi ≥ 0, i = 1, ..., p,

p∑
i=1

λi = 1, µ ∈ Λ(x̄)

}
+N(x̄, S)

= {x ∈ R2 : |x1 + x2| ≤ 1},
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which implies that (3.1) holds for any ν ∈ (0, 1]. However, x̄ /∈ locEiν(P). The reason is

that (f1, f2, g1, g2) is not locally convex at x̄.

The next theorem provides a necessary condition for local positively properly efficient

solutions of problem (P) under the fulfillment of the (LCQ) defined in Definition 2.6.

Theorem 3.3. Let the (LCQ) be satisfied at x̄ ∈ F. If x̄ ∈ locEp(P), then there exist

λ = (λ1, ..., λp) ∈ intRp+ and µ ∈ Λ(x̄) such that

0 ∈
p∑
i=1

λi
gi(x̄)

(
∂fi(x̄)− fi(x̄)

gi(x̄)
∂gi(x̄)

)
+
∑
j∈J

µj∂hj(x̄) +N(x̄, S). (3.10)

Proof. Let x̄ ∈ locEp(P). Then there exists a neighborhood U of x̄ and λ = (λ1, ..., λp) ∈
intRp+ such that

p∑
i=1

λi

[
fi(x)

gi(x)
− fi(x̄)

gi(x̄)

]
≥ 0, ∀x ∈ U ∩ F.

It means that x̄ is a local minimizer of the following scalar optimization problem

min
x∈F

φ(x),

where

φ(x) =

p∑
i=1

λi
fi(x)

gi(x)
. (3.11)

Thus x̄ is a local minimizer of the following unconstrained optimization problem

min
x∈X

φ(x) + δ(x,F).

By using (2.7), the above defined problem can be rewritten as

0 ∈ ∂̂(φ+ δ(.,F))(x̄). (3.12)

As the function φ is Lipschitz continuous around x̄ and the function δ(.,F) is lower semi-

continuous around this point, it follows from the sum rule (cf. Mordukhovich[22], Theorem

3.36) applied to (3.12) and from the relation in (2.6) that

0 ∈ ∂φ(x̄) + ∂δ(x̄,F) = ∂φ(x̄) +N(x̄,F). (3.13)

In addition, from Lemma 2.2

∂φ(x̄) = ∂

(
p∑
i=1

λi
fi
gi

(.)

)
(x̄)

⊂
p∑
i=1

λi∂

(
fi
gi

)
(x̄),

which by using (2.10), yields

∂φ(x̄) ⊂
p∑
i=1

λi
∂(gi(x̄)fi)(x̄) + ∂(−fi(x̄)gi)(x̄)

[gi(x̄)]2

=

p∑
i=1

λi
gi(x̄)∂fi(x̄)− fi(x̄)∂gi(x̄)

[gi(x̄)]2
, (3.14)
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where the equality holds due to the fact that −fi(x̄) ≥ 0, gi(x̄) > 0 for i = 1, ..., p.

On the other hand, the (LCQ) being satisfied at x̄ entails that

N(x̄,F) ⊂
⋃

µ∈Λ(x̄)

∑
j∈J

µj∂hj(x̄)

+N(x̄, S), (3.15)

where Λ(x̄) is the set defined in (2.12). It follows from (3.13)-(3.15) that

0 ∈
p∑
i=1

λi
gi(x̄)

(
∂fi(x̄)− fi(x̄)

gi(x̄)
∂gi(x̄)

)
+
∑
j∈J

µj∂hj(x̄) +N(x̄, S),

for some µ ∈ Λ(x̄), which completes the proof. �

Remark 3.1. Similarly, as shown in Example 3.1, the conclusion of Theorem 3.3 might

fail if the considered (LCQ) is not satisfied at the point under consideration.

To establish sufficient conditions for (global) positively properly efficient solutions of

problem (P), in the next theorem, we need concept of generalized convexity for a family of

locally Lipschitz functions.

Definition 3.2 (Chuong [6]). We say that (θ, hJ) is generalized convex on S at x̄ ∈ S if

for any x ∈ S, u∗i ∈ ∂fi(x̄), v∗i ∈ ∂gi(x̄), i = 1, ..., p, and ξ∗j ∈ ∂hj(x̄), j ∈ J there exists

ω ∈ N(x̄, S)◦ such that

fi(x)− fi(x̄) ≥ 〈u∗i , ω〉 , i = 1, ..., p,

gi(x)− gi(x̄) ≥ 〈v∗i , ω〉 , i = 1, ..., p,

hj(x)− hj(x̄) ≥
〈
ξ∗j , ω

〉
, j ∈ J.

Theorem 3.4. Let x̄ ∈ F, and let (θ, hJ) be generalized convex on S at x̄. If x̄ satisfies

(3.10), then x̄ ∈ locEp(P).

Proof. Suppose that there exist λ = (λ1, ..., λp) ∈ intRp+ and µ ∈ Λ(x̄) such that (3.10)

holds. Then there exist u∗i ∈ ∂fi(x̄), v∗i ∈ ∂gi(x̄), i = 1, ..., p, and ξ∗j ∈ ∂hj(x̄), j ∈ J such

that

−

 p∑
i=1

λi
gi(x̄)

(
u∗i −

fi(x̄)

gi(x̄)
v∗i

)
+
∑
j∈J

µjξ
∗
j

 ∈ N(x̄, S),

which by the definition of the polar cone and the generalized convexity of (θ, hJ), it follows

that for each x ∈ S, there is ω ∈ N(x̄, S)◦ such that

0 ≤
p∑
i=1

λi
gi(x̄)

(
〈u∗i , ω〉 −

fi(x̄)

gi(x̄)
〈v∗i , ω〉

)
+
∑
j∈J

µj
〈
ξ∗j , ω

〉
≤

p∑
i=1

λi
gi(x̄)

[
fi(x)− fi(x̄)− fi(x̄)

gi(x̄)
(gi(x)− gi(x̄))

]
+
∑
j∈J

µj(hj(x)− hj(x̄))

=

p∑
i=1

λi
gi(x̄)

(
fi(x)− fi(x̄)

gi(x̄)
gi(x)

)
+
∑
j∈J

µj(hj(x)− hj(x̄)).

Hence,

0 ≤
p∑
i=1

λi
gi(x̄)

(
fi(x)− fi(x̄)

gi(x̄)
gi(x)

)
+
∑
j∈J

µj(hj(x)− hj(x̄)). (3.16)
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In addition, it holds that ∑
j∈J

µj(hj(x)− hj(x̄)) ≤ 0,

due to the fact that µjhj(x̄) = 0, and µjhj(x) ≤ 0 for all j ∈ J . So, we get by (3.16) that

0 ≤
p∑
i=1

λi
gi(x̄)

(
fi(x)− fi(x̄)

gi(x̄)
gi(x)

)
.

The above inequality is equivalent to the following one
p∑
i=1

λi
fi(x̄)

gi(x̄)
≤

p∑
i=1

λi
fi(x)

gi(x)
,

which shows that x̄ ∈ locEp(P). The proof is complete. �

A point satisfying (3.10) is not necessarily a global positively properly efficient solution

of problem (P) even in the smooth case if the generalized convex on S at the reference point

of (θ, hJ) has been dropped. It is illustrated by the following simple example.

Example 3.3. Let θ : R→ R2 be defined by θ(x) =
(
f1(x)
g1(x) ,

f2(x)
g2(x)

)
, where

f1(x) = f2(x) = − arctan |x|, g1(x) = xex + 1, g2(x) = x2 + 1, x ∈ R,

and let hj : R→ R be given by

hj(x) = jx3, x ∈ R, j ∈ J = (−∞, 0).

Consider problem (P) with p = 2 and S = R. Then F = [0,∞) and thus, x̄ = 0 ∈ F.

Observe that x̄ satisfies (3.10). However, x̄ /∈ locEp(P).

4. Conclusions

In this paper, we have established necessary optimality conditions for (local) strongly

isolated solutions and (local) positively properly efficient solutions of a nonsmooth semi-

infinite multiobjective fractional optimization problem. Sufficient optimality conditions for

the existence of such solutions have also been discussed under the assumptions of (local)

convexity or generalized convexity. A dual problem for the primal problem can be presented,

and weak and strong duality relations under the generalized convex assumptions can be

derived. We will extend the results established in the paper to a larger class of nonsmooth

variational and nonsmooth control multiobjective optimization problems. This will orient

the future research of the authors.
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