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THREE-STEP ITERATIVE ALGORITHM FOR MULTIVALUED

NONEPANSIVE MAPPINGS IN CAT(κ) SPACES

G. S. Saluja1

We study a three-step iteration process for multivalued nonexpansive map-

pings and establish some strong convergence theorems and a ∆-convergence theorem for

the iteration scheme and mappings in the setting of a CAT(κ) space with κ > 0. Our
results continue in a natural way the study of Abbas and Nazir in [Mat. Vesnik 66(2)

(2014), 223-234].
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1. Introduction

A CAT(κ) space is a geodesic metric space whose geodesic triangle is thinner than
the corresponding comparison triangle in a model space with curvature κ for κ ∈ R. The
terminology CAT(κ) spaces was introduced by Gromov in [12]. In recent years, CAT(κ)
spaces are studied by many researchers, these one playing an important role in different
aspects of geometry. A very wide discussion on these spaces and the role they play in
geometry can be found in the monograph by. Bridson and Haefliger [5]

The study of fixed points for multivalued contraction mappings using the Hausdorff
metric was initiated by Nadler [24]. Fixed point theory in CAT(κ) space was initiated by
Kirk (see [16, 17]). His works were followed by a series of new works by many authors,
mainly focusing on CAT(0) spaces (see, e.g., [4, 7, 8, 9, 11, 20, 21]). We underline that the
results in CAT(0) spaces can be applied to any CAT(κ) space with κ ≤ 0 since any CAT(κ)
space is a CAT(κ′) space for every κ′ ≥ κ, see [5].

In 2011, Piatek in [28] proved that the sequence generated by the Halpern scheme
converges to a fixed point in the complete CAT(κ) spaces. In 2012, He et al. [13] proved
that the sequence defined by Mann’s algorithm ∆-converges to a fixed point in complete
CAT(κ) spaces. Recently, Rashwan and Altwqi [30], studied the sequence defined by SP-
iterative scheme for multivalued nonexpansive mappings and proved that the above said
scheme strong and ∆-converges to common fixed points in the setting of CAT(κ) spaces.

The concept of ∆-convergence in a general metric space was introduced by Lim [22].
In 2008, Kirk and Panyanak [18] used the notion of ∆-convergence introduced by Lim [22] to
prove in the CAT(0) space and analogous of some Banach space results which involve weak
convergence. Further, Dhompongsa and Panyanak [10] obtained ∆-convergence theorems
for the Picard, Mann and Ishikawa iterations in a CAT(0) space. Since then, the existence
problem and the ∆-convergence problem of iterative sequences to a fixed point and common
fixed points for different classes of mappings have been rapidly developed in the framework
of CAT(0) space and many papers have appeared in this direction: see, e.g., [1, 7, 10, 15,
19, 25, 31, 32, 33, 34, 36, 37, 38, 41].
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2. Preliminaries

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or a geodesic
from x1 to x2) is a map c from a closed interval [0, l] ⊂ R to ρ such that c(0) = x1, c(l) = x2
and d(c(t), c(t′)) = |t−t′| for all t, t′ ∈ [0, l]. In particular, c is an isometry, and d(x1, x2) = l.
The image α of c is called a geodesic (or metric) segment joining x1 and x2. We say that
X is (i) a geodesic space if any two points of X are joined by a geodesic and (ii) a uniquely
geodesic if there is exactly one geodesic joining x1 and x2 for each x1, x2 ∈ X, which we will
denote by [x1, x2], called the segment joining x1 to x2. This means that z ∈ [x1, x2] if and
only if d(x1, z) = (1− α)d(x1, x2) and d(x2, z) = αd(x1, x2).

In this case, we write z = αx1 ⊕ (1− α)x2. The space (X, d) is said to be a geodesic
space (D-geodesic space) if every two points of ρ (every two points of distance smaller than
D) are joined by a geodesic, and X is said to be uniquely geodesic (D-uniquely geodesic)
if there is exactly one geodesic joining x1 and x2 for each x1, x2 ∈ X (for x1, x2 ∈ X with
d(x1, x2) < D). A subset K of X is said to be convex if K includes every geodesic segment
joining any two of its points. The set K is said to be bounded if diam(K) := sup{d(x1, x2) :
x1, x2 ∈ K} <∞.

The model spaces M2
k are defined as follows.

Definition 2.1. Given a real number κ, we denote by M2
κ the following metric spaces:

(i) if κ = 0 then M2
κ is Euclidean space En;

(ii) if κ > 0 then M2
κ is obtained from the sphere Sn by multiplying the distance

function by 1√
κ

;

(iii) if κ < 0 then M2
κ is obtained from hyperbolic space Hn by by multiplying the

distance function by 1√
−κ .

The metric space (X, d) is called a CAT(κ) space if it is Dκ-geodesic and any geodesic
triangle in X of perimeter less than 2Dκ satisfies the CAT(κ) inequality.

A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) consists of three
points in X (the vertices of 4) and a geodesic segment between each pair of vertices (the
edges of 4). A comparison triangle for geodesic triangle 4(x1, x2, x3) in (X, d) is a tri-
angle 4(x1, x2, x3) := 4(x1, x2, x3) in M2

κ such that d(x1, x2) = dM2
κ
(x1, x2), d(x2, x3) =

dM2
κ
(x2, x3) and d(x3, x1) = dM2

κ
(x3, x1). If k ≤ 0, then such a comparison triangle always

exists in M2
κ. If κ > 0, then such a triangle exists whenever d(x1, x2)+d(x2, x3)+d(x3, x1) <

2Dκ, where Dκ = π/
√
κ. A point p̄ ∈ [x̄, ȳ] is called a comparison point for p ∈ [x, y] if

d(x, p) = dM2
κ
(x̄, p̄).

A geodesic triangle 4(x1, x2, x3) in X is said to satisfy the CAT(κ) inequality if
for any p, q ∈ 4(x1, x2, x3) and for their comparison points p̄, q̄ ∈ 4(x̄1, x̄2, x̄3), one has
d(p, q) = dM2

κ
(p, q).

Definition 2.2. If κ ≤ 0, then X is called a CAT(κ) space if and only if X is a geodesic
space such that all of its geodesic triangles satisfy the CAT(κ) inequality.

If κ > 0, then X is called a CAT(κ) space if and only if X is Dκ-geodesic and any
geodesic triangle 4(x1, x2, x3) in X with d(x1, x2) +d(x2, x3) +d(x3, x1) < 2Dκ satisfies the
CAT(κ) inequality.

Notice that in a CAT(0) space (X, d) if x, y, z ∈ X, then the CAT(0) inequality implies

d2
(
x,
y ⊕ z

2

)
≤ 1

2
d2(x, y) +

1

2
d2(x, z)− 1

4
d2(y, z). (CN)

The above introduced (CN) is inequality of Bruhat and Tits [6]. This inequality is extended
by Dhompongsa and Panyanak in [10] as

d2(z, αx⊕ (1− α)y) ≤ αd2(z, x) + (1− α)d2(z, y)− α(1− α)d2(x, y) (CN∗)
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for all α ∈ [0, 1] and x, y, z ∈ X. In fact, if X is a geodesic space, then the following
statements are equivalent:

(i) X is a CAT(0);
(ii) X satisfies (CN) inequality;
(iii) X satisfies (CN∗) inequality.
Let R ∈ (0, 2]. Recall that a geodesic space (X, d) is said to be R-convex for R (see

[27]) if for any three points x, y, z ∈ X, we have

d2(z, αx⊕ (1− α)y) ≤ αd2(z, x) + (1− α)d2(z, y)− R

2
α(1− α)d2(x, y). (1)

It follows from (CN∗) that a geodesic space (X, d) is a CAT(0) space if and only if (X, d) is
R-convex for R=2.

R-trees are a particular class of CAT(κ) spaces for any real κ which will be named at
certain points of our exposition (see [5], pg. 167 for more details).

Definition 2.3. An R-tree is a metric space X such that:
(i) it is uniquely geodesic metric space,
(ii) if x, y and z ∈ X are such that [y, x] ∩ [x, z] = {x}, then [y, x] ∪ [x, z] = [y, z].

Therefore the family of all closed convex subset of a CAT(κ) space has uniform normal
structure in the usual metric (or Banach space) sense.

We now recall the following elementary facts about CAT(κ) spaces. Most of them
are proved in the framework of CAT(1) spaces. For completeness, we state the results in
CAT(κ) space with κ > 0.

Let {xn} be a bounded sequence in a CAT(κ) space (X, d). For x ∈ X, set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X}
and the asymptotic center A({xn}) of {xn} is the set

A({xn}) =
{
x ∈ X : r({xn}) = r(x, {xn})

}
.

It is known from Proposition 4.1 of [11] that in a CAT(κ) space with diam(X) = π
2
√
κ

,

A({xn}) consists of exactly one point. We now give the concept of ∆-convergence and collect
some of its basic properties.

Definition 2.4 ([18, 22]). A sequence {xn} in X is said to ∆-converge to x ∈ X if x is the
unique asymptotic center of {xn} for every subsequence {un} of {xn}. In this case we write
∆-limn xn = x and call x is the ∆-limit of {xn}.

Definition 2.5. A mapping T : X → CC(X) is called hemi-compact if for any sequence
{xn} in X such that d(xn,Txn) → 0 as n → ∞, there exists a subsequence {xnj} of {xn}
such that xnj → p ∈ X.

Definition 2.6. Let ϕ be a nondecreasing self-map on [0,∞) with ϕ(0) = 0 and ϕ(r) > 0
for all r ∈ (0,∞) and let d(x,F) = inf{d(x, y) : y ∈ F}. Let T1,T2,T3 : K → CC(K) be
three multivalued maps with F = F (T1)∩F (T2)∩F (T3) 6= ∅. Then the three maps are said
to satisfy condition (GI) if

d(x,T1x) ≥ ϕ(d(x,F)) or d(x,T2x) ≥ ϕ(d(x,F)) or d(x,T3x) ≥ ϕ(d(x,F))

Recall that a subset K in a metric space X is said to be ∆-compact [22] if every
sequence in K has a ∆-convergent subsequence. A mapping T from a metric space X to a
metric space Y is said to be completely continuous if T(K) is a compact subset of Y whenever
K is a ∆-compact subset of X.
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A subset K of X is said to be convex if K includes every geodesic segment joining any
two of its points. A subset K is called proximal if for each x ∈ X, there exists an element
κ ∈ K such that d(x, κ) = inf{‖x− y‖ : y ∈ K} = d(x,K). We know that a weakly compact
convex subset of a Banach space and closed convex subsets of a uniformly convex Banach
space are proximal.

We shall denote CC(K), C(K) and P (K) by the families of all nonempty closed and
convex subsets, nonempty compact subsets and nonempty proximal subsets of K, respec-
tively. Let H denote the Hausdorff metric induced by the metric d of X, that is,

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)}

for every A,B ∈ CC(X), where d(x,B) = inf{‖x− y‖ : y ∈ B}.

A multivalued mapping T : K → CC(K) is said to be a contraction if there exists a
constant t ∈ [0, 1) such that for any x, y ∈ K,

H(Tx,Ty) ≤ t d(x, y),

and T is said to be nonexpansive if

H(Tx,Ty) ≤ d(x, y),

for all x, y ∈ K. A point x ∈ K is called a fixed point of T if x ∈ Tx. Denote the set of all
fixed points of T by F (T).

Throughout this paper, we suppose that κ > 0 and (X, d) is a CAT(κ) space with the
property:

diam(X) =
π/2− ε√

κ
, for some ε ∈ (0, π/2). (p)

In the sequel we need the following lemmas.

Lemma 2.1 ([5], p.176). Let κ > 0 and (X, d) be a complete CAT(κ) space with property
(p). Then

d((1− α)x⊕ α y, z) ≤ (1− α)d(x, z) + αd(y, z)

for all x, y, z ∈ X and α ∈ [0, 1].

Lemma 2.2. Let κ > 0 and (X, d) be a complete CAT(κ) space with property (p). Then the
following statements hold:

(i) ([11], Corollary 4.4) Every sequence in X has a ∆-convergent subsequence.
(ii) ([11], Proposition 4.5) If {xn} ⊆ X and ∆-limn→∞ xn = x, then x ∈

⋂∞
k=1

conv{xk, xk+1, . . . }, where conv(A) =
⋂
{B : B ⊇ Aand B is closed and convex}.

By the uniqueness of asymptotic center, we can obtain the following lemma in ([10]).

Lemma 2.3 ([10], Lemma 2.8). Let κ > 0 and (X, d) be a complete CAT(κ) space with
property (p). If {xn} is a bounded sequence in X with A({xn}) = {x} and {un} is a
subsequence of {xn} with A({un}) = {u} and the sequence {d(xn, u)} converges, then x = u.

Lemma 2.4 ([30], Theorem 4.5). Let K be a nonempty closed convex subset of a complete
CAT(κ) space X with κ > 0 and rad(K) < π

2
√
κ

and let T : K→ CC(K) satisfying condition

(I). If {xn} be the sequence in K defined by{
x1 = x ∈ K,

xn+1 = (1− αn)xn ⊕ αnun, n ≥ 1,

where un ∈ Txn and {αn} ∈ [0, 1] such that limn→∞ d(xn,Txn) = 0 and ∆-limn→∞ xn = v,
then v ∈ Tv.
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Lemma 2.5 ([40]). Let {pn}∞n=1, {qn}∞n=1 and {rn}∞n=1 be sequences of nonnegative numbers
satisfying the inequality

pn+1 ≤ (1 + qn)pn + rn, ∀n ≥ 1.

If
∑∞
n=1 qn <∞ and

∑∞
n=1 rn <∞, then limn→∞ pn exists.

Proposition 2.1 ([25], Proposition 3.12). Let {xn} be a bounded sequence in a CAT(0) space
X, and let K be a closed convex subset of X which contains {xn}. Then

(i) ∆-limn→∞ xn = x implies that xn ⇀ x,
(ii) the converse is true if {xn} is regular.

For single valued mappings, we list some relevant iterative processes.
In 1953, Mann [23] introduced the following iteration process for single valued map-

ping.
Algorithm 1. The sequence {xn} is defined as follows:{

x1 = x ∈ K,

xn+1 = (1− αn)xn + αnTxn, n ≥ 1,

where {αn} is a sequence in [0, 1].
In 1974, Ishikawa [14] introduced a new iteration process for single valued nonexpan-

sive mappings in Banach space.
Algorithm 2. The sequence {xn} is defined as follows:

x1 = x ∈ K,

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn, n ≥ 1,

where {αn} and {βn} are real sequences in [0, 1]. This iteration scheme reduces to the Mann
iteration process when βn = 0 for all n ≥ 1.

In 2007, Agarwal et al. [3] introduced and studied the following iteration process for
single valued mappings.

Algorithm 3. The sequence {xn} is defined as follows:
x1 = x ∈ K,

xn+1 = (1− αn)Txn + αnTyn,

yn = (1− βn)xn + βnTxn, n ≥ 1,

where {αn} and {βn} are real sequences in [0, 1].
In 2000, Noor [26] introduced a three-step iteration process for single valued nonex-

pansive mappings in Banach space.
Algorithm 4. The sequence {xn} is defined as follows:

x1 = x ∈ K,

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTzn,

zn = (1− γn)xn + γnTxn, n ≥ 1,

where {αn}, {βn} and {γn} are real sequences in [0, 1].
In 2011, Phuengrattana and Suantai [29] defined the following three-step iteration

process for single valued mappings.
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Algorithm 5. The sequence {xn} is defined as follows:
x1 = x ∈ K,

xn+1 = (1− αn)yn + αnTyn,

yn = (1− βn)xn + βnTzn,

zn = (1− γn)xn + γnTxn, n ≥ 1,

where {αn}, {βn} and {γn} are real sequences in [0, 1].
Recently, Abbas and Nazir [2] introduced and studied the following iteration scheme:

let K be a nonempty subset of a Banach space X and T be a nonlinear mapping of K into
itself.

Algorithm 6. The sequence {xn} is defined as follows:
x1 = x ∈ K,

xn+1 = (1− αn)Tyn + αnTzn,

yn = (1− βn)Txn + βnTzn,

zn = (1− γn)xn + γnTxn, n ≥ 1,

(2)

where {αn}, {βn} and {γn} are real sequences in (0, 1). They showed that this process
converges faster than both Picard and Agarwal et al. for the subclass of contractive mappings
([3]) and in support gave analytic proof by a numerical example (for more details, see ([2])).
For a very recent development in this direction, please see [39], [42], [43].

Now, we modify the above scheme (2) for three mappings as follows.
Algorithm 7. The sequence {xn} is defined as follows:

x1 = x ∈ K,

xn+1 = (1− αn)T2yn + αnT3zn,

yn = (1− βn)T1xn + βnT3zn,

zn = (1− γn)xn + γnT1xn, n ≥ 1,

(3)

where {αn}, {βn} and {γn} are real sequences in (0, 1).
Our purpose in this paper is to extend the iteration (3) to the case of three multivalued

nonexpansive mappings on closed and convex subset in the setting of CAT(κ) spaces and
establish some strong and a ∆-convergence theorems.

We modify iterative scheme (3) as follows.

Definition 2.7. Let X be a CAT(κ) space, K be a nonempty closed and convex subset of
X and T1,T2,T3 : K→ CC(K) be three multivalued nonexpansive mappings. The sequence
{xn} of the modified AN (Abbas and Nazir)-iteration is defined by:

x1 = x ∈ K,

xn+1 = (1− αn)vn ⊕ αnwn,
yn = (1− βn)un ⊕ βnwn,
zn = (1− γn)xn ⊕ γnun, n ≥ 1,

(4)

where un ∈ T1xn, vn ∈ T2yn, wn ∈ T3zn and {αn}, {βn}, {γn} are real sequences in (0, 1).

3. Main Results

First of all we prove the following lemmas which will play a key role in our investiga-
tion. Assume that F = F (T1)∩F (T2)∩F (T3) denotes the set of all common fixed points of
the multivalued mappings T1, T2 and T3.
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Lemma 3.1. Let κ > 0 and (X, d) be a complete CAT(κ) space with property (p). Let
K be a nonempty closed and convex subset of X and let T1,T2,T3 : K → CC(K) be three
multivalued nonexpansive mappings. Let {xn} be the sequence defined by (4). If F 6= ∅ and
T1(p) = T2(p) = T3(p) = {p} for any p ∈ F, then limn→∞ d(xn, p) exists for all p ∈ F.

Proof. Assume that F 6= ∅. Let p ∈ F. Then from (4), we have

d(zn, p) = d((1− γn)xn ⊕ γnun, p)
≤ (1− γn)d(xn, p) + γnd(un, p)

≤ (1− γn)d(xn, p) + γnH(T1(xn),T1(p))

≤ (1− γn)d(xn, p) + γnd(xn, p)

= d(xn, p). (5)

Again, using (4) and (5), we get

d(yn, p) = d((1− βn)un ⊕ βnwn, p)
≤ (1− βn)d(un, p) + βnd(wn, p)

≤ (1− βn)H(T1(xn),T1(p)) + βnH(T3(zn),T3(p))

≤ (1− βn)d(xn, p) + βnd(zn, p)

≤ (1− βn)d(xn, p) + βnd(xn, p)

= d(xn, p). (6)

Finally, using (4), (5) and (6), we get

d(xn+1, p) = d((1− αn)vn ⊕ αnwn, p)
≤ (1− αn)d(vn, p) + αnd(wn, p)

≤ (1− αn)H(T2(yn),T2(p)) + αnH(T3(zn),T3(p))

≤ (1− αn)d(yn, p) + αnd(zn, p)

≤ (1− αn)d(xn, p) + αnd(xn, p)

= d(xn, p).

Thus by Lemma 2.5, we get that limn→∞ d(xn, p) exists for each p ∈ F and hence {xn} is
bounded. This completes the proof. �

Lemma 3.2. Let κ > 0 and (X, d) be a complete CAT(κ) space with property (p). Let K be a
nonempty closed and convex subset of X and let T1,T2,T3 : K→ CC(K) be three multivalued
nonexpansive mappings. Let {xn} be the sequence defined by (4) where {αn}, {βn}, {γn}
be sequences in (0, 1) such that lim infn→∞ αn(1− αn) > 0, lim infn→∞ βn(1− βn) > 0 and
lim infn→∞ γn(1− γn) > 0. If F 6= ∅ and T1(p) = T2(p) = T3(p) = {p} for any p ∈ F, then
limn→∞ d(xn,T1xn) = 0, limn→∞ d(xn,T2yn) = 0 and limn→∞ d(xn,T3zn) = 0.

Proof. Let p ∈ F 6= ∅. From Lemma 3.1, we obtain limn→∞ d(xn, p) exists for each p ∈ F.
Since {xn} is bounded, there exists R1 > 0 such that {xn}, {yn}, {zn} ⊂ BR1(p) for all
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n ≥ 1 with R1 < Dκ/2. In view of (1), we have

d2(zn, p) = d2((1− γn)xn ⊕ γnun, p)
≤ (1− γn)d2(xn, p) + γnd

2(un, p)

−R
2
γn(1− γn)d2(xn, un)

≤ (1− γn)d2(xn, p) + γnH
2(T1(xn),T1(p))

−R
2
γn(1− γn)d2(xn, un)

≤ (1− γn)d2(xn, p) + γnd
2(xn, p)

−R
2
γn(1− γn)d2(xn, un)

= d2(xn, p)−
R

2
γn(1− γn)d2(xn, un). (7)

This implies that

d2(zn, p) ≤ d2(xn, p). (8)

Again using (1) and (8), we obtain

d2(yn, p) = d2((1− βn)un ⊕ βnwn, p)
≤ (1− βn)d2(un, p) + βnd

2(wn, p)

−R
2
βn(1− βn)d2(un, wn)

≤ (1− βn)H2(T1(xn),T1(p)) + βnH
2(T3(zn),T3(p))

−R
2
βn(1− βn)d2(un, wn)

≤ (1− βn)d2(xn, p) + βnd
2(zn, p)

−R
2
βn(1− βn)d2(un, wn)

≤ (1− βn)d2(xn, p) + βnd
2(xn, p)

−R
2
βn(1− βn)d2(un, wn)

= d2(xn, p)−
R

2
βn(1− βn)d2(un, wn). (9)

This implies that

d2(yn, p) ≤ d2(xn, p). (10)
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Now using (1), (8) and (10), we get

d2(xn+1, p) = d2((1− αn)vn ⊕ αnwn, p)
≤ (1− αn)d2(vn, p) + αnd

2(wn, p)

−R
2
αn(1− αn)d2(vn, wn)

≤ (1− αn)H2(T2(yn),T2(p)) + αnH
2(T3(zn),T3(p))

−R
2
αn(1− αn)d2(vn, wn)

≤ (1− αn)d2(yn, p) + αnd
2(zn, p)

−R
2
αn(1− αn)d2(vn, wn)

≤ (1− αn)d2(xn, p) + αnd
2(xn, p)

−R
2
αn(1− αn)d2(vn, wn)

= d2(xn, p)−
R

2
αn(1− αn)d2(vn, wn).

This implies that

R

2
αn(1− αn)d2(vn, wn) ≤ d2(xn, p)− d2(xn+1, p).

Since d(xn, p) < R1, we have

R

2
αn(1− αn)d2(vn, wn) <∞.

Hence by the fact that lim infn→∞ αn(1− αn) > 0, we have

lim
n→∞

d(vn, wn) = 0. (11)

Now, equation (9) yields

R

2
βn(1− βn)d2(un, wn) ≤ d2(xn, p)− d2(yn, p).

Since d(xn, p) < R1 and d(yn, p) < R1, we have

R

2
βn(1− βn)d2(un, wn) <∞.

Hence by the fact that lim infn→∞ βn(1− βn) > 0, we have

lim
n→∞

d(un, wn) = 0. (12)

Again, equation (7) yields

R

2
γn(1− γn)d2(xn, un) ≤ d2(xn, p)− d2(zn, p).

Since d(xn, p) < R1 and d(zn, p) < R1, we have

R

2
γn(1− γn)d2(xn, un) <∞.

Hence by the fact that lim infn→∞ γn(1− γn) > 0, we have

lim
n→∞

d(xn, un) = 0. (13)

Now note that

d(xn, wn) ≤ d(xn, un) + d(un, wn).
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Using equation (12) and (13), we get

lim
n→∞

d(xn, wn) = 0. (14)

Also note that

d(xn, vn) ≤ d(xn, wn) + d(wn, vn).

Using equation (11) and (14), we get

lim
n→∞

d(xn, vn) = 0. (15)

Since

d(xn,T1xn) ≤ d(xn, un).

Using equation (13), we obtain

lim
n→∞

d(xn,T1xn) = 0.

Similarly

d(xn,T2yn) ≤ d(xn, vn).

Using equation (15), we get

lim
n→∞

d(xn,T2yn) = 0,

and

d(xn,T3zn) ≤ d(xn, wn).

Using equation (14), we obtain

lim
n→∞

d(xn,T3zn) = 0.

This completes the proof. �

Theorem 3.1. Let κ > 0 and (X, d) be a complete CAT(κ) space with property (p). Let
K be a nonempty closed and convex subset of X and let T1,T2,T3 : K → CC(K) be three
multivalued nonexpansive mappings satisfying condition (GI). Let {xn} be the sequence
defined by (4) where {αn}, {βn}, {γn} be sequences in (0, 1) such that lim infn→∞ αn(1 −
αn) > 0, lim infn→∞ βn(1− βn) > 0 and lim infn→∞ γn(1− γn) > 0. If F 6= ∅ and T1(p) =
T2(p) = T3(p) = {p} for any p ∈ F, then {xn} converges strongly to a common fixed point
of T1, T2 and T3.

Proof. Since T1, T2, T3 satisfies condition (GI), we have limn→∞ ϕ(d(xn,F)) = 0. Thus
there is a subsequence {xnj} of {xn} and a sequence {pj} ⊂ F such that

d(xnj , pj) <
1

2j
,

for all j > 0. By Lemma 3.1 we obtain that

d(xnj+1, pj) ≤ d(xnj , pj) <
1

2j
.

We now show that {pj} is a Cauchy sequence in K. Observe that

d(pj+1, pj) ≤ d(pj+1, xnj+1) + d(xnj+1, pj)

<
1

2j+1
+

1

2j

<
1

2j−1
.
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This shows that {pj} is a Cauchy sequence in K and hence converges to p ∈ K. Since

d(pj ,T1(p)) ≤ H(T1(p),T1(pj))

≤ d(p, pj),

and pj → p as j →∞, it follows that d(p,T1(p)) = 0, which implies that p ∈ T1(p).
Similarly

d(pj ,T2(p)) ≤ H(T2(p),T2(pj))

≤ d(p, pj),

and pj → p as j →∞, it follows that d(p,T2(p)) = 0, which implies that p ∈ T2(p).
Similarly

d(pj ,T3(p)) ≤ H(T3(p),T3(pj))

≤ d(p, pj),

and pj → p as j → ∞, it follows that d(p,T3(p)) = 0, which implies that p ∈ T3(p).
Consequently, p ∈ F. Since limn→∞ d(xn, p) exists, thus we conclude that {xn} converges
strongly to a common fixed point of T1, T2 and T3. This completes the proof. �

Theorem 3.2. Let κ > 0 and (X, d) be a complete CAT(κ) space with property (p). Let
K be a nonempty closed and convex subset of X and let T1,T2,T3 : K → CC(K) be three
hemicompact and continuous multivalued nonexpansive mappings. Let {xn} be the sequence
defined by (4) where {αn}, {βn}, {γn} be sequences in (0, 1) such that lim infn→∞ αn(1 −
αn) > 0, lim infn→∞ βn(1− βn) > 0 and lim infn→∞ γn(1− γn) > 0. If F 6= ∅ and T1(p) =
T2(p) = T3(p) = {p} for any p ∈ F, then {xn} converges strongly to a common fixed point
of T1, T2 and T3.

Proof. By Lemma 3.2, we know that d(xn,T1xn) = d(xn,T2yn) = d(xn,T3zn) = 0 and T1,
T2 and T3 are hemicompact, so there is a subsequence {xnk} of {xn} such that xnk → p as
k →∞ for some p ∈ K. Since T1, T2 and T3 are continuous, we have

d(p,T1p) ≤ d(p, xnk) + d(xnk ,T1xnk) +H(T1xnk ,T1p)

≤ 2d(p, xnk) + d(xnk ,T1xnk)

→ 0 as k →∞,

and

d(p,T2p) ≤ d(p, xnk) + d(xnk ,T2ynk) +H(T2ynk ,T2p)

≤ 2d(p, xnk) + d(xnk ,T2ynk)

→ 0 as k →∞,

and

d(p,T3p) ≤ d(p, xnk) + d(xnk ,T3znk) +H(T3znk ,T3p)

≤ 2d(p, xnk) + d(xnk ,T3znk)

→ 0 as k →∞.

This implies that p ∈ T1p, p ∈ T2p and p ∈ T3p. Since by Lemma 3.1 limn→∞ d(xn, p) exists,
thus we conclude that p ∈ F is the strong limit of the sequence {xn} itself. This completes
the proof. �

Now, we are in a position to prove the ∆-convergence theorems.
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Theorem 3.3. Let κ > 0 and (X, d) be a complete CAT(κ) space with property (p). Let
K be a nonempty closed and convex subset of X and let T1,T2,T3 : K → CC(K) be three
multivalued nonexpansive mappings satisfying condition (GI). Let {xn} be the sequence
defined by (4) where {αn}, {βn}, {γn} be sequences in (0, 1) such that lim infn→∞ αn(1 −
αn) > 0, lim infn→∞ βn(1− βn) > 0 and lim infn→∞ γn(1− γn) > 0. If F 6= ∅ and T1(p) =
T2(p) = T3(p) = {p} for any p ∈ F, then {xn} ∆-converges to a common fixed point of T1,
T2 and T3.

Proof. Let ωw(xn) :=
⋃
A({un}) where the union is taken over all subsequences {un} of

{xn}. We can complete the proof by showing that ωw(xn) ⊆ F and ωw(xn) consists
of exactly one point. Let u ∈ ωw(xn), then there exists a subsequence {un} of {xn}
such that A({un}) = {u}. By Lemma 2.2, there exists a subsequence {vn} of {un}
such that ∆ − limn→∞ vn = v ∈ K. Since limn→∞ d(xn,T1xn) = limn→∞ d(xn,T2yn) =
limn→∞ d(xn,T3zn) = 0, so by Lemma 2.4, we have v ∈ F and the limn→∞ d(xn, v) exists
by Lemma 3.1. Hence u = v ∈ F by Lemma 2.3, i.e., ωw(xn) ⊆ F.

To see that {xn} ∆-converges to a point in F, it is enough to prove that ωw(xn)
consists of exactly one point.

Let {wn} be a subsequence of {xn} with A({wn}) = {w} and let A({xn}) = {x}.
Since w ∈ ωw(xn) ⊆ F and by Lemma 3.1, limn→∞ d(xn, w) exists. Again by Lemma 2.3,
we have x = w ∈ F, therefore ωw(xn) = {x}. This shows that {xn} ∆-converges to a point
in F and the proof is complete. �

If we put T1 = T2 = T3 = T in Theorem 3.3, then we have the following result.

Corollary 3.1. Let κ > 0 and (X, d) be a complete CAT(κ) space with property (p). Let
K be a nonempty closed and convex subset of X and let T : K → CC(K) be a multivalued
nonexpansive mapping satisfying condition (I). Let {xn} be the sequence defined by

x1 = x ∈ K,

xn+1 = (1− αn)vn ⊕ αnwn,
yn = (1− βn)un ⊕ βnwn,
zn = (1− γn)xn ⊕ γnun, n ≥ 1,

where un ∈ Txn, vn ∈ Tyn, wn ∈ Tzn and {αn}, {βn}, {γn} are real sequences in (0, 1) such
that lim infn→∞ αn(1−αn) > 0, lim infn→∞ βn(1−βn) > 0 and lim infn→∞ γn(1− γn) > 0.
If F(T) 6= ∅ and T(p) = {p} for any p ∈ F(T), then {xn} ∆-converges to a fixed point of T.

Example 3.1. Let us consider that K = [0, 1] is equipped with the Euclidean metric.
Let T1,T2,T3 : K → CC(K) (the family of closed and convex subset of K) be defined by
T1(x) = [0, x2 ], T2(x) = [0, x4 ] and T3(x) = [0, x5 ]. It is easy to see that for any x, y ∈ K, we
have the inequality

H(T1(x),T1(y)) = max
{∣∣∣x

2
− y

2

∣∣∣, 0} =
∣∣∣x
2
− y

2

∣∣∣ =
∣∣∣x− y

2

∣∣∣
≤ |x− y|.

By similar calculation, we obtain

H(T2(x),T2(y)) = max
{∣∣∣x

4
− y

4

∣∣∣, 0} =
∣∣∣x
4
− y

4

∣∣∣ =
∣∣∣x− y

4

∣∣∣
≤ |x− y|,

and

H(T3(x),T3(y)) = max
{∣∣∣x

5
− y

5

∣∣∣, 0} =
∣∣∣x
5
− y

5

∣∣∣ =
∣∣∣x− y

5

∣∣∣
≤ |x− y|,
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showing that T1, T2 and T3 are multivalued nonexpansive mappings. On other hand, it is
clear that F (T1) ∩ F (T2) ∩ F (T3) = {0}. Hence, mappings T1, T2 and T3 have a unique
common fixed point.

Example 3.2 ([35]). Suppose that X = K = [0, 1] is endowed with the usual metric, and
{xn} = { 1n}, {znk} = { 1

kn } for all n, k ≥ 1 are sequences in K. Then A({xn}) = {0}
and A({znk}) = {0}. This shows that the sequence {xn} is ∆-convergent to 0, that is,
∆-limn→∞ xn = 0. The sequence {xn} also converges strongly to 0, that is, |xn − 0| → 0 as
n→∞. Moreover, it is weakly convergent to 0, that is, xn ⇀ 0 as n→∞, by Proposition
2.1. This analysis suggest us the following implications:

strong convergence ⇒ ∆-convergence ⇒ weak convergence.

Note that in general the converse is not true.

The following example analyzes the case when a sequence {xn} is weakly convergent,
and it is not ∆-convergent.

Example 3.3 ([25]). On X = R, with the usual metric, consider K = [−1, 1], and the
sequences {xn} = {1,−1, 1,−1, . . . }, {un} = {−1,−1,−1, . . . } and {vn} = {1, 1, 1, . . . }.
Then A({xn}) = AK({xn}) = {0}, A({un}) = {−1} and A({vn}) = {1}. This shows that
the sequence {xn} is weakly convergent to 0 but it does not have a ∆-limit.

4. Conclusion

In this paper, we first generalize Abbas and Nazir [2] three-step iteration scheme
for three mappings and then translate it to three multivalued nonexpansive mappings and
establish a ∆-convergence and some strong convergence theorems in the setting of CAT(κ)
spaces. The results in this paper extend and generalize several results from the current
existing literature, and are thought as natural continuation of those in [2].
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