φ-BIPROJECTIVE AND φ-APPROXIMATE HELEMSKII BIFLAT BANACH ALGEBRAS

Zahra GHORBANI¹

This study aim to introduce the concept of φ -approximate Helemskii biflat Banach algebra A, where φ is a continuous Banach algebra homomorphism. Then a relation between φ -biprojectivity and φ -Helemskii biflatness with φ -amenability is proved. At the end, it is show that $l^1(\mathbb{N}_{\Lambda})$ is a φ -approximate Helemskii biflat Banach algebra.

Keywords: φ -biprojective, φ -approximate Helemskii biflat, φ -amenability.

1. Introduction

Amenable Banach algebras were introduced by Johnson in [8]. He showed that *A* is an amenable Banach algebra if and only if *A* has a virtual diagonal, that is, for some *M* in $(A \otimes A)^{**}$ we have $M \cdot a = a \cdot M$ and $\pi^{**}(M) \cdot a = a$ for all $a \in A$. The notions of biflat and biprojective Banach algebra were introduced by Helemskii [6, 7]. In fact, a Banach algebra *A* is called biprojective if there exists a bounded *A*bimodule map $\theta: A \to A \otimes A$ such that $\pi \circ \theta = id_A$, where π is the product morphism from $A \otimes A$ into *A* defined by $\pi(a \otimes b) = ab$ for all $a, b \in A$ and id_A denotes the identity map on *A*. He proved that a Banach algebra *A* is called biflat is biflat and it has a bounded approximate identity [5, 7]. In fact, *A* is called biflat if there is a bounded *A*-bimodule map $\theta: (A \otimes A)^* \to A^*$ such that $\theta \circ \pi^* = id_{A^*}$.

Recently, some authors have added a kind of twist to the amenability definition. Given a continuous homomorphism φ from A into A. The authors in [10, 11, 4] defined and studied φ -derivations and φ -amenability.

Motivated by this consideration the authors in [13] introduced a generalization of Helemskiis concept like φ -biprojectivity, where φ is a continuous Banach algebra homomorphism. They stated a Banach algebra *A* is φ -biprojective if there exists a bounded φ -*A*-bimodule homomorphism $\theta: A \to (A \otimes A)$ such that $\pi \circ \theta = \varphi$.

In this paper, we introduce a new concept of φ -approximate biflatness and then a relation between φ -biflatness and φ -amenability is proved. We show that $l^1(\mathbb{N}_{\Lambda})$ is φ -approximate Helemskii biflat if we choose $\varphi \in Hom(l^1(\mathbb{N}_{\Lambda}))$ such

¹ Dr., Department of Mathematics, Jahrom University, Jahrom , Iran, e-mail: ghorbani@jahromu.ac.ir

that φ has dense range, then $l^1(\mathbb{N}_{\wedge})$ is not φ -Helemskii biflat and so $l^1(\mathbb{N}_{\wedge})$ is not biflat Banach algebra. Finally, we give an examples of φ -biprojective Banach algebra which is not biprojective.

2. φ -biprojective Banach algebras

Let *A* be a Banach algebra and $\varphi \in Hom(A)$, where Hom(A) contains all continuous homomorphisms from *A* into itself. Let *X* and *Y* be Banach *A*-bimodules, a φ -*A*-bimodule morphism from *X* into *Y* is a morphism $T: X \to Y$ such that for every $a \in A$, $x \in X$ and $\varphi \in Hom(A)$, we have

 $T(a \cdot x) = \varphi(a) \cdot T(x), \quad T(x \cdot a) = T(x) \cdot \varphi(a).$

In the following result, $\varphi \in Hom(A)$ and *I* is a closed ideal of *A* which is φ -invariant, that is, $\varphi(I) \subset I$, and also we consider the map $\tilde{\varphi}: A/I \to A/I$ defined by $\tilde{\varphi}(a+I) = \varphi(a) + I$.

Theorem 2.1. Suppose that A is a φ -biprojective Banach algebra. If I is a closed ideal of A, then A/I is $\tilde{\varphi}$ -biprojective.

Proof. Let $\theta: A \to (A \otimes A)$ be a φ -*A* bimodule morphism such that $\pi \circ \theta = \varphi$ and $q: A \to A/I$ be the quotient map. We define the map $\tilde{\theta}: A/I \to (A/I \otimes A/I)$ by $a + I \mapsto (q \otimes q) \circ \theta(a)$ ($a \in A$) and prove that $\tilde{\theta}$ is an $\tilde{\varphi}$ -*A*/*I*- bimodule map. To do this, take $a, b, c \in A$, so we get

$$\begin{split} \tilde{\theta}((a+I)(b+I)(c+I)) &= \tilde{\theta}(abc+I) \\ &= (q \widehat{\otimes} q) \circ \theta(abc) \\ &= (q \widehat{\otimes} q)(\varphi(a) \cdot \theta(b) \cdot \varphi(c)) \\ &= (\varphi(a)+I) \cdot \tilde{\theta}(b+I) \cdot (\varphi(c)+I) \\ &= \tilde{\varphi}(a+I) \cdot \tilde{\theta}(b+I) \cdot \tilde{\varphi}(c+I), \end{split}$$

and also we have

$$\pi_{A/I} \circ \hat{\theta} = \pi_{A/I} \circ (q \otimes q) \circ \theta(a)$$

= $q \circ \pi_A \circ \theta(a)$
= $q(\varphi(a)) = \varphi(a) + I = \tilde{\varphi}(a + I).$

That is, A/I is $\tilde{\varphi}$ -biprojective.

Theorem 2.2. Suppose that *A* is a φ -biprojective Banach algebra. If *I* is a closed ideal of *A* with one sided bounded approximate identity and $\varphi(I) \subset I$, then *I* is $\varphi|_{I}$ -biprojective.

Proof. Assume that $\theta: A \to (A \otimes A)$ is a $\varphi - A$ bimodule morphism such that $\pi \circ \theta = \varphi$. Let $\iota: I \hookrightarrow A$ be the inclusion map. Then $\theta|_I = \theta \circ \iota: I \to (A \otimes A)$ is a $\varphi|_I$ -*I*-bimodule homomorphism. We put $I^3 = \overline{span\{abc: a, b, c \in I\}}$. Since *I* has a one sided bounded approximate identity, it follows that $I^3 = I$. Moreover, we have

 $\begin{aligned} \theta|_{I} &= \theta(I) \\ &= \theta(I^{3}) \\ &\subseteq span\{a \cdot \theta(b) \cdot c\}^{-} \\ &\subseteq span\{a \cdot m \cdot c : a, c \in I, m \in A \widehat{\otimes} A\}^{-} \subseteq I \widehat{\otimes} I. \end{aligned}$ Therefore, for every $a \in I$, we get $\pi \circ \theta|_{I}(a) = \pi(\theta(a)) \\ &= \varphi(a). \end{aligned}$

Recall that a character on A is a non-zero homomorphism from A into the scalar field. The set of all characters on A is called the character space of A and is denoted by Φ_A .

Proposition 2.1. Let *A* be a unital Banach algebra, *B* be a Banach algebra containing a non-zero idempotent b_0 , $\varphi \in Hom(A)$, and $\psi \in Hom(B)$. If $A \otimes B$ is $\varphi \otimes \psi$ -biprojective, then *A* is φ -biprojective.

Proof. There is a $\varphi \otimes \psi - A \widehat{\otimes} B$ -bimodule $\theta: A \widehat{\otimes} B \to (A \widehat{\otimes} B) \widehat{\otimes} (A \widehat{\otimes} B)$ with $\pi_{A \widehat{\otimes} B} \circ \theta = \varphi \otimes \psi$. We consider $A \widehat{\otimes} B$ as an *A*-bimodule with the actions defined by

 $a_1 \cdot (a_2 \otimes b) = a_1 a_2 \otimes b$, and $(a_2 \otimes b) \cdot a_1 = a_2 a_1 \otimes b$ b $(a_1, a_2 \in A, b \in B).$ Thus for every $a_1, a_2 \in A$, we have $\theta(a_1 a_2 \otimes b_0) = \theta((a_1 \otimes b_0)(a_2 \otimes b_0))$ $= (\varphi(a_1) \otimes \psi(b_0)) \cdot \theta(a_2 \otimes b_0)$ $= \varphi(a_1) \cdot (e_A \otimes b_0) \cdot \theta(a_2 \otimes b_0)$ $= \varphi(a_1) \cdot \theta(a_2 \otimes b_0).$ Similarly, we can show a right-module version of this equation. So, we have $\theta(a_1a_2 \otimes b_0) = \varphi(a_1) \cdot \theta(a_2 \otimes b_0) = \theta(a_1 \otimes b_0) \cdot \varphi(a_2) \quad (a_1, a_2 \in A_1)$ *A*). We take $f \in \Phi_A$ with $f(b_0) = 1$ and define $\rho: (A \widehat{\otimes} B) \widehat{\otimes} A \widehat{\otimes} B \longrightarrow (A \widehat{\otimes} A), \ (a_1 \otimes b_1) \otimes (a_2 \otimes b_2) \mapsto$ $f(b_1b_2)a_1 \otimes a_2$ Then ρ is a φ -*A*-bimodule morphism. We now define $\tilde{\theta}: A \to (A \otimes A)$ by

 $\tilde{\theta}(a) = \rho \circ \theta(a \otimes b_0), \quad (a \in A).$

Thus $\tilde{\theta}$ is a φ -A-bimodule morphism and also

$$\pi_A \circ \rho = (id_A \otimes f) \circ \pi_{A\widehat{\otimes}B}.$$

Therefore,

$$\pi_{A} \circ \theta(a) = \pi_{A} \circ \rho \circ \theta(a \otimes b_{0})$$

= $(id_{A} \otimes f) \circ \pi_{A \widehat{\otimes} B} \circ \theta(a \otimes b_{0})$
= $\varphi(a).$

That is, A is φ -biprojective.

Let *A* be a φ -biprojective Banach algebra and *B* be a ψ -biprojective Banach algebra, where $\varphi \in Hom(A)$ and $\psi \in Hom(B)$. Then $A \otimes B(A \oplus B)$ is a $\varphi \otimes \psi(\varphi \oplus \psi)$ -biprojective Banach algebra.

Here, we now give an examples of φ -biprojective Banach algebra which is not biprojective.

Example 2.1. Let \mathcal{V} be a Banach space, and let $f \in \mathcal{V}^*$ be a non-zero element such that $|| f || \leq 1$. Then \mathcal{V} equipped with the product defined by ab := f(a)b for $a, b \in v$ is a Banach algebra which is denoted by \mathcal{V}_f . In general, \mathcal{V}_f is a non- commutative and non-unital Banach algebra without right approximate identity, but it is not amenable. Hence, $(\mathcal{V}_f)^{\sharp}$ (unitization of \mathcal{V}_f) is not biprojective. If we define $\varphi: (\mathcal{V}_f)^{\sharp} \to (\mathcal{V}_f)^{\sharp}$ by $\varphi(a + \lambda e) = \lambda$ for $a \in \mathcal{V}_f$ and $\lambda \in \mathbb{C}$, then Example 3.2 [10] shows that $(\mathcal{V}_f)^{\sharp}$ is a φ -contactible Banach algebra. Since φ is an idempotent homomorphism, thus by Theorem 4.3 [13] $(\mathcal{V}_f)^{\sharp}$ is φ -biprojective.

Example 2.2. The Banach algebra l^1 with respect to pointwise product is nonamenable and biprojective Banach algebra [3, Example 4.1.42]. Hence, $(l^1)^{\sharp}$ (unitization of l^1) is not biprojective. If we define $\varphi: (l^1)^{\sharp} \rightarrow (l^1)^{\sharp}$ by $\varphi(a + \lambda e) = \lambda$ for $a \in l^1$ and $\lambda \in \mathbb{C}$, then Example 3.2 [10] shows that $(l^1)^{\sharp}$ is a φ -contactible Banach algebra, since φ is an idempotent homomorphism, hence by Theorem 4.3 [13], $(l^1)^{\sharp}$ is φ -biprojective.

Definition 2.1. Let *A* be a Banach algebra and φ be a continuous homomorphism from *A* into *A*. Then *A* is called φ -Helemskii biflat if there exists a φ -*A*-bimodule homomorphism $\theta: A \to (A \otimes A)^{**}$ such that $\pi^{**} \circ \theta = \kappa_A \circ \varphi$, where κ_A is the canonical embedding map of *A* into A^{**} .

The notion of φ -biflat in [4] gave a slight generalization of biflat. The above definition is a new concept of φ -biflatness as a generalization of the notion of biflatness, because for every $\varphi \in Hom(A)$, any biflat Banach algebra is φ -Helemskii biflat.

Proposition 2.2. Let *A* be a unital Banach algebra and *B* be a Banach algebra containing a non-zero idempotent b_0 . If $A \otimes B$ is $\varphi \otimes \psi$ -Helemskii biflat for $\varphi \in Hom(A)$ and $\psi \in Hom(B)$, then *A* is φ -Helemskii biflat.

Proof. There is a $\varphi \otimes \psi - A \widehat{\otimes} B$ -bimodule $\theta : A \widehat{\otimes} B \to (A \widehat{\otimes} B) \widehat{\otimes} (A \widehat{\otimes} B)^{**}$ with $\pi_{A\widehat{\otimes}B}^{**} \circ \theta = \kappa_{A\widehat{\otimes}B} \circ (\varphi \otimes \psi)$.

The following proof is similar to the proof of Proposition 2.1. We now define $\tilde{\theta}: A \to (A \otimes A)^{**}$ by

$$\tilde{\theta}(a) = \rho^{**} \circ \theta(a \otimes b_0) \quad (a \in A).$$

Then $\tilde{\theta}$ is a φ -A-bimodule morphism and

$$\pi_A^{**}\circ\tilde\theta=\kappa_A\circ\varphi.$$

That is, A is φ -Helemskii biflat.

Let *A* be a φ -Helemskii biflat Banach algebra and *B* be a ψ -Helemskii biflat Banach algebra, where $\varphi \in Hom(A)$ and $\psi \in Hom(B)$. Then $A \otimes B(A \oplus B)$ is a $\varphi \otimes \psi(\varphi \oplus \psi)$ -Helemskii biflat Banach algebra.

Proposition 2.3. Let *A* be a Banach algebra. If *A* is φ -Helemskii biflat, then *A* is $\varphi \circ \psi$ -Helemskii biflat for any $\psi \in Hom(A)$. In particular, *A* is φ^n -Helemskii biflat.

Proof. There exists a φ -*A*-bimodule homomorphism $\theta: A \to (A \otimes A)^{**}$ such that $\pi^{**} \circ \theta = \kappa_A \circ \varphi$. We define $\tilde{\theta} = \theta \circ \psi$. For every $a, b \in A$, we have

$$\begin{split} \tilde{\theta}(ab) &= \theta \circ \psi(ab) \\ &= \theta(\psi(a)\psi(b)) \\ &= \varphi \circ \psi(a)\theta(\psi(b)) = \varphi \circ \psi(a)\tilde{\theta}(a). \end{split}$$

and also

$$\pi_A \circ \tilde{\theta}(a) = \pi_A \circ \theta \circ \psi(a) \\= \varphi \circ \psi(a).$$

That is, *A* is $\varphi \circ \psi$ -Helemskii biflat.

Let A be a Banach algebra. If A is a φ -biprojective, then A is a φ -Helemskii biflat Banach algebra. The next result can be found in [10].

Lemma 2.1. Let *A* be a Banach algebra. Then there is an *A*-bimodule homomorphism $\gamma: (A \widehat{\otimes} A)^* \longrightarrow (A^{**} \otimes A^{**})^*$ such that for any functional $f \in (A \widehat{\otimes} A)^*$, elements $\varphi, \psi \in A^{**}$ and nets $(a_{\alpha}), (b_{\beta})$ in *A* with $w^* - \lim_{\alpha} a_{\alpha} = \varphi$ and $w^* - \lim_{\alpha} b_{\beta} = \psi$, we have

$$\gamma(f)(\varphi \otimes \psi) = \lim_{\alpha} \lim_{\beta} f(a_{\alpha} \otimes b_{\beta}).$$

Theorem 2.3. Suppose that A is a Banach algebra and $\varphi \in Hom(A)$. If A^{**} is φ^{**} -biprojective, then A is φ -Helemskii biflat.

Proof. Let $\kappa: A \to A^{**}$, $\kappa_1: A^* \to A^{***}$ and $\kappa_*: A^{**} \to A^{****}$ denotes the natural inclusion π (** π , respectively) product map on A (A^{**} , respectively) and also γ be defined as in Lemma 2.1 Then for any $a^* \in A^*$, elements $a_1^{**}, a_2^{**} \in A^{**}$ and nets $(a_{\alpha}), (b_{\beta}) \subset A$ with $w^* - \lim_{\alpha} a_{\alpha} = a_1^{**}, w^* - \lim_{\beta} b_{\beta} = a_2^{**}$, we obtain

$$(\gamma(\pi^{*}(a^{*})))(a_{1}^{**} \otimes a_{2}^{**}) = \underset{\alpha}{\operatorname{limlim}} \pi^{*}(a^{*})(a_{\alpha} \otimes b_{\beta})$$

=
$$\underset{\alpha}{\operatorname{limlim}} a^{*}(a_{\alpha}b_{\beta})$$

=
$$w^{*} - \underset{\alpha}{\operatorname{lim}} w^{*} - \underset{\beta}{\operatorname{lim}} \kappa(a_{\alpha}b_{\beta})(a^{*})$$

=
$$\kappa_{1}(a^{*})(a_{1}^{**}a_{2}^{**})$$

=
$$\kappa_{1}(a^{*})(^{**}\pi(a_{1}^{**} \otimes a_{2}^{**})) = (^{**}\pi^{*}(\kappa_{1}(a^{*})))(a_{1}^{**} \otimes a_{2}^{**}).$$

Thus $\gamma \circ \pi^* =^{**} \pi^* \circ \kappa_1$ and then $\pi^{**} \circ \gamma^* = \kappa_1^* \circ^{**} \pi^{**}$. Since A^{**} is $\varphi^{**} - \varphi^{**}$ biprojective, so there is a $\varphi^{**} - A$ -bimodule map $\theta_0: A^{**} \to (A^{**} \widehat{\otimes} A^{**})$ such that $\pi \circ \theta_0 = \varphi^{**}$. By putting $\theta:=\gamma^* \circ \theta_0 \circ \kappa$, then for every $a \in A$, we have

$$\pi^{**} \circ \theta(a) = \pi^{**} \circ \gamma^* \circ \theta_0 \circ \kappa(a)$$

= $\kappa_1^* \circ \pi^{**} \circ \theta_0 \circ \kappa \circ \varphi(a)$
= $\kappa_1^*(\varphi^{**}(a) = \varphi(a).$

That is, A is φ -Helemskii biflat.

Theorem 2.4. Suppose that A is a φ -Helemskii biflat Banach algebra with bounded approximate identity. If φ is a dense range map, then A is an amenable Banach algebra.

Proof. Let $\theta: A \to (A \otimes A)^{**}$ be a bounded φ -*A*-bimodule map such that $\pi^{**} \circ \theta = \kappa_A \circ \varphi$. Let (e_α) be a bounded approximate identity for *A* and we define $M = w^* - \lim_{\alpha} \theta(e_\alpha)$. Then we get

$$\varphi(a) \cdot M = w^* - \lim_{\alpha} \varphi(a) \cdot \theta(e_{\alpha})$$

= $w^* - \lim_{\alpha} \theta(ae_{\alpha})$
= $w^* - \lim_{\alpha} \theta(e_{\alpha}a)$
= $w^* - \lim_{\alpha} \theta(e_{\alpha}) \cdot \varphi(a)$
= $M \cdot \varphi(a)$.

and so

$$\pi^{**}(M) \cdot \varphi(a) = w^* - \lim_{\alpha} \pi^{**} \circ \theta(e_{\alpha}) \cdot \varphi(a)$$
$$= w^* - \lim_{\alpha} \kappa_A \circ \varphi(e_{\alpha}) \cdot \varphi(a) = \varphi(a).$$

Let $a \in A$ and take a sequence $(a_n)_n \subseteq A$ such that $\lim_n \varphi(a_n) = a$. Hence $a \cdot M = \lim_n \varphi(a_n) \cdot M$

$$= \lim_{n} M \cdot \varphi(a_n)$$
$$= M \cdot a.$$

and so $\pi^{**}(M) \cdot a = a$.

Thus *M* is a virtual diagonal for *A*. Hence by Theorem 2.9.65 [3] *A* is amenable. **Corollary 2.1.** Suppose that *A* is a φ -Helemskii biflat Banach algebra with bounded approximate identity. If φ is a dense range map, then *A* is a φ -amenable Banach algebra.

Let *A* be a Banach algebra. An element *M* in $(A \otimes A)^{**}$ is said to be a φ -virtual diagonal for *A* if $M \cdot \varphi(a) = \varphi(a) \cdot M$ and $\pi^{**}(M) \cdot \varphi(a) = \varphi(a)$ for every $a \in A$.

Theorem 2.5. Suppose that A is a φ -amenable Banach algebra with bounded approximate identity. Then A is a φ -Helemskii biflat Banach algebra

Proof. Let *A* be a φ -amenable Banach algebra with bounded approximate identity. By Theorem 2.2 [4] *A* has a φ -virtual diagonal *M*. We define $\theta: A \to (A \otimes A)^{**}$ by $a \mapsto \varphi(a) \cdot M$. For every $a \in A$, we have

$$\pi^{**} \circ \theta(a) = \pi^{**} \circ (\varphi(a) \cdot M)$$

= $\pi^{**} \circ (M \cdot \varphi(a))$
= $\varphi(a) = \kappa_A \circ \varphi(a).$

That is, A is a φ -Helemskii biflat Banach algebra.

We now give an example of φ -Helemskii biflat Banach algebra which is not biflat.

Example 2.3. Note that the Banach algebra l^1 is a biflat Banach algebra because it is biprojective [3, see Example 4.1.42]. So $(l^1)^{\sharp}$ is a non-amenable [12]. By [5], $(l^1)^{\sharp}$ is not biflat and if we define $\varphi: (l^1)^{\sharp} \rightarrow (l^1)^{\sharp}$ by $\varphi(a + \lambda e) = \lambda$ for $a \in l^1$ and $\lambda \in \mathbb{C}$, then Example 3.2 [10] shows that $(l^1)^{\sharp}$ is a φ -amenable Banach algebra. By Theorem 2.5, $(l^1)^{\sharp}$ is a φ -Helemskii biflat Banach algebra.

The next example shows that a φ -Helemskii biflat Banach algebra need not to be a φ -amenable.

Example 2.4. The Banach algebra l^1 is non-amenable and a biflat Banach algebra [3, see Example 4.1.42]. Then for any $\varphi \in Hom(l^1)$, l^1 is φ -Helemskii biflat. If we choose $\varphi \in Hom(l^1)$ such that φ be an epimorphism, then l^1 is not φ -amenable, by Proposition 2.3 [11].

3. φ -approximate Helemskii biflat Banach algebras

We start this section by introducing the following:

Denition 3.1. Let *A* be a Banach algebra. Then *A* is called φ -approximate Helemskii biflat if there is a net $\theta_{\alpha}: A \to (A \otimes A)^{**}$, $(\alpha \in I)$ of φ -*A*-bimodule morphisms such that $\pi^{**} \circ \theta_{\alpha}(a) \to \varphi(a)$.

Theorem 3.1. Suppose that *A* is a φ -approximate Helemskii biflat Banach algebra with one sided bounded approximate identity. If *I* is a closed ideal of *A*, then *A*/*I* is $\tilde{\varphi}$ -approximate Helemskii biflat.

Proof. Let $\theta_{\alpha}: A \to (A \otimes A)^{**}$ be a bounded φ -A-bimodule map such that $\lim_{\alpha} \pi^{**} \circ \theta_{\alpha}(a) = \varphi(a)$ and $q: A \to A/I$ be the quotient map. We define the map $\tilde{\theta}_{\alpha}: A/I \to (A/I \otimes A/I)^{**}$ by $a + I \mapsto (q \otimes q)^{**} \circ \theta_{\alpha}(a)$ $(a \in A)$. Hence $\tilde{\theta}_{\alpha}$ is well-defined. If (e_{β}) is a bounded left approximate identity for A (the right case is similar), then

$$\| (q \bigotimes q)^{**}(\theta_{\alpha}(a)) \| = \lim_{\beta} \| (q \bigotimes q)^{**}(\theta_{\alpha}(e_{\beta}a)) \|$$

=
$$\lim_{\beta} \| q(a)(q \bigotimes q)^{**}(\theta_{\alpha}(e_{\beta})) \|$$

\leq
$$\| q \|^{2} \| \theta_{\alpha} \| \sup_{\beta} \| e_{\beta} \| \| q(a) \|.$$

We also obtain

$$\lim_{\alpha} \pi_{A/I}^{**} \circ \tilde{\theta}_{\alpha}(a+I) = \lim_{\alpha} \pi_{A/I}^{**} \circ (q \otimes q)^{**} \circ \theta_{\alpha}(a)$$
$$= \lim_{\alpha} q^{**} \circ \pi_{A}^{**} \circ \theta_{\alpha}(a) \longrightarrow q(\varphi(a)) = \tilde{\varphi}(a+I).$$

That is, A/I is $\tilde{\varphi}$ -approximate Helemskii biflat.

Since the proof of the next result is similar to Theorem 2.3, so we omit it.

Theorem 3.2. Suppose that A is a Banach algebra. If A^{**} is φ^{**} -approximate Helemskii biflat, then A is φ -approximate Helemskii biflat.

Definition 3.2. Let *A* be a Banach algebra and $\varphi \in Hom(A)$. We say that *A* is φ – pseudo amenable if *A* admits a φ – approximate virtual diagonal, i.e., there is a net $(m_{\alpha}) \subset A \bigotimes A$ (not necessary bounded) such that $m_{\alpha} \cdot \varphi(a) - \varphi(a) \cdot m_{\alpha} \to 0$ and $\pi(m_{\alpha}) \cdot \varphi(a) \to \varphi(a)$ ($a \in A$).

Theorem 3.3. Let A be a Banach algebra with an approximate identity and φ be an idempotent homomorphism on A. Then A is φ – pseudo amenable ($\varphi \in Hom(A)$) if and only if A is φ – approximate Helemskii biflat.

Proof. Let $(e_{\beta})_{\beta \in I}$ be an approximate identity for A and $\theta_{\alpha}: A \to (A \otimes A)^{**}$ ($\alpha \in \Delta$) satisfies $\pi^{**} \circ \theta_{\alpha} \circ (\alpha) \to \varphi(\alpha)$ ($a \in A$). Then for every $a \in A$ and $f \in (A \otimes A)^*$, we obtain

$$\begin{split} & \lim_{\beta \to \alpha} \langle f, \theta_{\alpha}(\varphi(e_{\beta})) \cdot \varphi(a) - \varphi(a) \cdot \theta_{\alpha}(\varphi(e_{\beta})) \rangle = \\ & \lim_{\beta \to \alpha} \langle f, \theta_{\alpha}(\varphi(e_{\beta})\varphi(a) \\ & -\varphi(a)\varphi(e_{\beta}) \rangle \\ & = \lim_{\beta \to \alpha} \langle f, \theta_{\alpha}(\varphi(e_{\beta}a - ae_{\beta})) \rangle \\ & = 0. \end{split}$$

Also, for $a \in A$ and $\psi \in A^*$, we get

$$\begin{split} & \underset{\beta}{\lim \lim_{\alpha}} \langle \psi, \varphi(a) \cdot \pi^{**} \circ \theta_{\alpha}(\varphi(e_{\beta})) = \underset{\beta}{\lim_{\beta}} \langle \psi, \varphi(a)\varphi^{2}(e_{\beta}) \rangle \\ & = \underset{\beta}{\lim_{\beta}} \langle \psi, \varphi(ae_{\beta}) \rangle \\ & = \langle \psi, \varphi(a) \rangle. \end{split}$$

Let $E = I \times \triangle^{I}$ be directed by the product ordering and for any $\lambda = (\beta, \alpha) \in E$, define $m_{\lambda} = \theta_{\alpha}(\varphi(e_{\beta}))$. Using the iterated limit theorem [9, Theorem 2.4], the above calculation gives

$$w^* - \lim_{\lambda} (m_{\lambda} \cdot \varphi(a) - \varphi(a) \cdot m_{\lambda}) = 0 \quad (a \in A),$$

and

$$w^* - \lim_{\lambda} \varphi(a) \cdot \pi^{**}(m_{\lambda}) = \varphi(a) \quad (a \in A).$$

By Goldestin's theorem we can assume that $(m_{\lambda}) \subset (A \otimes A)$ and we can replace weak * convergence in equations by weak convergence. Applying Mazur's theorem, we obtain a net $(m'_{\lambda}) \subset (A \otimes A)$ of convex combinations of (m_{λ}) such that

and also

$$m'_{\lambda} \cdot \varphi(a) - \varphi(a) \cdot m'_{\lambda} \to 0,$$

 $\varphi(a) \cdot \pi^{**}(m'_{\lambda}) \to \varphi(a) \quad (a \in A).$ That is, *A* is φ – pseudo amenable. Conversely, let (m_{β}) be a φ –approximate virtual diagonal for *A* and define $\theta_{\beta}: A \to (A \widehat{\otimes} A)^{**}$ by $a \mapsto \varphi(a) \cdot m_{\beta}$. Clearly,

$$\theta_{\beta}$$
 is linear and a $\varphi - A$ –bimodule morphism. Also, for every $a \in A$, we have

$$\pi^{**} \circ \theta_{\beta} \circ (a) = \pi^{**} \circ (\varphi(a) \cdot m_{\beta})$$
$$= \varphi(a)\pi^{**}(m_{\beta})$$
$$\rightarrow \varphi(a).$$

Proposition 3.1. Let *A* be a φ –amenable Banach algebra and φ be an idempotent homomorphism on *A*. Then *A* is φ -approximate Helemskii biflat.

Proof. By Proposition 4.1 [11] *A* has a bounded approximate identity $(e_{\alpha})_{\alpha \in I}$. Let *E* be a w^* -cluster point of $(\varphi(e_{\alpha}) \otimes \varphi(e_{\alpha}))_{\alpha}$ in $(A \otimes A)^{**}$. We define a φ - derivation $D: A \to (A \otimes A)^{**}$ by $D(a) = \varphi(a) \cdot E - E \cdot \varphi(a)$ $(a \in A)$. Then for every $a \in A$

$$\pi^{**}(D(a)) = \lim_{\alpha} \pi[(\varphi(a)(\varphi(e_{\alpha}) \otimes \varphi(e_{\alpha})) - (\varphi(e_{\alpha}) \otimes \varphi(e_{\alpha}))]$$

$$\varphi(e_{\alpha}))\varphi(a)]$$

$$= \lim_{\alpha} \varphi(ae_{\alpha})\varphi(e_{\alpha}) - \varphi(e_{\alpha})\varphi(e_{\alpha}a)$$

$$= \lim_{\alpha} \varphi(ae_{\alpha}^{2}) - \varphi(e_{\alpha}^{2}a)$$

$$= \lim_{\alpha} \varphi(ae_{\alpha}^{2} - e_{\alpha}^{2}a) = 0.$$

Therefore, $D(A) \subseteq ker(\pi^{**}) = (ker\pi)^{**}$. Thus there exists $N \in (ker\pi)^{**}$ such that $D = ad_{\varphi;N}$. Put M = E - N. Then for every $a \in A$, we have

$$\pi^{**}(M) \cdot \varphi(a) = \pi^{**}(E - N) \cdot \varphi(a) = \pi^{**}(E) \cdot \varphi(a)$$

= $w^* - \lim_{\alpha} \pi(\varphi(e_{\alpha}) \otimes \varphi(e_{\alpha})) \cdot \varphi(a)$
= $w^* - \lim_{\alpha} \varphi(e_{\alpha}^2 a) = \varphi(a).$

Let $(m_{\alpha})_{\alpha}$ be a net in $(A \otimes A)$ such that $M = w^* - \lim_{\alpha} m_{\alpha}$. Then $w - \lim_{\alpha} (m_{\alpha} \cdot \varphi(a) - \varphi(a) \cdot m_{\alpha}) = 0$ and $w - \lim_{\alpha} (\pi(m_{\alpha}) \cdot \varphi(a) - \varphi(a)) = 0$ $(a \in A)$. Following the argument given in the proof of Lemma 2.9.64 [3] we can show that there exists a net $(m_{\beta})_{\beta}$ in $(A \otimes A)$ such that each m_{β} is a convex combination of m_{α} 's with $m_{\beta} \cdot \varphi(a) - \varphi(a) \cdot m_{\beta} \to 0$ and $\pi(m_{\beta}) \cdot \varphi(a) \to \varphi(a)$ $(a \in A)$. Thus A is φ – pseudo amenable and so by Theorem 3.3 A is φ approximate Helemskii biflat.

Using the proof of the above proposition we obtain the following results. **Corollary 3.1.** Let $L^1(G)$ be a φ –amenable Banach algebra ($\varphi \in Hom(L^1(G))$) and φ be an idempotent homomorphism on $L^1(G)$. Then $L^1(G)$ is φ -approximate Helemskii biflat.

Denition 3.3. Let *A* be a Banach algebra with the norm $\|.\|_A$. Then a Banach algebra *B* with the norm $\|.\|_B$ is said to be an abstract Segal algebra with respect to A if

(i) *B* is a dense left ideal in *A*;

(ii) there exists M > 0 such that $|| b ||_A \le M || b ||_B$ for all $b \in B$;

(iii) there exists C > 0 such that $|| ab ||_B \le C || a ||_A || b ||_B$ for all $a, b \in B$.

Theorem 3.4. Let A be a Banach algebra and B be an abstract Segal algebra with respect to A. Suppose that $\varphi \in Hom(B)$ and B contains a net $(e_{\alpha})_{\alpha}$ such that $(\varphi(e_{\alpha}^2))$ is an approximate identity for B and $a\varphi(e_{\alpha}) = \varphi(e_{\alpha})a$ for all $a \in A$. If A is $\overline{\varphi}$ -approximate Helemskii biflat, then B is φ -approximate Helemskii biflat.

Proof. Let $T_{\alpha}: A \otimes A \to B \otimes B$ defined by $a \otimes b \mapsto a\varphi(e_{\alpha}) \otimes b\varphi(e_{\alpha})$. Since *A* is $\overline{\varphi}$ -approximate Helemskii biflat, so there is a net $(\theta_{\beta})_{\beta}$ with $\theta_{\beta}: A \to (A \otimes A)^{**}$ such that $\pi_{A}^{**} \circ \theta_{\beta} \circ (a) \to \overline{\varphi}(a)$ $(a \in A)$. For $\lambda = (\alpha, \gamma)$ we define $\theta_{\lambda}: B \to (B \otimes B)^{**}$ by $\theta_{\lambda}: = T_{\alpha}^{**} \circ \theta_{\beta} \circ j$, where $j: B \to A$ is the inclusion map. Then θ_{λ} is a bounded *B* -bimodul map. Note that because $\varphi(e_{\alpha})$ lies in the center of $A, \pi_{B}^{**} \circ T_{\alpha}^{**} = R_{\alpha}^{**} \circ \pi_{A}^{**}$, where $R_{\alpha}: A \to B$ is defined by $a \mapsto a\varphi(e_{\alpha}^{2})$ $(a \in A)$. Let $b \in B$, $f \in B^{*}$. By the iterated limit theorem, we have

$$\begin{split} \lim_{\lambda} \langle f, \pi_B^{**} \circ \theta_{\lambda}(b) \rangle &= \lim_{\alpha} \lim_{\beta} \langle f, \pi_B^{**} \circ T_{\alpha}^{**} \circ \theta_{\beta} \circ j(b) \rangle \\ &= \lim_{\alpha} \lim_{\beta} \langle f, R_{\alpha}^{**} \circ \pi_A^{**} \circ \theta_{\beta}(b) \rangle \\ &= \lim_{\alpha} \langle f, R_{\alpha}^{**}(\varphi(b)) \rangle \\ &= \lim_{\alpha} \langle f, \varphi(b) \varphi(e_{\alpha}^2) \rangle \\ &= \langle f, \varphi(b) \rangle. \\ \end{split}$$
Hence, $\pi_B^{**} \circ \theta_{\lambda}(b) \to \varphi(b) \quad (b \in B). \end{split}$

Corollary 3.2. Let A be a Banach algebra and B be an abstract Segal algebra with respect to A. Suppose that $\varphi \in Hom(A)$ and B contains a net $(e_{\alpha})_{\alpha}$ such that $(e_{\alpha})^2$ is an approximate identity for B and $a\varphi(e_{\alpha}) = \varphi(e_{\alpha})a$ for all $a \in A$. If $\varphi(B) \subseteq B$ and A is φ -approximate Helemskii biflat, then B is φ -approximate Helemskii biflat. **Denition 3.4.** Let A be a Banach algebra and $\varphi \in Hom(A)$. We say that A is φ – pseudo contractible if it has a central φ -approximate diagonal, i.e., a φ -approximate diagonal (m_{α}) satisfying $\varphi(a)m_{\alpha} = m_{\alpha}\varphi(a)$ for all $a \in A$ and all α .

Proposition 3.2. For a Banach algebra *A* two the following statements are equivalent.

i) A is φ – pseudo contractible.

ii) A is φ – approximate Helemskii biflat and has a central approximate identity.

Proof. (i) \Rightarrow (ii) Suppose that $(m_{\alpha}) \subset A \otimes A$ is a central φ -approximate diagonal for A. We define $\theta_{\alpha} : A \to (\hat{A} \otimes A)^{**}$ by $\theta_{\alpha}(a) := \varphi(a) \cdot m_{\alpha}$. Then for every $a \in A$, we have

$$\lim_{\alpha} \pi^{**} \circ \theta_{\alpha}(a) = \lim_{\alpha} \pi^{**}(\varphi(a) \cdot m_{\alpha})$$
$$= \varphi(a).$$

So $\pi(m_{\alpha})$ is a central approximate identity for *A*.

(ii) \Rightarrow (i) Since *A* is φ – approximate Helemskii biflat, there is a net $\theta_{\alpha}: A \rightarrow (A \otimes A)^{**}$ ($\alpha \in \Delta$) such that $\lim_{\alpha} \pi^{**} \circ \theta_{\alpha}(a) = \varphi(a)$ ($a \in A$). Let $(e_{\beta})_{\beta \in I}$ be a central approximate identity for *A*. Let $E = I \times \Delta^{I}$ be directed by the

product ordering and for each $\lambda = (\beta, \alpha) \in E$ define $m_{\lambda} = \theta_{\alpha}(e_{\beta})$. Then (m_{λ}) is a central φ -approximate diagonal for A.

Here, we now give an examples of φ –approximate Helemskii biflat Banach algebra which is not φ – Helemskii biflat.

Example 3.1. Consider the semigroup \mathbb{N}_{\wedge} , with the operation semigroup $m \wedge n = \min\{m, n\}$, $m, n \in \mathbb{N}$. We know that $(\delta_n)_{n \in \mathbb{N}}$ is a bounded approximate identity for $l^1(\mathbb{N}_{\wedge})$. If we define $m_n = \delta_n \otimes \delta_n$, then $\varphi(a) \cdot m_n - m_n \cdot \varphi(a) \to 0$ for all $a \in l^1(\mathbb{N}_{\wedge})$ and also $\pi(m_n) \cdot \varphi(a) \to \varphi(a)$. Terefore $l^1(\mathbb{N}_{\wedge})$ is a φ – pseudo amenable ($\varphi \in Hom(\mathbb{N}_{\wedge})$) and so by Theorem 3.3, $l^1(\mathbb{N}_{\wedge})$ is a φ – approximate Helemskii biflat. If we choose $\varphi \in Hom(l^1(\mathbb{N}_{\wedge}))$ such that φ has a dense range, then $l^1(\mathbb{N}_{\wedge})$ is not φ -Helemskii biflat and so $l^1(\mathbb{N}_{\wedge})$ is not biflat Banach algebra.

Acknowledgements

I gratefully thank the referees for carefully reading the paper and for the suggestions that greatly improved the presentation of the paper.

REFERENCES

- [1]. O. Yu. Aristov, Biprojective algebras and operator spaces, J. Math. Sci., 111, (2002), 3339 3386.
- [2]. F. F. Bonsall and J. Duncan, Complete Normed Algebra, Springer-Verlag, 1973.
- [3]. H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs 24 (Clarendon Press, Oxford), 2000.
- [4]. Z. Ghorbani and M. Lashkarizadeh Bami, φ amenable and φ biflat Banach algebras, Bull. Iranian Math. Soc., **39** (2013), 507-515.
- [5 A. Ya. Helemskii, Banach and Locally Convex Algebras, Clarendon Press, Oxford University Press, New York, 1993.
- [6]. A. Ya. Helemskii, Flat Banach modules and amenable algebras (translated from the Russian). Trans. Moscow Math. Soc., 47 (1985), 199-224.
- [7]. A. Ya. Helemskii, The Homology of Banach and Topological Algebras, **41** of Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1989.
- [8]. B. E. Johnson, Cohomology in Banach Algebras, Mem. Amer. Math. Soc. 127, 1972.
- [9]. J. L. Kelley, General Topology, D. Van Nostrand Company, Inc., New York, 1955.
- [10]. *M. Mirzavaziri and M. S. Moslehian*, $(\sigma \tau)$ -amenability of C^* algebras, *Georgian. Math. J.*, **18** (2011), 137-145.
- [11]. *M. S. Moslehian and A.N. Motlagh*, Some notes on (σ, τ) -amenability of Banach algebras, *Stud. Univ. Babes-Bolyai Math.*, **53** (2008), 57-68.
- [12]. V. Runde, Lectures on Amenability, Lecture Notes in Mathematics 1774, Springer, 2002.
- [13]. T. Yazdanpanah and H. Najafi, σ -contractible and φ -biprojective Banach algebras, Quaestiones. Math., **33** (2010), 485-49.