φ-BIPROJECTIVE AND φ-APPROXIMATE HELEMSKII BIFLAT BANACH ALGEBRAS

Zahra GHORBANI ${ }^{1}$

Abstract

This study aim to introduce the concept of φ-approximate Helemskii biflat Banach algebra A, where φ is a continuous Banach algebra homomorphism. Then a relation between φ-biprojectivity and φ-Helemskii biflatness with φ-amenability is proved. At the end, it is show that $l^{1}\left(\mathbb{N}_{\wedge}\right)$ is a φ-approximate Helemskii biflat Banach algebra.

Keywords: φ-biprojective, φ-approximate Helemskii biflat, φ-amenability.

1. Introduction

Amenable Banach algebras were introduced by Johnson in [8]. He showed that A is an amenable Banach algebra if and only if A has a virtual diagonal, that is, for some M in $(\mathrm{A} \widehat{\otimes} A)^{* *}$ we have $M \cdot a=a \cdot M$ and $\pi^{* *}(M) \cdot a=a$ for all $a \in A$. The notions of biflat and biprojective Banach algebra were introduced by Helemskii [6, 7]. In fact, a Banach algebra A is called biprojective if there exists a bounded A bimodule map $\theta: A \rightarrow \mathrm{~A} \widehat{\otimes} A$ such that $\pi \circ \theta=i d_{A}$, where π is the product morphism from $\mathrm{A} \widehat{\otimes} A$ into A defined by $\pi(a \otimes b)=a b$ for all $a, b \in A$ and $i d_{A}$ denotes the identity map on A. He proved that a Banach algebra A is amenable if A is biflat and it has a bounded approximate identity [5, 7]. In fact, A is called biflat if there is a bounded A-bimodule map $\theta:(\mathrm{A} \widehat{\otimes} A)^{*} \rightarrow A^{*}$ such that $\theta \circ \pi^{*}=i d_{A^{*}}$.

Recently, some authors have added a kind of twist to the amenability definition. Given a continuous homomorphism φ from A into A. The authors in [10, $11,4]$ defined and studied φ-derivations and φ-amenability.

Motivated by this consideration the authors in [13] introduced a generalization of Helemskiis concept like φ-biprojectivity, where φ is a continuous Banach algebra homomorphism. They stated a Banach algebra A is φ-biprojective if there exists a bounded φ-A-bimodule homomorphism $\theta: A \rightarrow(\mathrm{~A} \triangle A)$ such that $\pi \circ \theta=\varphi$.

In this paper, we introduce a new concept of φ-approximate biflatness and then a relation between φ-biflatness and φ-amenability is proved. We show that $l^{1}\left(\mathbb{N}_{\Lambda}\right)$ is φ-approximate Helemskii biflat if we choose $\varphi \in \operatorname{Hom}\left(l^{1}\left(\mathbb{N}_{\Lambda}\right)\right)$ such

[^0]that φ has dense range, then $l^{1}\left(\mathbb{N}_{\Lambda}\right)$ is not φ-Helemskii biflat and so $l^{1}\left(\mathbb{N}_{\Lambda}\right)$ is not biflat Banach algebra. Finally, we give an examples of φ-biprojective Banach algebra which is not biprojective.

2. φ-biprojective Banach algebras

Let A be a Banach algebra and $\varphi \in \operatorname{Hom}(A)$, where $\operatorname{Hom}(A)$ contains all continuous homomorphisms from A into itself. Let X and Y be Banach A bimodules, a φ - A-bimodule morphism from X into Y is a morphism $T: X \rightarrow Y$ such that for every $a \in A, x \in X$ and $\varphi \in \operatorname{Hom}(A)$, we have

$$
T(a \cdot x)=\varphi(a) \cdot T(x), \quad T(x \cdot a)=T(x) \cdot \varphi(a) .
$$

In the following result, $\varphi \in \operatorname{Hom}(A)$ and I is a closed ideal of A which is φ invariant, that is, $\varphi(I) \subset I$, and also we consider the map $\tilde{\varphi}: A / I \rightarrow A / I$ defined by $\tilde{\varphi}(a+I)=\varphi(a)+I$.

Theorem 2.1. Suppose that A is a φ-biprojective Banach algebra. If I is a closed ideal of A, then A / I is $\tilde{\varphi}$-biprojective.

Proof. Let $\theta: A \rightarrow(\mathrm{~A} \widehat{\otimes} A)$ be a $\varphi-A$ bimodule morphism such that $\pi \circ \theta=\varphi$ and $q: A \rightarrow A / I$ be the quotient map. We define the map $\tilde{\theta}: A / I \rightarrow(\mathrm{~A} / I \widehat{\otimes} A / I)$ by $a+I \mapsto(\mathrm{q} \widehat{\otimes} q) \circ \theta(a)(a \in A)$ and prove that $\tilde{\theta}$ is an $\tilde{\varphi}-A / I$ - bimodule map. To do this, take $a, b, c \in A$, so we get

$$
\begin{aligned}
& \tilde{\theta}((a+I)(b+I)(c+I))=\tilde{\theta}(a b c+I) \\
& =(q \widehat{\otimes} q) \circ \theta(a b c) \\
& =(q \widehat{\otimes} q)(\varphi(a) \cdot \theta(b) \cdot \varphi(c)) \\
& =(\varphi(a)+I) \cdot \tilde{\theta}(b+I) \cdot(\varphi(c)+I) \\
& =\tilde{\varphi}(a+I) \cdot \tilde{\theta}(b+I) \cdot \tilde{\varphi}(c+I),
\end{aligned}
$$

and also we have

$$
\begin{aligned}
& \pi_{A / I} \circ \tilde{\theta}=\pi_{A / I} \circ(q \widehat{\otimes} q) \circ \theta(a) \\
& =q \circ \pi_{A} \circ \theta(a) \\
& =q(\varphi(a))=\varphi(a)+I=\tilde{\varphi}(a+I)
\end{aligned}
$$

That is, A / I is $\tilde{\varphi}$-biprojective.
Theorem 2.2. Suppose that A is a φ-biprojective Banach algebra. If I is a closed ideal of A with one sided bounded approximate identity and $\varphi(I) \subset I$, then I is $\left.\varphi\right|_{I^{-}}$ biprojective.

Proof. Assume that $\theta: A \rightarrow(\mathrm{~A} \widehat{\otimes} A)$ is a $\varphi-A$ bimodule morphism such that $\pi \circ$ $\theta=\varphi$. Let $t: I \hookrightarrow A$ be the inclusion map. Then $\left.\theta\right|_{I}=\theta \circ t: I \rightarrow(\mathrm{~A} \widehat{\otimes} A)$ is a $\left.\varphi\right|_{I^{-}}$ I-bimodule homomorphism. We put $\left.I^{3}=\overline{\operatorname{span}\{a b c: ~} a, b, c \in I\right\}$. Since I has a one sided bounded approximate identity, it follows that $I^{3}=I$. Moreover, we have

$$
\begin{aligned}
& \left.\theta\right|_{I}=\theta(I) \\
& =\theta\left(I^{3}\right) \\
& \subseteq \operatorname{span}\{a \cdot \theta(b) \cdot c\}^{-} \\
& \subseteq \operatorname{span}\{a \cdot m \cdot c: a, c \in I, m \in \mathrm{~A} \widehat{\otimes} A\}^{-} \subseteq I \widehat{\otimes} I
\end{aligned}
$$

Therefore, for every $a \in I$, we get

$$
\begin{aligned}
& \left.\pi \circ \theta\right|_{I}(a)=\pi(\theta(a)) \\
& =\varphi(a) .
\end{aligned}
$$

Recall that a character on A is a non-zero homomorphism from A into the scalar field. The set of all characters on A is called the character space of A and is denoted by Φ_{A}.

Proposition 2.1. Let A be a unital Banach algebra, B be a Banach algebra containing a non-zero idempotent $b_{0}, \varphi \in \operatorname{Hom}(A)$, and $\psi \in \operatorname{Hom}(B)$. If A $\widehat{\otimes} B$ is $\varphi \otimes \psi$-biprojective, then A is φ-biprojective.

Proof. There is a $\varphi \otimes \psi-\mathrm{A} \widehat{\otimes} B$-bimodule $\theta: A \widehat{\otimes} B \rightarrow(A \widehat{\otimes} B) \widehat{\otimes}(A \widehat{\otimes} B)$ with $\pi_{A \widehat{\otimes} B} \circ \theta=\varphi \otimes \psi$. We consider $A \widehat{\otimes} B$ as an A-bimodule with the actions defined by

$$
a_{1} \cdot\left(a_{2} \otimes b\right)=a_{1} a_{2} \otimes b, \quad \text { and } \quad\left(a_{2} \otimes b\right) \cdot a_{1}=a_{2} a_{1} \otimes
$$

$b \quad\left(a_{1}, a_{2} \in A, b \in B\right)$.
Thus for every $a_{1}, a_{2} \in A$, we have

$$
\begin{aligned}
& \theta\left(a_{1} a_{2} \otimes b_{0}\right)=\theta\left(\left(a_{1} \otimes b_{0}\right)\left(a_{2} \otimes b_{0}\right)\right) \\
& =\left(\varphi\left(a_{1}\right) \otimes \psi\left(b_{0}\right)\right) \cdot \theta\left(a_{2} \otimes b_{0}\right) \\
& =\varphi\left(a_{1}\right) \cdot\left(e_{A} \otimes b_{0}\right) \cdot \theta\left(a_{2} \otimes b_{0}\right) \\
& =\varphi\left(a_{1}\right) \cdot \theta\left(a_{2} \otimes b_{0}\right) .
\end{aligned}
$$

Similarly, we can show a right-module version of this equation. So, we have

$$
\theta\left(a_{1} a_{2} \otimes b_{0}\right)=\varphi\left(a_{1}\right) \cdot \theta\left(a_{2} \otimes b_{0}\right)=\theta\left(a_{1} \otimes b_{0}\right) \cdot \varphi\left(a_{2}\right) \quad\left(a_{1}, a_{2} \in\right.
$$ A).

We take $f \in \Phi_{A}$ with $f\left(b_{0}\right)=1$ and define

$$
\rho:(A \widehat{\otimes} B) \widehat{\otimes} \mathrm{A} \widehat{\otimes} B \rightarrow(A \widehat{\otimes} A), \quad\left(a_{1} \otimes b_{1}\right) \otimes\left(a_{2} \otimes b_{2}\right) \mapsto
$$

$f\left(b_{1} b_{2}\right) a_{1} \otimes a_{2}$
Then ρ is a φ - A-bimodule morphism.
We now define $\tilde{\theta}: A \rightarrow(A \widetilde{\otimes} A)$ by

$$
\tilde{\theta}(a)=\rho \circ \theta\left(a \otimes b_{0}\right), \quad(a \in A)
$$

Thus $\tilde{\theta}$ is a φ - A-bimodule morphism and also

$$
\pi_{A} \circ \rho=\left(i d_{A} \otimes f\right) \circ \pi_{A \widehat{\otimes} B} .
$$

Therefore,

$$
\begin{aligned}
& \pi_{A} \circ \tilde{\theta}(a)=\pi_{A} \circ \rho \circ \theta\left(a \otimes b_{0}\right) \\
& =\left(i d_{A} \otimes f\right) \circ \pi_{A \widehat{\otimes} B} \circ \theta\left(a \otimes b_{0}\right) \\
& =\varphi(a) .
\end{aligned}
$$

That is, A is φ-biprojective.
Let A be a φ-biprojective Banach algebra and B be a ψ-biprojective Banach algebra, where $\varphi \in \operatorname{Hom}(A)$ and $\psi \in \operatorname{Hom}(B)$. Then $A \widehat{\otimes} B(A \oplus B)$ is a $\varphi \otimes$ $\psi(\varphi \oplus \psi)$ - biprojective Banach algebra.

Here, we now give an examples of φ-biprojective Banach algebra which is not biprojective.
Example 2.1. Let \mathcal{V} be a Banach space, and let $f \in \mathcal{V}^{*}$ be a non-zero element such that $\|f\| \leq 1$. Then \mathcal{V} equipped with the product defined by $a b:=f(a) b$ for $a, b \in$ v is a Banach algebra which is denoted by \mathcal{V}_{f}. In general, \mathcal{V}_{f} is a non- commutative and non-unital Banach algebra without right approximate identity, but it is not amenable. Hence, $\left(\mathcal{V}_{f}\right)^{\#}$ (unitization of \mathcal{V}_{f}) is not biprojective. If we define $\varphi:\left(\mathcal{V}_{f}\right)^{\#} \rightarrow\left(\mathcal{V}_{f}\right)^{\#}$ by $\varphi(a+\lambda e)=\lambda$ for $a \in \mathcal{V}_{f}$ and $\lambda \in \mathbb{C}$, then Example 3.2 [10] shows that $\left(\mathcal{V}_{f}\right)^{\#}$ is a φ-contactible Banach algebra. Since φ is an idempotent homomorphism, thus by Theorem 4.3 [13] $\left(\mathcal{V}_{f}\right)^{\#}$ is φ-biprojective.
Example 2.2. The Banach algebra l^{1} with respect to pointwise product is nonamenable and biprojective Banach algebra [3, Example 4.1.42]. Hence, $\left(l^{1}\right)^{\#}$ (unitization of l^{1}) is not biprojective. If we define $\varphi:\left(l^{1}\right)^{\sharp} \rightarrow\left(l^{1}\right)^{\#}$ by $\varphi(a+\lambda e)=$ λ for $a \in l^{1}$ and $\lambda \in \mathbb{C}$, then Example 3.2 [10] shows that $\left(l^{1}\right)^{\#}$ is a φ-contactible Banach algebra, since φ is an idempotent homomorphism, hence by Theorem 4.3 [13], $\left(l^{1}\right)^{\#}$ is φ-biprojective.
Definition 2.1. Let A be a Banach algebra and φ be a continuous homomorphism from A into A. Then A is called φ-Helemskii biflat if there exists a φ - A-bimodule homomorphism $\theta: A \rightarrow(\mathrm{~A} \widehat{\otimes} A)^{* *}$ such that $\pi^{* *} \circ \theta=\kappa_{A} \circ \varphi$, where κ_{A} is the canonical embedding map of A into $A^{* *}$.

The notion of φ-biflat in [4] gave a slight generalization of biflat. The above definition is a new concept of φ-biflatness as a generalization of the notion of biflatness, because for every $\varphi \in \operatorname{Hom}(A)$, any biflat Banach algebra is φ Helemskii biflat.
Proposition 2.2. Let A be a unital Banach algebra and B be a Banach algebra containing a non-zero idempotent b_{0}. If $\mathrm{A} \widehat{\otimes} B$ is $\varphi \otimes \psi$-Helemskii biflat for $\varphi \in$ $\operatorname{Hom}(A)$ and $\psi \in \operatorname{Hom}(B)$, then A is φ-Helemskii biflat.

Proof. There is a $\varphi \otimes \psi-\mathrm{A} \widehat{\otimes} B$-bimodule $\theta: \mathrm{A} \widehat{\otimes} B \rightarrow(A \widehat{\otimes} B) \widehat{\otimes}(A \widehat{\otimes} B)^{* *}$ with $\pi_{\mathrm{A} \otimes \mathrm{\otimes} B}^{* *} \circ \theta=\kappa_{\mathrm{A} \widehat{\otimes} B} \circ(\varphi \otimes \psi)$.

The following proof is similar to the proof of Proposition 2.1. We now define $\tilde{\theta}: A \rightarrow(A \widehat{\otimes} A)^{* *}$ by

$$
\tilde{\theta}(a)=\rho^{* *} \circ \theta\left(a \otimes b_{0}\right) \quad(a \in A)
$$

Then $\tilde{\theta}$ is a φ - A-bimodule morphism and

$$
\pi_{A}^{* *} \circ \tilde{\theta}=\kappa_{A} \circ \varphi
$$

That is, A is φ-Helemskii biflat.
Let A be a φ-Helemskii biflat Banach algebra and B be a ψ-Helemskii biflat Banach algebra, where $\varphi \in \operatorname{Hom}(A)$ and $\psi \in \operatorname{Hom}(B)$. Then $A \widehat{\otimes} B(A \oplus B)$ is a $\varphi \otimes \psi(\varphi \oplus \psi)$-Helemskii biflat Banach algebra.
Proposition 2.3. Let A be a Banach algebra. If A is φ-Helemskii biflat, then A is $\varphi \circ \psi$-Helemskii biflat for any $\psi \in \operatorname{Hom}(A)$. In particular, A is φ^{n}-Helemskii biflat.

Proof. There exists a φ - A-bimodule homomorphism $\theta: A \rightarrow(A \widehat{\otimes} A)^{* *}$ such that $\pi^{* *} \circ \theta=\kappa_{A} \circ \varphi$. We define $\tilde{\theta}=\theta \circ \psi$. For every $a, b \in A$, we have

$$
\begin{aligned}
& \tilde{\theta}(a b)=\theta \circ \psi(a b) \\
& =\theta(\psi(a) \psi(b)) \\
& =\varphi \circ \psi(a) \theta(\psi(b))=\varphi \circ \psi(a) \tilde{\theta}(a) .
\end{aligned}
$$

and also

$$
\begin{aligned}
& \pi_{A} \circ \tilde{\theta}(a)=\pi_{A} \circ \theta \circ \psi(a) \\
& =\varphi \circ \psi(a) .
\end{aligned}
$$

That is, A is $\varphi \circ \psi$-Helemskii biflat.
Let A be a Banach algebra. If A is a φ-biprojective, then A is a φ-Helemskii biflat Banach algebra. The next result can be found in [10].
Lemma 2.1. Let A be a Banach algebra. Then there is an A-bimodule homomorphism $\gamma:(\mathrm{A} \widehat{\otimes} A)^{*} \rightarrow\left(\mathrm{~A}^{* *} \otimes A^{* *}\right)^{*}$ such that for any functional $f \in$ $(A \widehat{\otimes} A)^{*}$, elements $\varphi, \psi \in A^{* *}$ and nets $\left(a_{\alpha}\right),\left(b_{\beta}\right)$ in A with $w^{*}-\lim _{\alpha} a_{\alpha}=\varphi$ and $w^{*}-\lim _{\beta} b_{\beta}=\psi$, we have

$$
\gamma(f)(\varphi \otimes \psi)=\lim _{\alpha} \lim _{\beta} f\left(a_{\alpha} \otimes b_{\beta}\right)
$$

Theorem 2.3. Suppose that A is a Banach algebra and $\varphi \in \operatorname{Hom}(A)$. If $A^{* *}$ is $\varphi^{* *}-$ biprojective, then A is φ-Helemskii biflat.

Proof. Let $\kappa: A \rightarrow A^{* *}, \kappa_{1}: A^{*} \rightarrow A^{* * *}$ and $\kappa_{*}: A^{* *} \rightarrow A^{* * * *}$ denotes the natural inclusion π (${ }^{* *} \pi$, respectively) product map on A ($A^{* *}$, respectively) and also γ be defined as in Lemma 2.1 Then for any $a^{*} \in A^{*}$, elements $a_{1}^{* *}, a_{2}^{* *} \in A^{* *}$ and nets $\left(a_{\alpha}\right),\left(b_{\beta}\right) \subset A$ with $w^{*}-\lim _{\alpha} a_{\alpha}=a_{1}^{* *}, w^{*}-\lim _{\beta} b_{\beta}=a_{2}^{* *}$, we obtain

$$
\begin{aligned}
& \left(\gamma\left(\pi^{*}\left(a^{*}\right)\right)\right)\left(a_{1}^{* *} \otimes a_{2}^{* *}\right)=\lim _{\alpha} \lim _{\beta} \pi^{*}\left(a^{*}\right)\left(a_{\alpha} \otimes b_{\beta}\right) \\
& =\operatorname{limim}_{\alpha} \lim _{\beta}^{*}\left(a_{\alpha} b_{\beta}\right) \\
& =w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta} \kappa\left(a_{\alpha} b_{\beta}\right)\left(a^{*}\right) \\
& =\kappa_{1}\left(a^{*}\right)\left(a_{*}^{* *} a_{2}^{* *}\right) \\
& =\kappa_{1}\left(a^{*}\right)\left({ }^{* *} \pi\left(a_{1}^{* *} \otimes a_{2}^{* *}\right)\right)=\left({ }^{* *} \pi^{*}\left(\kappa_{1}\left(a^{*}\right)\right)\right)\left(a_{1}^{* *} \otimes a_{2}^{* *}\right) .
\end{aligned}
$$

Thus $\gamma \circ \pi^{*}={ }^{* *} \pi^{*} \circ \kappa_{1}$ and then $\pi^{* *} \circ \gamma^{*}=\kappa_{1}^{*} \circ^{* *} \pi^{* *}$. Since $A^{* *}$ is $\varphi^{* *}-$ biprojective, so there is a $\varphi^{* *}-A$-bimodule map $\theta_{0}: A^{* *} \longrightarrow\left(A^{* *} \widehat{\otimes} A^{* *}\right)$ such that $\pi \circ \theta_{0}=\varphi^{* *}$. By putting $\theta:=\gamma^{*} \circ \theta_{0} \circ \kappa$, then for every $a \in A$, we have

$$
\begin{aligned}
& \pi^{* *} \circ \theta(a)=\pi^{* *} \circ \gamma^{*} \circ \theta_{0} \circ \kappa(a) \\
& =\kappa_{1}^{*} \circ \pi^{* *} \circ \theta_{0} \circ \kappa \circ \varphi(a) \\
& =\kappa_{1}^{*}\left(\varphi^{* *}(a)=\varphi(a) .\right.
\end{aligned}
$$

That is, A is φ-Helemskii biflat.
Theorem 2.4. Suppose that A is a φ-Helemskii biflat Banach algebra with bounded approximate identity. If φ is a dense range map, then A is an amenable Banach algebra.

Proof. Let $\theta: A \rightarrow(\mathrm{~A} \widehat{\otimes} A)^{* *}$ be a bounded φ - A-bimodule map such that $\pi^{* *} \circ \theta=$ $\kappa_{A} \circ \varphi$. Let $\left(e_{\alpha}\right)$ be a bounded approximate identity for A and we define $M=w^{*}-$ $\lim _{\alpha} \theta\left(e_{\alpha}\right)$. Then we get

$$
\begin{aligned}
& \varphi(a) \cdot M=w^{*}-\lim _{\alpha} \varphi(a) \cdot \theta\left(e_{\alpha}\right) \\
& =w^{*}-\lim _{\alpha} \theta\left(a e_{\alpha}\right) \\
& =w^{*}-\lim _{\alpha} \theta\left(e_{\alpha} a\right) \\
& =w^{*}-\lim _{\alpha} \theta\left(e_{\alpha}\right) \cdot \varphi(a) \\
& =M \cdot \varphi(a) .
\end{aligned}
$$

and so

$$
\begin{aligned}
& \pi^{* *}(M) \cdot \varphi(a)=w^{*}-\lim _{\alpha} \pi^{* *} \circ \theta\left(e_{\alpha}\right) \cdot \varphi(a) \\
& =w^{*}-\lim _{\alpha} \kappa_{A} \circ \varphi\left(e_{\alpha}\right) \cdot \varphi(a)=\varphi(a) .
\end{aligned}
$$

Let $a \in A$ and take a sequence $\left(a_{n}\right)_{n} \subseteq A$ such that $\lim _{n} \varphi\left(a_{n}\right)=a$. Hence

$$
a \cdot M=\lim _{n} \varphi\left(a_{n}\right) \cdot M
$$

$$
\begin{aligned}
& =\lim _{n} M \cdot \varphi\left(a_{n}\right) \\
& =M \cdot a
\end{aligned}
$$

and so $\pi^{* *}(M) \cdot a=a$.
Thus M is a virtual diagonal for A. Hence by Theorem 2.9.65 [3] A is amenable.
Corollary 2.1. Suppose that A is a φ-Helemskii biflat Banach algebra with bounded approximate identity. If φ is a dense range map, then A is a φ-amenable Banach algebra.

Let A be a Banach algebra. An element M in $(\mathrm{A} \widehat{\otimes} A)^{* *}$ is said to be a φ virtual diagonal for A if $M \cdot \varphi(a)=\varphi(a) \cdot M$ and $\pi^{* *}(M) \cdot \varphi(a)=\varphi(a)$ for every $a \in A$.
Theorem 2.5. Suppose that A is a φ-amenable Banach algebra with bounded approximate identity. Then A is a φ-Helemskii biflat Banach algebra

Proof. Let A be a φ-amenable Banach algebra with bounded approximate identity. By Theorem 2.2 [4] A has a φ-virtual diagonal M. We define $\theta: A \rightarrow(A \widehat{\otimes} A)^{* *}$ by $a \mapsto \varphi(a) \cdot M$. For every $a \in A$, we have

$$
\begin{aligned}
& \pi^{* *} \circ \theta(a)=\pi^{* *} \circ(\varphi(a) \cdot M) \\
& =\pi^{* *} \circ(M \cdot \varphi(a)) \\
& =\varphi(a)=\kappa_{A} \circ \varphi(a)
\end{aligned}
$$

That is, A is a φ-Helemskii biflat Banach algebra.
We now give an example of φ-Helemskii biflat Banach algebra which is not biflat.
Example 2.3. Note that the Banach algebra l^{1} is a biflat Banach algebra because it is biprojective [3, see Example 4.1.42]. So $\left(l^{1}\right)^{\#}$ is a non-amenable [12]. By [5], $\left(l^{1}\right)^{\#}$ is not biflat and if we define $\varphi:\left(l^{1}\right)^{\#} \rightarrow\left(l^{1}\right)^{\#}$ by $\varphi(a+\lambda e)=\lambda$ for $a \in$ l^{1} and $\lambda \in \mathbb{C}$, then Example 3.2 [10] shows that $\left(l^{1}\right)^{\#}$ is a φ-amenable Banach algebra. By Theorem 2.5, $\left(l^{1}\right)^{\#}$ is a φ-Helemskii biflat Banach algebra.

The next example shows that a φ-Helemskii biflat Banach algebra need not to be a φ-amenable.
Example 2.4. The Banach algebra l^{1} is non-amenable and a biflat Banach algebra [3, see Example 4.1.42]. Then for any $\varphi \in \operatorname{Hom}\left(l^{1}\right), l^{1}$ is φ-Helemskii biflat. If we choose $\varphi \in \operatorname{Hom}\left(l^{1}\right)$ such that φ be an epimorphism, then l^{1} is not φ-amenable, by Proposition 2.3 [11].

3. φ-approximate Helemskii biflat Banach algebras

We start this section by introducing the following:

Denition 3.1. Let A be a Banach algebra. Then A is called φ-approximate Helemskii biflat if there is a net $\theta_{\alpha}: A \rightarrow(A \widehat{\otimes} A)^{* *},(\alpha \in I)$ of φ - A-bimodule morphisms such that $\pi^{* *} \circ \theta_{\alpha}(a) \rightarrow \varphi(a)$.
Theorem 3.1. Suppose that A is a φ-approximate Helemskii biflat Banach algebra with one sided bounded approximate identity. If I is a closed ideal of A, then A / I is $\tilde{\varphi}$-approximate Helemskii biflat.

Proof. Let $\theta_{\alpha}: A \rightarrow(\mathrm{~A} \widehat{\otimes} A)^{* *}$ be a bounded φ - A-bimodule map such that $\lim _{\alpha} \pi^{* *} \circ \theta_{\alpha}(a)=\varphi(a)$ and $q: A \rightarrow A / I$ be the quotient map. We define the map $\tilde{\theta}_{\alpha}: A / I \rightarrow(\mathrm{~A} / I \widehat{\otimes} A / I)^{* *}$ by $a+I \mapsto(\mathrm{q} \widehat{\otimes} q)^{* *} \circ \theta_{\alpha}(a)(a \in A)$. Hence $\tilde{\theta}_{\alpha}$ is well-defined. If $\left(e_{\beta}\right)$ is a bounded left approximate identity for A (the right case is similar), then

$$
\begin{aligned}
& \left\|(\mathrm{q} \widehat{\otimes} q)^{* *}\left(\theta_{\alpha}(a)\right)\right\|=\lim _{\beta}\left\|(\mathrm{q} \widehat{\otimes} q)^{* *}\left(\theta_{\alpha}\left(e_{\beta} a\right)\right)\right\| \\
& =\lim _{\beta}\left\|q(a)(q \widehat{\otimes} q)^{* *}\left(\theta_{\alpha}\left(e_{\beta}\right)\right)\right\| \\
& \leq\|q\|^{2}\left\|\theta_{\alpha}\right\| \sup _{\beta}\left\|e_{\beta}\right\|\|q(a)\| .
\end{aligned}
$$

We also obtain

$$
\begin{aligned}
& \lim _{\alpha} \pi_{A / I}^{* *} \circ \tilde{\theta}_{\alpha}(a+I)=\lim _{\alpha} \pi_{A / I}^{* *} \circ(q \widehat{\otimes} q)^{* *} \circ \theta_{\alpha}(a) \\
& =\lim _{\alpha} q^{* *} \circ \pi_{A}^{* *} \circ \theta_{\alpha}(a) \xrightarrow{\rightarrow} q(\varphi(a))=\tilde{\varphi}(a+I) .
\end{aligned}
$$

That is, A / I is $\tilde{\varphi}$-approximate Helemskii biflat.
Since the proof of the next result is similar to Theorem 2.3, so we omit it.
Theorem 3.2. Suppose that A is a Banach algebra. If $A^{* *}$ is $\varphi^{* *}$-approximate Helemskii biflat, then A is φ-approximate Helemskii biflat.
Definition 3.2. Let A be a Banach algebra and $\varphi \in \operatorname{Hom}(A)$. We say that A is $\varphi-$ pseudo amenable if A admits a φ - approximate virtual diagonal, i.e., there is a net $\left(m_{\alpha}\right) \subset \mathrm{A} \widehat{\otimes} A$ (not necessary bounded) such that $m_{\alpha} \cdot \varphi(a)-\varphi(a) \cdot m_{\alpha} \rightarrow 0$ and $\pi\left(m_{\alpha}\right) \cdot \varphi(a) \rightarrow \varphi(a)(a \in A)$.
Theorem 3.3. Let A be a Banach algebra with an approximate identity and φ be an idempotent homomorphism on A. Then A is φ - pseudo amenable ($\varphi \in$ $\operatorname{Hom}(A))$ if and only if A is φ - approximate Helemskii biflat.

Proof. Let $\left(e_{\beta}\right)_{\beta \in I}$ be an approximate identity for A and $\theta_{\alpha}: A \rightarrow(A \widehat{\otimes} A)^{* *}(\alpha \in$ $\triangle)$ satisfies $\pi^{* *} \circ \theta_{\alpha} \circ(a) \rightarrow \varphi(a) \quad(a \in A)$. Then for every $a \in A$ and $f \in$ $(A \widehat{\otimes} A)^{*}$, we obtain

$$
\begin{aligned}
& \quad \operatorname{limlim}_{\beta}\left\langle f, \theta_{\alpha}\left(\varphi\left(e_{\beta}\right)\right) \cdot \varphi(a)-\varphi(a) \cdot \theta_{\alpha}\left(\varphi\left(e_{\beta}\right)\right)\right\rangle= \\
& \lim _{\beta} \lim _{\alpha}\left\langle f, \theta_{\alpha}\left(\varphi\left(e_{\beta}\right) \varphi(a)\right.\right. \\
& \\
& \left.-\varphi(a) \varphi\left(e_{\beta}\right)\right\rangle \\
& = \\
& =\operatorname{limim}_{\beta}\left\langle f, \theta_{\alpha}\left(\varphi\left(e_{\beta} a-a e_{\beta}\right)\right)\right\rangle \\
& \quad=0 .
\end{aligned}
$$

Also, for $a \in A$ and $\psi \in A^{*}$, we get

$$
\begin{aligned}
& \lim _{\beta} \lim _{\alpha}\left\langle\psi, \varphi(a) \cdot \pi^{* *} \circ \theta_{\alpha}\left(\varphi\left(e_{\beta}\right)\right\rangle=\lim _{\beta}\left\langle\psi, \varphi(a) \varphi^{2}\left(e_{\beta}\right)\right\rangle\right. \\
& =\lim _{\beta}\left\langle\psi, \varphi\left(a e_{\beta}\right)\right\rangle \\
& =\langle\psi, \varphi(a)\rangle .
\end{aligned}
$$

Let $E=I \times \triangle^{I}$ be directed by the product ordering and for any $\lambda=(\beta, \alpha) \in$ E, define $m_{\lambda}=\theta_{\alpha}\left(\varphi\left(e_{\beta}\right)\right)$. Using the iterated limit theorem [9, Theorem 2.4], the above calculation gives

$$
w^{*}-\lim _{\lambda}\left(m_{\lambda} \cdot \varphi(a)-\varphi(a) \cdot m_{\lambda}\right)=0 \quad(a \in A),
$$

and

$$
w^{*}-\lim _{\lambda} \varphi(a) \cdot \pi^{* *}\left(m_{\lambda}\right)=\varphi(a) \quad(a \in A)
$$

By Goldestin's theorem we can assume that $\left(m_{\lambda}\right) \subset(A \widehat{\otimes} A)$ and we can replace weak * convergence in equations by weak convergence. Applying Mazur's theorem, we obtain a net $\left(m^{\prime}{ }_{\lambda}\right) \subset(A \widehat{\otimes} A)$ of convex combinations of $\left(m_{\lambda}\right)$ such that

$$
m_{\lambda}^{\prime} \cdot \varphi(a)-\varphi(a) \cdot m_{\lambda}^{\prime} \rightarrow 0
$$

and also

$$
\varphi(a) \cdot \pi^{* *}\left(m_{\lambda}^{\prime}\right) \rightarrow \varphi(a) \quad(a \in A)
$$

That is, A is φ - pseudo amenable. Conversely, let (m_{β}) be a φ-approximate virtual diagonal for A and define $\theta_{\beta}: A \rightarrow(A \widehat{\otimes} A)^{* *}$ by $a \mapsto \varphi(a) \cdot m_{\beta}$. Clearly, θ_{β} is linear and a $\varphi-A$-bimodule morphism. Also, for every $a \in A$, we have

$$
\begin{aligned}
& \pi^{* *} \circ \theta_{\beta} \circ(a)=\pi^{* *} \circ\left(\varphi(a) \cdot m_{\beta}\right) \\
& =\varphi(a) \pi^{* *}\left(m_{\beta}\right) \\
& \rightarrow \varphi(a) .
\end{aligned}
$$

Proposition 3.1. Let A be a φ-amenable Banach algebra and φ be an idempotent homomorphism on A. Then A is φ-approximate Helemskii biflat.

Proof. By Proposition 4.1 [11] A has a bounded approximate identity $\left(e_{\alpha}\right)_{\alpha \in I}$. Let E be a w^{*}-cluster point of $\left(\varphi\left(e_{\alpha}\right) \otimes \varphi\left(e_{\alpha}\right)\right)_{\alpha}$ in $(A \widehat{\otimes} A)^{* *}$. We define a φ derivation $D: A \rightarrow(A \widehat{\otimes} A)^{* *}$ by $D(a)=\varphi(a) \cdot E-E \cdot \varphi(a)(a \in A)$. Then for every $a \in A$

$$
\pi^{* *}(D(a))=\lim _{\alpha} \pi\left[\left(\varphi(a)\left(\varphi\left(e_{\alpha}\right) \otimes \varphi\left(e_{\alpha}\right)\right)-\left(\varphi\left(e_{\alpha}\right) \otimes\right.\right.\right.
$$

$\left.\left.\varphi\left(e_{\alpha}\right)\right) \varphi(a)\right]$

$$
\begin{aligned}
& =\lim _{\alpha} \varphi\left(a e_{\alpha}\right) \varphi\left(e_{\alpha}\right)-\varphi\left(e_{\alpha}\right) \varphi\left(e_{\alpha} a\right) \\
& =\lim _{\alpha} \varphi\left(a e_{\alpha}^{2}\right)-\varphi\left(e_{\alpha}^{2} a\right) \\
& =\lim _{\alpha} \varphi\left(a e_{\alpha}^{2}-e_{\alpha}^{2} a\right)=0 .
\end{aligned}
$$

Therefore, $D(A) \subseteq \operatorname{ker}\left(\pi^{* *}\right)=(k e r \pi)^{* *}$. Thus there exists $N \in(k e r \pi)^{* *}$ such that $D=a d_{\varphi ; N}$. Put $M=E-N$. Then for every $a \in A$, we have

$$
\begin{aligned}
& \pi^{* *}(M) \cdot \varphi(a)=\pi^{* *}(E-N) \cdot \varphi(a)=\pi^{* *}(E) \cdot \varphi(a) \\
& =w^{*}-\lim _{\alpha} \pi\left(\varphi\left(e_{\alpha}\right) \otimes \varphi\left(e_{\alpha}\right)\right) \cdot \varphi(a) \\
& =w^{*}-\lim _{\alpha} \varphi\left(e_{\alpha}^{2} a\right)=\varphi(a) .
\end{aligned}
$$

Let $\left(m_{\alpha}\right)_{\alpha}$ be a net in ($\mathrm{A} \widehat{\otimes} A$) such that $M=w^{*}-\lim _{\alpha} m_{\alpha}$. Then $w-$ $\lim _{\alpha}\left(m_{\alpha} \cdot \varphi(a)-\varphi(a) \cdot m_{\alpha}\right)=0$ and $w-\lim _{\alpha}\left(\pi\left(m_{\alpha}\right) \cdot \varphi(a)-\varphi(a)\right)=0$ ($a \in A$). Following the argument given in the proof of Lemma 2.9.64 [3] we can show that there exists a net $\left(m_{\beta}\right)_{\beta}$ in $(A \widehat{\otimes} A)$ such that each m_{β} is a convex combination of m_{α} 's with $m_{\beta} \cdot \varphi(a)-\varphi(a) \cdot m_{\beta} \rightarrow 0$ and $\pi\left(m_{\beta}\right) \cdot \varphi(a) \rightarrow$ $\varphi(a)(a \in A)$. Thus A is φ - pseudo amenable and so by Theorem $3.3 A$ is φ approximate Helemskii biflat.

Using the proof of the above proposition we obtain the following results.
Corollary 3.1. Let $L^{1}(G)$ be a φ-amenable Banach algebra ($\varphi \in \operatorname{Hom}\left(L^{1}(G)\right)$) and φ be an idempotent homomorphism on $L^{1}(G)$. Then $L^{1}(G)$ is φ-approximate Helemskii biflat.
Denition 3.3. Let A be a Banach algebra with the norm $\|.\|_{A}$. Then a Banach algebra B with the norm $\|.\|_{B}$ is said to be an abstract Segal algebra with respect to A if
(i) B is a dense left ideal in A;
(ii) there exists $M>0$ such that $\|b\|_{A} \leq M\|b\|_{B}$ for all $b \in B$;
(iii) there exists $C>0$ such that $\|a b\|_{B} \leq C\|a\|_{A}\|b\|_{B}$ for all $a, b \in B$.

Theorem 3.4. Let A be a Banach algebra and B be an abstract Segal algebra with respect to A. Suppose that $\varphi \in \operatorname{Hom}(B)$ and B contains a net $\left(e_{\alpha}\right)_{\alpha}$ such that ($\varphi\left(e_{\alpha}^{2}\right)$) is an approximate identity for B and $a \varphi\left(e_{\alpha}\right)=\varphi\left(e_{\alpha}\right) a$ for all $a \in A$. If A is $\bar{\varphi}$-approximate Helemskii biflat, then B is φ-approximate Helemskii biflat.

Proof. Let $T_{\alpha}: A \widehat{\otimes} A \rightarrow B \widehat{\otimes} B$ defined by $a \otimes b \mapsto a \varphi\left(e_{\alpha}\right) \otimes b \varphi\left(e_{\alpha}\right)$. Since A is $\bar{\varphi}$-approximate Helemskii biflat, so there is a net $\left(\theta_{\beta}\right)_{\beta}$ with $\theta_{\beta}: A \rightarrow(A \widehat{\otimes} A)^{* *}$ such that $\pi_{A}^{* *} \circ \theta_{\beta} \circ(a) \rightarrow \bar{\varphi}(a) \quad(a \in A)$. For $\lambda=(\alpha, \gamma)$ we define $\theta_{\lambda}: B \rightarrow$ $(B \widehat{\otimes} B)^{* *}$ by $\theta_{\lambda}:=T_{\alpha}^{* *} \circ \theta_{\beta} \circ j$, where $j: B \rightarrow A$ is the inclusion map. Then θ_{λ} is a bounded B-bimodul map. Note that because $\varphi\left(e_{\alpha}\right)$ lies in the center of A, $\pi_{B}^{* *}$ 。 $T_{\alpha}^{* *}=R_{\alpha}^{* *} \circ \pi_{A}^{* *}$, where $R_{\alpha}: A \rightarrow B$ is defined by $a \mapsto a \varphi\left(e_{\alpha}^{2}\right) \quad(a \in A)$. Let $b \in$ $B, f \in B^{*}$. By the iterated limit theorem, we have

$$
\begin{aligned}
& \lim _{\lambda}\left\langle f, \pi_{B}^{* *} \circ \theta_{\lambda}(b)\right\rangle=\lim _{\alpha} \lim _{\beta}\left\langle f, \pi_{B}^{* *} \circ T_{\alpha}^{* *} \circ \theta_{\beta} \circ j(b)\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle f, R_{\alpha}^{* *} \circ \pi_{A}^{* *} \circ \theta_{\beta}(b)\right\rangle \\
& =\lim _{\alpha}\left\langle f, R_{\alpha}^{* *}(\varphi(b))\right\rangle \\
& =\lim _{\alpha}\left\langle f, \varphi(b) \varphi\left(e_{\alpha}^{2}\right)\right\rangle \\
& =\langle f, \varphi(b)\rangle .
\end{aligned}
$$

Hence, $\pi_{B}^{* *} \circ \theta_{\lambda}(b) \rightarrow \varphi(b) \quad(b \in B)$.
Corollary 3.2. Let A be a Banach algebra and B be an abstract Segal algebra with respect to A. Suppose that $\varphi \in \operatorname{Hom}(A)$ and B contains a net $\left(e_{\alpha}\right)_{\alpha}$ such that $\left(e_{\alpha}\right)^{2}$ is an approximate identity for B and $a \varphi\left(e_{\alpha}\right)=\varphi\left(e_{\alpha}\right) a$ for all $a \in A$. If $\varphi(B) \subseteq B$ and A is φ-approximate Helemskii biflat, then B is φ-approximate Helemskii biflat. Denition 3.4. Let A be a Banach algebra and $\varphi \in \operatorname{Hom}(A)$. We say that A is $\varphi-$ pseudo contractible if it has a central φ-approximate diagonal, i.e., a φ-approximate diagonal (m_{α}) satisfying $\varphi(a) m_{\alpha}=m_{\alpha} \varphi(a)$ for all $a \in A$ and all α.
Proposition 3.2. For a Banach algebra A two the following statements are equivalent.
i) A is φ - pseudo contractible.
ii) A is φ - approximate Helemskii biflat and has a central approximate identity.

Proof. (i) \Rightarrow (ii) Suppose that $\left(m_{\alpha}\right) \subset A \widehat{\otimes} A$ is a central φ-approximate diagonal for A. We define $\theta_{\alpha}: A \rightarrow(\hat{A} \otimes A)^{* *}$ by $\theta_{\alpha}(a):=\varphi(a) \cdot m_{\alpha}$. Then for every $a \in$ A, we have

$$
\begin{aligned}
& \lim _{\alpha} \pi^{* *} \circ \theta_{\alpha}(a)=\lim _{\alpha} \pi^{* *}\left(\varphi(a) \cdot m_{\alpha}\right) \\
& =\varphi(a)
\end{aligned}
$$

So $\pi\left(m_{\alpha}\right)$ is a central approximate identity for A.
(ii) \Rightarrow (i) Since A is φ - approximate Helemskii biflat, there is a net $\theta_{\alpha}: A \rightarrow(A \widehat{\otimes} A)^{* *}(\alpha \in \triangle)$ such that $\lim _{\alpha} \pi^{* *} \circ \theta_{\alpha}(a)=\varphi(a)(a \in A)$. Let $\left(e_{\beta}\right)_{\beta \in I}$ be a central approximate identity for A. Let $E=I \times \Delta^{I}$ be directed by the
product ordering and for each $\lambda=(\beta, \alpha) \in E$ define $m_{\lambda}=\theta_{\alpha}\left(e_{\beta}\right)$. Then $\left(m_{\lambda}\right)$ is a central φ-approximate diagonal for A.

Here, we now give an examples of φ-approximate Helemskii biflat Banach algebra which is not φ - Helemskii biflat.
Example 3.1. Consider the semigroup \mathbb{N}_{\wedge}, with the operation semigroup $m \wedge n=$ $\min \{m, n\}, m, n \in \mathbb{N}$. We know that $\left(\delta_{n}\right)_{n \in \mathbb{N}}$ is a bounded approximate identity for $l^{1}\left(\mathbb{N}_{\Lambda}\right)$. If we define $m_{n}=\delta_{n} \otimes \delta_{n}$, then $\varphi(a) \cdot m_{n}-m_{n} \cdot \varphi(a) \rightarrow 0$ for all $a \in l^{1}\left(\mathbb{N}_{\Lambda}\right)$ and also $\pi\left(m_{n}\right) \cdot \varphi(a) \rightarrow \varphi(a)$. Terefore $l^{1}\left(\mathbb{N}_{\Lambda}\right)$ is a φ - pseudo amenable $\left(\varphi \in \operatorname{Hom}\left(\mathbb{N}_{\wedge}\right)\right.$) and so by Theorem 3.3, $l^{1}\left(\mathbb{N}_{\wedge}\right)$ is a φ - approximate Helemskii biflat. If we choose $\varphi \in \operatorname{Hom}\left(l^{1}\left(\mathbb{N}_{\wedge}\right)\right)$ such that φ has a dense range, then $l^{1}\left(\mathbb{N}_{\Lambda}\right)$ is not φ-Helemskii biflat and so $l^{1}\left(\mathbb{N}_{\Lambda}\right)$ is not biflat Banach algebra.

Acknowledgements

I gratefully thank the referees for carefully reading the paper and for the suggestions that greatly improved the presentation of the paper.

REFERENCES

[1]. O. Yu. Aristov, Biprojective algebras and operator spaces, J. Math. Sci., 111, (2002), 3339 3386.
[2]. F. F. Bonsall and J. Duncan, Complete Normed Algebra, Springer-Verlag, 1973.
[3]. H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs 24 (Clarendon Press, Oxford), 2000.
[4]. Z. Ghorbani and M. Lashkarizadeh Bami, φ - amenable and φ - biflat Banach algebras, Bull. Iranian Math. Soc., 39 (2013), 507-515.
[5 A. Ya. Helemskii, Banach and Locally Convex Algebras, Clarendon Press, Oxford University Press, New York, 1993.
[6]. A. Ya. Helemskii, Flat Banach modules and amenable algebras (translated from the Russian). Trans. Moscow Math. Soc., 47 (1985), 199-224.
[7]. A. Ya. Helemskii, The Homology of Banach and Topological Algebras, 41 of Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1989.
[8]. B. E. Johnson, Cohomology in Banach Algebras, Mem. Amer. Math. Soc. 127, 1972.
[9]. J. L. Kelley, General Topology, D. Van Nostrand Company, Inc., New York, 1955.
[10]. M. Mirzavaziri and M. S. Moslehian, $(\sigma-\tau)$-amenability of $C^{*}-$ algebras, Georgian. Math. J., 18 (2011), 137-145.
[11]. M. S. Moslehian and A.N. Motlagh, Some notes on (σ, τ)-amenability of Banach algebras, Stud. Univ. Babes-Bolyai Math., 53 (2008), 57-68.
[12]. V. Runde, Lectures on Amenability, Lecture Notes in Mathematics 1774, Springer, 2002.
[13]. T. Yazdanpanah and H. Najafi, σ-contractible and φ-biprojective Banach algebras, Quaestiones. Math., 33 (2010), 485-49.

[^0]: ${ }^{1}$ Dr., Department of Mathematics, Jahrom University, Jahrom , Iran, e-mail: ghorbani@jahromu.ac.ir

