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EXPONENTIAL DECAY OF THE SOLUTION OF A DOUBLE POROUS 
ELASTIC SYSTEM

Aicha NEMSI1, Abdelfeteh FAREH2

In the present paper we consider a one-dimensional double porous elastic system

with two dissipative mechanisms : a viscoelastic dissipation in the displacement field and

visco-porous dissipations. We prove the existence and uniqueness of a solution, and that
this solution decays exponentially as t tends to infinity.
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1. Introduction

The origin of the theory of double porosity goes back to the works of Barenblatt et al.
[4, 5]. The authors distinguished the liquid pressure in the pores from the liquid pressure
in the fissures and introduced a double porosity structure. This theory is an important
generalization of Biot’s theory [3] for porous materials with single porosity. Wilson and
Aifentis [17] presented a theory of consolidation for elastic materials with double porosity
which unifies the earlier models of Barenblatt and Biot. However, the theory proposed by
Wilson and Aifentis ignored the cross-coupling effects between the volume change of the
pores and fissures in the system. Khalili and Valliappan [10] modified Aifiens’ theory and
proposed a cross-coupling terms included in the equations of conservation of mass for the
pores and fissures fluid. Barryman and coauthors [1, 2] included a cross-coupling in Darcy’s
law for solids with double porosity.

In [9] Ieşan and Quintanilla derived a double porosity model based on the Nunziato-
Cowin theory for materials with voids [8, 13]. According to this theory the porosity structure
in the equilibrium case is influenced by the displacement field, which is different from the
theory based on Darcy’s law.

The basic feature of the Nunziato-Cowin theory is the concept that the mass at each
point is the product of the mass density of the material matrix and the volume fraction.
In the framework of this theory Quintanilla [15] considered the following system of porous
elastic solid {

ρ0utt = µuxx + βϕx, in (0, π)× (0,+∞),
ρ0κϕtt = αϕxx − βux − ξϕ− τϕt, in (0, π)× (0,+∞),

(1)

where u is the transversal displacement, ϕ is the volume fraction of the porous material,
and ρ0, κ, µ, α, ξ, τ are positive constitutive coefficients, that satisfy β 6= 0 and ξµ > β2. He
proved that the dissipation caused by the porous damping τϕt is not powerful to produce
an exponential stability.
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Various dissipations mechanisms have been added to the system (1) and different types
of decay have been obtained. Magaña and Quintanilla [12] added the viscoelastic dissipation
−γutxx to the first equation of (1) and established an exponential rate of decay. The same
result was obtained by Casas and Quintanilla [7] when they added thermal dissipation to
the system (1).

In this paper we consider a double porous elastic solid in the framework of Ieşan and
Quintanilla theory [9]. In the one-dimensional case the evolution equations are

ρutt = Tx,
κ1ϕtt = σx + ξ,
κ2ψtt = χx + ζ,

where u is the displacement, ϕ and ψ are the porous variables, ρ, κ1 and κ2 are positive
constants. T is the first Piola-Kirchhoff stress tensor, σ, χ are equilibrated stress vectors,
ξ and ζ are the intrinsic equilibrated body forces that they must be given by constitutives
assumptions. We assume

T = µux + bϕ+ dψ + λutx,
σ = αϕx + b1ψx, χ = b1ϕx + γψx,
ξ = −bux − α1ϕ− α3ψ − τ1ϕt,
ζ = −dux − α3ϕ− α2ψ − τ2ψt.

Here µ, b, d, λ, α, α1, α2, α3, b1, b2, γ, τ1 and τ2 are constants.
If we introduce the constitutive equations into the evolution equations we obtain the system ρutt = µuxx + bϕx + dψx + λutxx, in (0,∞)× (0, L),

κ1ϕtt = αϕxx + b1ψxx − bux − α1ϕ− α3ψ − τ1ϕt in (0,∞)× (0, L),
κ2ψtt = b1ϕxx + γψxx − dux − α3ϕ− α2ψ − τ2ψt in (0,∞)× (0, L).

(2)

We assume the boundary conditions

u(t, 0) = u(t, L) = ϕx(t, 0) = ϕx(t, L) = ψx(t, 0) = ψx(t, L) = 0 in (0,∞), (3)

and the initial conditions

u(0, x) = u0(x), ut(0, x) = u1(x), ϕ(0, x) = ϕ0(x), ϕt(0, x) = ϕ1(x),
ψ(0, x) = ψ0(x), ψt(0, x) = ψ1(x), x ∈ [0, L] .

(4)

There are solutions (uniform in the variable x) that do not decay. To avoid this case, we
also assume that∫ L

0

ϕ0 (x) dx =

∫ L

0

ϕ1 (x) dx =

∫ L

0

ψ0 (x) dx =

∫ L

0

ψ1 (x) dx = 0.

We introduce the energy associated with the system (2)-(4) as

E (t) :=
1

2

∫ L

0

[
ρ |ut|2 + κ1 |ϕt|2 + κ2 |ψt|2 + µ |ux|2

+α |ϕx|2 + γ |ψx|2 + α1 |ϕ|2 + α2 |ψ|2
]

+ b

∫ L

0

Re (uxϕ) + d

∫ L

0

Re
(
uxψ

)
+ α3

∫ L

0

Re
(
ϕψ
)

+ b1

∫ L

0

Re
(
ϕxψx

)
,

which can be written as

E (t) =
1

2

∫ L

0

[
(ut, ϕt, ψt)A

(
ut, ϕt, ψt

)T
+ (ux, ϕ, ψ)B

(
ux, ϕ, ψ

)T
+ (ϕx, ψx)C

(
ϕx, ψx

)T ]
,
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where,

A =

 ρ 0 0
0 κ1 0
0 0 κ2

 , B =

 µ b d
b α1 α3

d α3 α2

 , C =

(
α b1
b1 γ

)
.

It is assumed that the internal mechanical energy density is a positive definite form. Thus
the matrix A,B and C must be positive definite.

We have the following result:

Lemma 1.1. If (u, ϕ, ψ) is the solution of (2)-(4), then the energy E (t) satisfies the estimate

E′ (t) ≤ −τ1
∫ L

0

|ϕt|2 dx− τ2
∫ L

0

|ψt|2 dx− λ
∫ L

0

|uxt|2 dx.

Proof. Taking the L2−product of (2)1 by ut, (2)2 by ϕt and (2)3 by ψt and summing up we
obtain

ρ

∫ L

0

uttutdx+ µ

∫ L

0

uxuxtdx+ κ1

∫ L

0

ϕttϕtdx+ α

∫ L

0

ϕxϕxtdx+ α1

∫ L

0

ϕϕtdx

+κ2

∫ L

0

ψttψtdx+ γ

∫ L

0

ψxψxtdx+ α2

∫ L

0

ψψtdx+ b

∫ L

0

(uxϕt + uxtϕ)dx

+d

∫ L

0

(uxψt + uxtψ)dx+ b1

∫ L

0

(ψxϕxt + ψxtϕx)dx+ α3

∫ L

0

(ψϕt + ψtϕ)dx

= −λ
∫ L

0

|uxt|2 dx− τ1
∫ L

0

|ϕt|2 dx− τ2
∫ L

0

|ψt|2 dx.

�

The aim of this paper is to prove that the problem determined by (2)-(4) has a unique
solution that decays exponentially in time. For the well-posedness we use the Lumer-Phillips
theorem and for the exponential stability we use the method developed by Liu and Zheng
[11].

To the best of our knowledge the problem is novel and no study has been done to
determine the rate of decay of the solution of problems in double porous elasticity.

2. Well posedness

The aim of this section is to prove that the problem (2)-(4) has a unique solution.
Our main tools are the two following theorems from the theory of semigroups of operators
in Hilbert spaces.

Theorem 2.1. (Lumer-Phillips) [14, 16] Let A : D(A) ⊂ H −→ H be a densely defined
operator. Then A generates a C0-semigroup of contractions on H if and only if
(i) A is dissipative;

(ii) there exists λ > 0 such that λI −A is surjective.

Theorem 2.2. [16] Let A : D(A) ⊂ H −→ H be the infintesimal generator of a C0-
semigroup {S(t); t ≥ 0}. Then, for each ξ ∈ D(A) and each t ≥ 0, we have S(t)ξ ∈ D(A),
and the mapping

t −→ S(t)ξ

is of class C1 on [0,+∞) and satisfies

d

dt
(S(t)ξ) = AS(t)ξ = S(t)Aξ.
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In order to rewrite the problem (2)-(4) in the semigroup setting we introduce the
Hilbert space

H := H1
0 (0, L)× L2(0, L)×H1

∗ (0, L)× L2(0, L)×H1
∗ (0, L)× L2(0, L),

where H1(0, L), H2(0, L) are the usual Sobolev spaces, H1
0 (0, L) is the closure of C∞0 (0, L)

in H1(0, L) [6, 11] and

H1
∗ (0, L) :=

{
ϕ ∈ H1(0, L);

∫ L

0

ϕ(t, x)dx = 0

}
.

The space H is endowed with the inner product 〈·, ·〉H defined for U = (u, v, ϕ, φ, ψ, ω)
T

and U∗ = (u∗, v∗, ϕ∗, φ∗, ψ∗, ω∗)
T

by

〈U,U∗〉H =

∫ L

0

[ρvv∗ + µuxu∗x + κ1φφ∗ + αϕxϕ∗x + α1ϕϕ∗ + κ2ωω∗ + γψxψ∗x

+α2ψψ∗ + b(uxϕ∗ + ϕu∗x) + d(uxψ∗ + ψu∗x) + b1(ψxϕ∗x + ϕxψ∗x)

+α3(ψϕ∗ + ϕψ∗)]dx.

By introducing the new variables v = ut, φ = ϕt and ω = ψt, system (2) becomes{
Ut = AU,

U (0) = (u0, u1, ϕ0, ϕ1, ψ0, ψ1)
T
,

(5)

where A : D (A) ⊂ H −→ H is the operator defined by

A =



0 1 0 0 0 0
µ
ρ∂xx

λ
ρ∂xx

b
ρ∂x 0 d

ρ∂x 0

0 0 0 1 0 0

− b
κ1
∂x 0 α

κ1
∂xx − α1

κ1
− τ1
κ1

b1
κ1
∂xx − α3

κ&
0

0 0 0 0 0 1

− d
κ2
∂x 0 b1

κ2
∂xx − α3

κ2
0 γ

κ2
∂xx − α2

κ2
− τ2
κ2

 (6)

with domain

D (A) =

{
(u, v, ϕ, φ, ψ,w) ∈ H |v ∈ H1

0 (0, L) , φ, ω ∈ H1
∗ (0, L),

µu+ λv ∈ H2 ∩H1
0 , ϕ, ψ ∈ H2, ϕx (t, x) = ψx (t, x) = 0, x = 0, L

}
.

Our existence and uniqueness result reads as follows.

Theorem 2.3. For any (u0, u1, ϕ0, ϕ1, ψ0, ψ1) ∈ H the problem (2)-(4) has a unique weak
solution (u, ϕ, ψ) that satisfies

u ∈ C
(
0,+∞;H1

0 (0, L)
)
, ϕ ∈ C

(
0,+∞;H1

∗ (0, L)
)
, ψ ∈ C

(
0,+∞;H1

∗ (0, L)
)
.

Moreover, if (u0, u1, ϕ0, ϕ1, ψ0, ψ1) ∈ D (A) then the solution (u, ϕ, ψ) satisfies

u ∈ C
(
0,+∞;H2 ∩H1

0 (0, L)
)
∩ C1

(
0,+∞;H1

0 (0, L)
)
,

ϕ, ψ ∈ C
(
0,+∞;H2 ∩H1

∗ (0, L)
)
∩ C1

(
0,+∞;H1

∗ (0, L)
)
.

Proof. First, for any (u, v, ϕ, φ, ψ, ω) ∈ D (A) we have

Re 〈AU,U〉H = −
∫ L

0

|vx|2dx− τ1
∫ L

0

|φ|2dx− τ2
∫ L

0

|w|2dx ≤ 0.

Thus, A is dissipative.
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Secondly, we prove that 0 ∈ ρ (A) . Indeed, let F = (f, g, h, l, q, k) ∈ H and find
U = (u, v, ϕ, φ, ψ, ω) ∈ D (A) such that AU = F, that is

v = f,
µuxx + bϕx + dψx + λvxx = ρg,

φ = h,
αϕxx + b1ψxx − bux − α1ϕ− α3ψ − τ1φ = κ1k,

ω = l,
b1ϕxx + γψxx − dux − α3ϕ− α2ψ − τ2ω = κ2k.

(7)

From (7)1, (7)3 and (7)5 we have v ∈ H1
0 (0, L) , φ, ω ∈ H1

∗ (0, L) .
Replacing v, φ and ω by f, h and l respectively we obtain µuxx + bϕx + dψx = ρg − λfxx = g1 ∈ H−1 (0, L) ,

αϕxx + b1ψxx − bux − α1ϕ− α3ψ = κ1k + τ1h = g2 ∈ L2 (0, L) ,
b1ϕxx + γψxx − dux − α3ϕ− α2ψ = κ2k + τ2l = g3 ∈ L2 (0, L) .

(8)

Taking the duality product of (8)1 by u∗ and the L2−product of (8)2 and (8)3 by ϕ∗ and
ψ∗, respectively, then summing up we obtain

a(U,U∗) = L(U∗), (9)

where U = (u, ϕ, ψ)
T
, U∗ = (u∗, ϕ∗, ψ∗)

T
and

a (U,U∗) = µ

∫ L

0

uxu∗xdx+ b

∫ L

0

ϕu∗xdx+ d

∫ L

0

ψu∗xdx

+α

∫ L

0

ϕxϕ∗xdx+ b1

∫ L

0

ψxϕ∗xdx+ b

∫ L

0

uxϕ∗dx+ α1

∫ L

0

ϕϕ∗dx+ α3

∫ L

0

ψϕ∗dx

+b1

∫ L

0

ϕxψ∗xdx+ γ

∫ L

0

ψxψ∗xdx+ d

∫ L

0

uxψ∗dx+ α3

∫ L

0

ϕψ∗dx+ α2

∫ L

0

ψψ∗dx,

L (U∗) = 〈−g1, u∗〉H−1×H1
0
−
∫ L

0

g2ϕ∗dx−
∫ L

0

g3ψ∗dx,

are a bilinear and linear forms over the Hilbert space W =H1
0 (0, L)×H1

∗ (0, L)×H1
∗ (0, L)

respectively,. A straightforward calculation shows that there exists a positive constant C
such that

|a (U,U∗)| ≤ C ‖U‖W ‖U
∗‖W

and
|L (U∗)| ≤ C ‖U∗‖W .

Thus a (·, ·) and L are continuous. Moreover, straightforward calculations show that

a (U,U) = µ

∫ L

0

|ux|2 dx+ b

∫ L

0

ϕuxdx+ d

∫ L

0

ψuxdx+ d

∫ L

0

uxψdx

+b

∫ L

0

uxϕdx+ α1

∫ L

0

|ϕ|2 dx+ α3

∫ L

0

ψϕdx+ α3

∫ L

0

ϕψdx+ α2

∫ L

0

|ψ|2dx

+
1

2

∫ L

0

[
α

∣∣∣∣ϕx +
b1
α
ψx

∣∣∣∣2 + γ

∣∣∣∣ψx +
b1
γ
ϕx

∣∣∣∣2
]

+
1

2

(
α− b21

γ

)∫ L

0

|ϕx|2 dx+
1

2

(
γ − b21

α

)∫ L

0

|ψx|2 dx.

On the other hand, there exists η > 0 such that the matrix

B′ =

 µ− η b d
b α1 − η α3

d α3 α2 − η


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still positive definite. Therefore,

a (U,U) = (ux, ϕ, ψ)B′
(
ux, ϕ, ψ

)T
+

1

2

∫ L

0

[
α

∣∣∣∣ϕx +
b1
α
ψx

∣∣∣∣2 + γ

∣∣∣∣ψx +
b1
γ
ϕx

∣∣∣∣2
]

+η
(
‖ux‖2 + ‖ϕ‖2 + ‖ψ‖2

)
+

1

2

(
α− b21

γ

)∫ L

0

|ϕx|2 dx+
1

2

(
γ − b21

α

)∫ L

0

|ψx|2 dx ≥ η̃ ‖U‖2W ,

for a positive constant η̃ > 0, which shows the coercivity of a (·, ·) .
Thus, Lax-Milgram theorem ensures the existence of unique (u, ϕ, ψ) ∈W satisfying

a (U,U∗) = L (U∗) , ∀U∗ ∈W.

Now, taking ϕ∗ = ψ∗ = 0 in (9) and replacing f by v we get

µ

∫ L

0

uxu∗xdx+ b

∫ L

0

ϕu∗xdx+ d

∫ L

0

ψu∗xdx =

∫ L

0

(λvxx − ρg)u∗dx,

and integration by parts gives∫ L

0

(µux + λvx)u∗xdx =

∫ L

0

(bϕx + dψx − ρg)u∗dx, ∀u∗ ∈ H1
0 (0, L) ,

therefore,

µu+ λv ∈ H2 (0, L) .

Next, let ϕ∗ ∈ H1
0 (0, L) and define

ϕ∗1 (x) = ϕ∗ (x)−
∫ L

0

ϕ∗ (x) dx.

Observing that ϕ∗1 ∈ H1
∗ (0, L) and taking u∗ = ψ∗ = 0 in (9) we obtain∫ L

0

(αϕx + b1ψx)ϕ∗1xdx = −
∫ L

0

(bux + α1ϕ+ α3ψ + g2)ϕ∗1dx, ∀ϕ∗ ∈ H1
0 (0, L) ,

therefore,

αϕ+ b1ψ ∈ H2 (0, L) . (10)

Moreover, integration by parts gives

(αϕx (L) + b1ψx (L))ϕ∗1x (L)− (αϕx (0) + b1ψx (0))ϕ∗1x (0) = 0, ∀ϕ∗ ∈ H1
0 (0, L) .

Since ϕ∗ is arbitrary we obtain

αϕx (0) + b1ψx (0) = αϕx (L) + b1ψx (L) = 0.

Similarly,

b1ϕ+ γψ ∈ H2 (0, L) (11)

and

b1ϕx (0) + γψx (0) = b1ϕx (L) + γψx (L) = 0.

Thus,

ϕ,ψ ∈ H2 (0, L) and ϕx = ψx = 0, for x = 0, L.

Therefore, U ∈ D (A) and 0 ∈ ρ (A) . Moreover, using a geometric series argument we
prove that λI − A = A(λA−1 − I) is invertible for |λ| < ‖A−1‖, then λ ∈ ρ(A), which
completes the proof that A is the infinitesimal generator of a C0−semigroup, then the
Lumer-Phillips theorem ensures the existence of unique solution to the problem (2)-(4)
satisfying the statements of Theorem 1. �
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Remark 2.1. We note that if U0 ∈ D(A) then the solution U(t) = etAU0 ∈
C((0,∞);D(A)) ∩ C1((0,∞);H) and (5) is satisfied in H for every t > 0. It turns out
that u, ϕ, ψ satisfy (2) in the strong sense.

If U0 ∈ H there exists a sequence U0n ∈ D(A) converging to U0 in H. Accordingly,
there exists a sequence of solutions Un(t) = etAU0n such that un, ϕn, ψn satisfy (2) in L2

for every t > 0, and for any T > 0, un → u in C((0, T ), H1
0 ) ∩ C1((0, T );L2), ϕn → ϕ and

ψn → ψ in C((0, T ), H1
∗ ) ∩C1((0, T );L2). Therefore, if we multiply the equations of (2) for

un, ϕn, ψn by u∗ ∈ H1
0 and ϕ∗, ψ∗ ∈ H1

∗ , respectively, then integrate by parts with respect
to x and integrate with respect to t, finally passing to the limit, we find that u, ϕ and ψ are
weak solutions to the variational form of system (2).

3. Exponential stability

In this section we establish an exponential decay of the solution of the system (2)-(4).
The following theorem, due to Gearhart and Prüss [11], gives the necessary and sufficient
conditions of exponential stability of a C0-semigroup generated by an operator A.

Theorem 3.1. A C0−semigroup of contractions S (t) = e−At, generated by an operator A

in a Hilbert space H, is exponentially stable if and only if

i) iR = {iλ, λ ∈ R} ⊂ ρ(A), ii) lim
|λ|→∞

∥∥(iλI −A)−1
∥∥ <∞.

The main result of this section is given by the following theorem:

Theorem 3.2. (Gearhart Prüss) For any (u0, u1, ϕ0,ϕ1, ψ0, ψ1) ∈ D(A), the energy associ-
ated with the solution of the problem (5) satisfies the estimate

E(t) ≤ βe−ωt, ∀t ≥ 0,

where β, ω are two positive constants.

Proof. The proof of this theorem will be established through the two following lemmas. �

Lemma 3.1. Let A be the operator defined by (6). Then,

iR = {iλ;λ ∈ R} ⊂ ρ(A),

where ρ(A) is the resolvent set of A.

Proof. The proof of the lemma will be established in 3 steps:
(i) Using a geometric series convergence argument and the fact that 0 ∈ ρ(A) it follows
that for |λ| < ‖A−1‖−1, the operator iλI − A = A(iλA−1 − I) is invertible. Moreover∥∥(iλI −A)−1

∥∥ is a continuous function of λ in the interval (−
∥∥A−1∥∥−1 ,∥∥A−1∥∥−1).

(ii) If there exists a constant M > 0, such that

sup
{∥∥(iλI −A)−1

∥∥ , |λ| < ∥∥A−1∥∥−1} = M <∞, (12)

then, for |λ0| <
∥∥A−1∥∥−1 , again the geometric series argument ensures that the operator

iλI −A = (iλ0I −A)(I + i(λ− λ0)(iλ0I −A)−1)

is invertible for

|λ− λ0| <
1

M
≤ 1

‖(iλ0I −A)−1‖
.

It turns out that if we choose |λ0| as close as possible to
∥∥A−1∥∥−1 , we have that iλI −A is

invertible for |λ| <
∥∥A−1∥∥−1 + 1

M . Therefore,{
iλ; |λ| <

∥∥A−1∥∥−1 +
1

M

}
⊂ ρ (A)
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and
∥∥(iλI −A)−1

∥∥ is a continuous function of λ in the interval(
−
∥∥A−1∥∥−1 − 1

M ,
∥∥A−1∥∥−1 + 1

M

)
. So on{

iλ; |λ| <
∥∥A−1∥∥−1 +

1

M
+

1

M ′

}
⊂ ρ (A)

provided that

sup
{∥∥(iλI −A)−1

∥∥ , |λ| < ∥∥A−1∥∥−1 +M−1
}

= M ′ <∞.

The interval of imaginary axis included in the resolvent set can be extended indefinitely
until it coincides with iR.
(iii) If iR 6⊂ ρ (A) then from the argument (ii) above, there exists σ ∈ R with

∥∥A−1∥∥−1 ≤
|σ| <∞ such that

{iλ; |λ| < |σ|} ⊂ ρ (A)

and

sup
{∥∥(iλI −A)−1

∥∥ , |λ| < |σ|} =∞.
Thus, there exists a sequence (λn) ⊂ R, |λn| < |σ| , λn −→ σ and a sequence of unit vectors
Un = (un, vn, φn, ϕn, θn) ∈ D (A) , such that

lim
n−→∞

‖(iλnI −A)Un‖ = 0,

that is

iλnun − vn → 0, in H1
0 , (13)

iλnρvn − µD2un − bDϕn − dDψn − λD2vn −→ 0, in L2, (14)

iλnϕn − φn −→ 0, in H1
∗ , (15)

iλnκ1φn − αD2ϕn − b1D2ψn + bDun + α1ϕn + α3ψn + τ1φn −→ 0, in L2, (16)

iλnψn − ωn −→ 0, in H1
∗ , (17)

iλnκ2ωn − b1D2ϕn − γD2ψn + dDun + α3ϕn + α2ψn + τ2ωn −→ 0, in L2. (18)

First we have

Re〈(iλnI −A)Un, Un〉H −→ 0.

Thus,

Re〈(iλnI −A)Un, Un〉H = −Re〈AUn, Un〉H,

= τ2

∫ L

0

|ωn|2dx+ τ1

∫ L

0

|φn|2dx+ γ

∫ L

0

|Dvn|2dx −→ 0.

Therefore

‖φn‖L2 ‖ωn‖L2 −→ 0, (19)

and

‖Dvn‖L2 −→ 0. (20)

Moreover, Poincaré’s inequality leads to

‖vn‖L2 → 0. (21)

Since λn is bounded, the arguments (21), (20) and (13) give

‖un‖L2 → 0, ‖Dun‖L2 → 0. (22)

Similarly, from (15), (17) and (19) we get

‖ϕn‖L2 → 0, ‖ψn‖L2 → 0. (23)

Removing the terms that tend to 0 from (16) and (18), it remains
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{
αD2ϕn + b1D

2ψn −→ 0, in L2,
b1D

2ϕn + γD2ψn −→ 0, in L2.
(24)

Multiplying (24)1 by γϕn, (24)2 by b1ϕn and subtracting we obtain

‖Dϕn‖L2 → 0. (25)

Similarly,

‖Dψn‖L2 → 0. (26)

By combining (19),(21),(22),(23),(25) and (26) we obtain that ‖Un‖H → 0, which contradicts

the fact that ‖Un‖H = 1. Thus, the proof of Lemma 3.1 is completed. �

Lemma 3.2. The operator A defined by (6) satisfies

lim
|λ|→∞

sup
∥∥∥(iλI −A)

−1
∥∥∥
L(H)

<∞. (27)

Proof. To prove the lemma statement we use a contradiction argument. Suppose that (27)
does not hold, that is

lim
|λ|→∞

sup
∥∥∥(iλI −A)

−1
∥∥∥
L(H)

=∞.

Then, there exist a sequence (λn)n∈N ⊂ R and a sequence of unit vectors Un = (un, vn, ϕn, φn,
ψn, ωn) ∈ D (A) such that

lim
|λn|−→+∞

‖(iλnI −A)Un‖H −→ 0.

As in the proof of the previous lemma, (13)-(18) hold. Consequently,

‖ωn‖L2 −→ 0, ‖φn‖L2 −→ 0, ‖Dvn‖L2 −→ 0, ‖vn‖L2 −→ 0. (28)

By dividing (13),(15) and (17) by λn we obtain

‖un‖L2 , ‖Dun‖L2 −→ 0, (29)

‖ϕn‖L2 , ‖ψn‖L2 −→ 0. (30)

The L2 product of (15) by φn gives iλn 〈ϕn, φn〉 − ‖φn‖2 −→ 0. Therefore,

iλn 〈ϕn, φn〉 −→ 0. (31)

Taking the inner product of (17) by ϕn we get iλn 〈ψn, ϕn〉 − 〈ωn, ϕn〉 −→ 0. The fact that
|〈ϕn, ωn〉| ≤ ‖ϕn‖ ‖ωn‖ −→ 0 yields

iλn 〈ϕn, ψn〉 −→ 0. (32)

Removing the terms that tend to 0 from (16), (18) it remains

iλnκ1φn − αD2ϕn − b1D2ψn −→ 0, in L2. (33)

and

iλnκ2ωn − b1D2ϕn − γD2ψn −→ 0, in L2. (34)

Multiplying (33) by γϕn, (34) by −b1ϕn, summing up and taking into account (31), (32),
we obtain (

αγ − b21
)
‖Dϕn‖2 −→ 0.

Therefore,

‖Dϕn‖ −→ 0. (35)

The L2−inner product of (17) by φn gives

iλn 〈φn, ψn〉 − 〈φn, ωn〉 −→ 0.
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Recalling that ‖φn‖ , ‖ωn‖ −→ 0 we arrive at

iλn 〈φn, ψn〉 −→ 0.

Similarly, multiplying (17) by ωn we get

iλn 〈ωn, ψn〉 −→ 0.

At this point we multiply (33) by b1ψn, (34) by −αψn summing up and recalling that
αγ − b21 > 0 we obtain

‖Dψn‖ −→ 0. (36)

From (28), (29), (30), (35) and (36) we have ‖U‖H −→ 0 which contradicts the fact that
‖U‖H = 1. Therefore, (27) holds and the proof of Lemma 3.2 is completed. �

Combining the results of Lemmas 3.1, 3.2 and Theorem 3.1 the proof of Theorem 3.2 
is completed.
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[6] H. Brezis, Analyse fonctionnelle théorie et applications, Masson, Paris, 1987.

[7] P.S. Casas, R. Quintanilla, Exponential decay in one-dimensional porous-thermo-elasticity, Mech. Re-

sea. Comm. 32 (2005), 652-658.

[8] S.C. Cowin and J.W. Nunziato, Linear elastic materials with voids, J. Elasticity 13 (1983) 125-147.
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