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POLYNOMIAL FUNCTION AS AN APPROXIMATION OF THE 
ANALYTIC SOLUTION OF A LINEAR ELLIPTIC PARTIAL 

DIFFERENTIAL EQUATION, OBTAINED NUMERICALLY USING A 
SINGLE CELL 

 
Maty Blumenfeld1 

 
The author has developed a method to integrate numerically first order Partial 

Differential Equations (PDE) using complete polynomials of high degree, called 
Concordant Functions (CF) [1]. The procedure was based on the idea – quasi 
unanimously accepted - that this can be done by dividing the integration domain 
(supposed rectangular) into a great number of elements. This approach can ensure 
the obtaining of results having a good level of accuracy, which improves when the 
number of elements increases. Recently, the author tackled an opposite idea: solve a 
nonlinear first order PDE with a satisfactory level of accuracy, using a SINGLE 
CELL equal to the whole quite large domain of integration [2]. 

Here is approached for the first time the subject of the second order linear 
ELLIPTIC PDEs based on the last idea introduced by [2]: obtain numerically an 
approximate polynomial solution – valid on the whole domain of integration - using 
a single cell. Similarly, to an analytic solution, this polynomial can be used to 
compute at any point - using its coordinates - an approximate value of the function 
and its derivatives or to draw the graph of the function. 

The second order PDE is integrated starting from a general form having, initially, 
constant coefficients. An example is performed using - besides the unicellular 
method - a well-known multi-element commercial code that solved the PDE using 
20992 triangular elements. The results obtained are close to each other. Finally, is – 
shortly - presented the extension of the method for variable coefficients. 

 
1. A second order elliptic Partial Differential Equation (PDE) 
 A complete two-dimensional linear second order PDE, having φ as 
unknown function, includes the following terms 
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All the coefficients (a,b,c,M,N,P) are considered, in this first approach, as 
constants, while the free term W(x,y) is a complete polynomial of any degree.  
The PDEs with variable coefficients are analyzed later on.  

The PDE (1.1) is ELLIPTIC if [7]                                 042 <− cab     (1.2) 
This is the first attempt made by the author to numerically integrate an 

elliptic PDE. Until now only the first order PDEs were approached. A first order 
PDE has only part of the terms mentioned in (1.1) 
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The integration will be performed inside a rectangular domain having the 
dimensions B×H, where B is the base and H is the height. The four corners are 
noted: Node 1(0,0), Node 2(B,0), Node3(0,H), Node 4 (B,H). For an elliptic PDE 
is compulsory to be known the boundary conditions along all the four sides of the 
rectangular domain. These conditions will be considered here as given only by the 
values of the function φ (Dirichlet). For simplicity, the function φ  will vary on 
each side either linear or parabolic, being continuous in the corners.  
 

2. Numeric integration of PDE (1.1) 
 

 The numeric integration will be performed according to the methodology 
described in [1], with some obvious modifications imposed by the increased 
number of unknown terms depending on  φ  , from 3 (see 1.3) to 6 (see 1.1). 
Although it is assumed that the reader has downloaded [1] and [2], it is useful to 
highlight the specific concepts used in the integration procedure: Concordant 
Functions and Target Point. Likewise, the procedure based on the Target 
Residual, used to assess the accuracy of the results will be described. 

2.1 The Concordant Function and its first and second derivatives 
A Concordant Function - noted CF –  is a complete polynomial of a 

given degree. For instance a third degree CF - including 10 terms - is given by 
3
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43213103 yCxyCyxCxCyCxyCxCyCxCCCFCF +++++++++==           (2.1) 
It will be noted either as CF3 - corresponding to the third degree - or CF310 - 
including also the number of terms. The function CF3 can be written as the 
product between two matrices [1] 

[ ] [ ]3)0()0( *3103 CzYXCFCF ===φ     (2.2) 
where           [ ] [ ]322322)0()0( 1 yxyyxxyxyxyxYX =                   
(2.3) 

[ ] [ ]TCCCCCCCCCCCz 109876543213 =        (2.4) 
 Using this notation, the first derivatives of [ ]φ  can be written as 

[ ] [ ] [ ][ ] [ ][ ] [ ] [ ] [ ]CzYXCzxYXxCzYXx **//*/ )0()1()0()0()0()0( =∂∂=∂∂=∂φ∂  (2.5) 
[ ] [ ] [ ][ ] [ ][ ] [ ] [ ] [ ]CzYXCzyYXyCzYXy **//*/ )1()0()0()0()0()0( =∂∂=∂∂=∂φ∂  (2.6) 

where                        [ ] [ ] [ ]02302010/ 2)0()0()0()1( yxyxyxxYXYX =∂∂=           
(2.7) 
                      [ ] [ ] [ ]22)0()0()1()0( 32020100/ yxyxyxyYXYX =∂∂=   (2.8) 
 Similarly, the second partial derivatives will be  

[ ] [ ] [ ][ ] [ ][ ] [ ] [ ] [ ]CzYXCzxYXxCzYXx **//*/ )0()2(2)0()0(22)0()0(222 =∂∂=∂∂=∂φ∂              (2.9) 
[ ] [ ] [ ][ ] [ ][ ] [ ] [ ] [ ]CzYXCzyxYXyxCzYXyx **//*/ )1()1()0()0(2)0()0(22 =∂∂∂=∂∂∂=∂∂φ∂            (2.10) 
[ ] [ ] [ ][ ] [ ][ ] [ ] [ ] [ ]CzYXCzyYXyCzYXy **//*/ )2()0(2)0()0(22)0()0(222 =∂∂=∂∂=∂φ∂              (2.11) 
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where [ ])0()2( YX , [ ])1()1( YX , [ ])2()0( YX  are obtained by deriving accordingly 
[ ])0()0( YX . 

Here will be used three higher degree CFs: CF6 or CF628 ( six degree – 
28 terms) , CF7 or CF735 (seven degree – 36 terms) and CF8 or CF845 (eight 
degree – 45 terms). 

2.2 The Target Point 
The method proposed by the author in [2] attempts to find the terms of a 

unique Concordant Function for the whole domain D that satisfies two types of 
requirements: the  user-defined boundary conditions (as those mentioned above) - 
on the one hand - and the PDE (1.1) considered at a selected location called 
Target Point - on the other.  

For the first order PDEs, the boundary conditions are imposed only on two 
sides of the rectangular domain (sides 1-2 and 1-3), the integration developing 
towards the top of the rectangle, namely Node 4, which was named Target Point 
[1,2]. This was the point towards which was focused the main information that 
was spread to the other elements. 

When the object of integration is an elliptic PDE, for which the boundary 
conditions are imposed on all the four sides of the integration domain, the 
position – and also the significance - of this special point must change. In fact the 
results of the integration procedure will be tightly bound especially to this point, 
which – usually - will be located somewhere towards the middle of the rectangle, 
not at a corner. The Target Point will be usually selected at the intersection of the 
diagonals or near to it. This location is chosen because if there exists an extremum 
value of the function-solution (maximum or minimum), it is placed, in most cases, 
not far from this point. Anyway, is recommendable not to be in the proximity of 
any one of the four sides, where the influence of the boundary conditions may 
produce some disturbances.  

2.3 The Target Point Residual 
As George W. Collins II, wrote in his book [9]: “A numerical solution to a 

differential equation is of little use if there is no estimate of its accuracy. 
However, … the formal estimate of the truncation error is often more difficult 
than finding the solution”.  

The method developed in [1] avoids the “difficult” estimation of the error 
by controlling the accuracy of the computation using the RESIDUAL, which is 
the difference between a result obtained by computation and the theoretical 
result. In fact, the control is performed at the end of the computation taking the 
form of the Target Point Residual (REST ), which is obtained by replacing the 
values of the six unknowns that  depend on φ , in the PDE (1.1) 
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If, incidentally, the Target Point unknowns correspond to the exact 
solution, ResT is null. Otherwise, the value of the Residual is different from zero, 
its value being a sure indication of the global accuracy, namely of the error due 
to all six Target Point unknowns.  
 
3. The basic relations for the numeric integration of elliptic PDEs 
 
3.1 The TWO STEPS strategy 
 The strategy that will be used is that developed in [2] consisting in two 
steps, namely: 
a. Step 1. The basic idea is to find a CF that could be considered near the accurate 
(unknown) solution of a given elliptic PDE. Because no one knows which CF is 
the nearest to the accurate solution, several CFs must be tried namely CF6, CF7, 
CF8 and – somewhere else – higher degree CFs, like CF9, CF10… and so on. 
Here - as a first approach - only the first three will be tried. Specific relationships 
corresponding to CF6 will be set down below, while for CF7 and CF8 they are 
briefly pointed out in Appendix A. No matter which CF is used, it will result an 
approximate solution that will be revealed by the values of the Target Residuals, 
more or less remote from zero.  
b. Step 2. Based on the Target Residual values obtained in Step 1 it will follow the 
procedure developed in [2], which modifies the Concordant Functions by 
combining those already obtained in Step1: CF6 with CF7 (resulting CF67), CF7 
with CF8 (resulting CF78) and CF6 with CF8 (resulting CF68). Thus it will result 
finally six different Concordant Functions that “claim” to be the best solution. The 
decision will be taken by the program, based on a computed parameter, without 
the intervention of the user. The Concordant Function selected can be used, 
similar to an analytical solution, to calculate quickly the value of the function (or 
of a derivative) at any point in the integration domain, obviously with a small 
error. 

3.2 First step 
The first step begins with the search of an approximate solution - valid on 

the whole integration rectangular domain - using a Concordant Function. The 
straightforward analysis made below shows that for the elliptic PDEs the lowest 
degree that can be tried is2 CF628 (six degree-28 terms). For obtaining the 28 
unknown coefficients is necessary to be established 28 equations. 

 This is possible by using the available information furnished by the 
Boundary conditions and by the Target Point. The Boundary conditions are 
known because they are imposed by the user. The particular information that can 
be obtained from the Target Point results by transferring the PDE (1.1) to this 
location. 
                                                           
2 A more thorough analysis dedicated to the first order PDEs can be found in [2] 
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The 6 terms depending on  φ  are unknown, but the relation (3.1) is able to 
furnish enough information that lead to the establishing of 6 equations. 
Consequently, for finding the 28 coefficients mentioned above, besides these 6 
equations, 22 more equations are required; they are furnished by the Boundary 
conditions. 
a. Boundary conditions: 22 equations  

When the six-degree polynomial CF628 is selected, 6 boundary conditions   
can be used along each side of the rectangular domain [2]. For all the 4 sides it 
corresponds 

6 conditions × 4 sides =24 boundary conditions. 
Thus the total number of equations (24 boundary conditions + 6 from the Target 
Point = 30) is greater than the 28 coefficients of CF628. Consequently, the 
number of relations resulted from the boundary conditions will be reduced by two, 
becoming 24 – 2 = 22 conditions. This decision is advantageous because it moves 
away the danger of singularity. 
b. Target Point: 6 equations 
 Choosing the 6 equations connected to the Target point follows the path 
developed in Chapter 2 of [1], but here it is dedicated to second order elliptic 
PDEs. Some numerical methods perform the solving procedure by transforming 
the second order PDE in a system of first order. Unlike this last methodology, 
the method developed here tackles directly the given PDE, without any other 
intermediary transformation. 

α . Equations (I) and (II). As in the case of first order PDEs ([1] pag.14), 
these two equations are represented by the first order partial derivatives of PDE 
(1.1). Because a Concordant Function is accepted as an approximate solution, the 
unknown function ),( yxφ is replaced in by z(x,y) 

[ ] [ ]CzYXyxzyx *),(),( )0()0(=≈φ     (3.2) 
 so that the relation (1.1) becomes 
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The two first order partial derivatives of PDE (3.3) are considered - like (3.1) - 
applied in the Target Point 
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 Extending the notations (2.5), (2.6), (2.9), (2.10), (2.11) to the third order 
derivatives, the equations (3.4) and (3.5) can be written as 
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1 +++++=  (3.6) 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]TTTTTT YXPYXNYXMYXcYXbYXaS )1()0()2()0()1()1()3()0()2()1()1()2(
2 +++++=  (3.7) 

 The matrix [Cz] is similar to (2.4), but including 28 terms. 
β . Equations (III), (IV) and (V). The procedure used for obtaining the equations 
(3.4) and (3.5) continue, with the second order partial derivatives of PDE (3.3) 
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Using the same procedure as above, it results - similar to (I) and (II) - other 
3 equations 
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c. Equations (VI). The last equation represents the integral of (PDE) (3.3) 
extended on the whole rectangular area A (see [1] ,Par 1.3) 
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where   dA=dx×dy .  The last equation becomes 
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 The solution of the system of equations constituted from the 22 equations 
imposed by the boundary conditions and the 6 equations (I)… (VI), represents the 
28 coefficients of CF628. The problem is not yet finished because the values for 
[Cz] obtained using CF628 could be unsatisfactory. Taking into account this 
possibility, it is necessary to repeat the procedure developed in this paragraph, for 
the higher degrees Concordant Functions CF736 and CF845. Being similar to 
CF628, they are only shortly presented in Appendix A. 
 To illustrate, let us integrate - on a SINGLE CELL - a second order elliptic 
PDE with all the coefficients different from zero, using three different CFs 
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The integration takes place on a quite large square domain, with B=1 and H=1. 
The boundary conditions vary linearly between the four corners, where the values 
of the function are: ( ) 50,01 ===φ yx ; ( ) 10,12 =φ ; ( ) 21,03 =φ ; ( ) 71,14 =φ .  

The first attempt using a single cell will be made by employing CF628, 
based on the relations established above. The results obtained for the Target Point 
- namely the values of the function, together with the first and second order 
derivatives - are given in Row 1 of Table 1. Based on them it results the residual 
(ResT), whose value (-58.799) is far from those considered acceptable [1]. 
Therefore the operation continues in the same way using CF736 and CF845, 
which lead to the results given the Rows 2 and 3 of the same Table 1. The values 
of ResT for the last computations are similar to the first, all three being 
unsatisfactory. The graphs of the three functions obtained as solutions, which are 
given in Fig.1a, Fig.1b, Fig.1c, are quite similar and bring no hint for accepting 
one of them as being “the best”. 
                                                                                                                                                Table 1 
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ResT 

Step1: Results from “Single Cell” integration using different Concordant Functions 
1 CF628 (CF6) 17.705 2.0185 1.8947 -94.213 4.2374 -106.81 -58.799 
2 CF736 (CF7) 17.703 2.4598 2.1452 -94.212 4.3228 -106.76 -58.055 
3 CF845  (CF8) 17.127 2.5562 2.2037 -87.281 2.8209 -101.71 -31.996 

Step2: Results from “Single Cell” integration using a COMBINATION of two Concordant Functions 
4 ( ){ }7/6

CombinedCF  
26.491 16.255 7.5258 -300.19 61.324 -239.96 * 

5 ( ){ }8/7
CombinedCF  

14.151 -11.654 -13.715 -91.322 36.403 -87.530 * 

6 ( ){ }8/6
CombinedCF  

14.340 -11.227 -13.391 -94.517 36.784 -89.862 * 



154                                                   Maty Blumenfeld 

0

1

5

10

1

15

0.5

20

0.5

0 0  

0

1

10

1
0.5

20

0.5

0 0  

0

1

10

1
0.5

20

0.5

0 0  
                   Fig1a                                              Fig1b                                                   Fig1c 

-10

1

0

1

10

0.8

20

0.5 0.6

30

0.4
0.2

0 0

0

1

5

1

10

0.8

15

0.5 0.6

20

0.4
0.2

0 0

0

1

5

1

10

0.8

15

0.5 0.6

20

0.4
0.2

0 0

 
                       Fig1d                                             Fig1e                                     Fig1f 
                                                                           

Fig1 

 

3.3 Step 2: Integration with a single cell using combinations of different CFs 
 Because the attempt made until now, with the three CFs gave not a clear 
answer, a further try that give better results and request a little computation time, 
will be made. In the paper [2] the results obtained in Step 1 using a single cell for 
the integration of nonlinear first order PDEs, were improved in Step 2 by 
combining different CFs. As criterion for obtaining the combined CFs was used 
the Target Residual, which is - as seen before - a global accuracy parameter.  
 

    
                          Fig.2 Fictitious linear variation between two residuals 

Let be two Concordant Functions, noted CFL (index L for Left) and CFR 
(index R for Right). If they are used to integrate a PDE, it will result - as seen in 
the previous paragraph - two different Target Residuals, here noted as ResL and 
ResR. Suppose that they have different signs. Represented using a fictitious 

Res 

η
 

η 0 

ResL 

ResR 
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abscissa noted η  ( 1,0 =η=η RL ), it may result a graph like that given in Fig.2 [2]. 
Between these two values, we assume that the Residuals vary continuously, 
following an unknown path, so somewhere the path goes through ResT=0. 
Because there is no information concerning the supposed trail, we accept the 
rough hypothesis that the residual varies linearly with η  , according to  

( )η−+=η LRL ResResRes)( Res               (3.16) 

The Target Residual becomes null for        
RL

L
0 ResRes

Res
−

=η         (3.17) 

A new Concordant Function may be now obtained by combining CFL and 
CFR, according  also to a linear relation similar to (4.2), where η  is replaced by 

0η  

[ ]{ } [ ] [ ] [ ] 0
/ η




−




+= LRL

RL
combined CzCzCzCz                                     (3.18) 

Using [Cz]combined all the parameters can be computed straightforwardly, according 
to the relations given in Par.2.1. For instance the function results from (2.2) as 

[ ] [ ]{ }RL
combinedTT CzYXz /)0()0(=       (3.19) 

 The values obtained with this relation proved in [2] to be much better than 
those obtained using the two initial Concordant Functions CFL and CFR. Let us 
apply this procedure using the results obtained above in Step 1, considering  CFL= 
CF7 and CFR= CF8. Using the values given in Table 1 – namely ResCP7= ResL= -
58.055 and ResCP8= ResR= -31.996 – one obtains from (3.17) 
( ) 2278.2

)996.31(055.58
055.58

ResRes
Res

RL

L
780 =

−−−
−

=
−

=η    

It result similarly,    ( ) 1938.2680 =η         (3.20)   and     ( ) 057.79670 =η            (3.21) 
Onward, using (3.18), it results [ ]{ }7/6

combinedCz , [ ]{ }8/7
combinedCz , [ ]{ }8/6

combinedCz that lead to the 
values given in the rows 4,5,6 of Table 1. Based on the three [Cz]combined  it results 
the three graphs given in Fig.1d, Fig.1e and Fig.1f.  

Now emerges the issue mentioned above: “which graph is the closest to 
the exact variation of the function-solution (which remains, in fact, unknown)?”. 
More than that, it arise a new problem: “why is the Fig.1d so different from the 5 
others that are quite similar?”. 

 
4. A parameter for selecting the results: the Mean Square Root 

Residual 
 
 In [1] the purpose of the computation was to use an increasing number of 
elements, so that the Target Residual becomes small enough to be considered as 
acceptable. Consequently, the objective was to compute the Residual in ONE 
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POINT. The methodology used in the previous paragraph was connected - 
seemingly- to the calculation of the Residual also in a SINGLE POINT.  
The aim of the present paper is different: to find out  for the whole domain,  a 
polynomial that is the closest to the exact variation of the function-solution, which 
- in fact - remains unknown. Consequently, the values of the function and of its 
derivatives at the Target Point are,in fact, not important. Instead, the computation 
of the Residual will be extended to great number of points spread on a large part 
of a Test Domain. In [2] has been shown that the Residual tends to zero near the 
Target and increases,  when the point in which it is calculated moves away from 
the Target. Its value may become unacceptable near the edges. Therefore, it is 
proposed the following strategy: 
  a. From the integration domain will be extracted a large part, avoiding the 
portions near to the edges and, therefore, the influence of the Boundary 
Conditions. This Test Domain may be limited inside 
(xmin×B)  <  x  < ( xmax ×B )         and        (ymin×B) <  y  <  ( ymax ×B )          (4 .1) 
 b. The Test Domain can be divided in Ix intervals along x axis and Iy 
intervals along y axis, leading to a mesh of  NP intermediary points 

)1()1( +∗+= IyIxN P     (4.2) 
 c. For  each  CF,  in the  intermediary   points   k=1..NP    can be  
computed   the Residual - ResInt - using (2.12), where T is replaced by k. A special 
parameter, the Mean Square Root Residual,  may be defined as  

ResMean ( ) ( ))1()1(Re
1

2 +∗+= ∑
=

=

IyIxs
PNk

k
Int     (4.3) 

Its value constitutes a criterion that indicates the Residual deviation, inside the 
Test Domain of the 
selected solution as against the exact solution. To illustrate, let calculate ResMean 
for all the 6 cases analyzed in Table 1. Taking into account that B=1, H=1, the 
Test Domain is chosen as :           xmin= ymin=0.3 and xmax= ymax=0.7. The results 
of the computations are given in Table 2. 
       Table 2 

Case 1 2 3 4 5 6 

CF CF6 CF7 CF8 CF67 CF78 CF68 

ResMean 2.7208 2.6846 1.5156 8.0204 0.1502 0.1859 

 

From the 6 posibilities, has to be selected the case corresponding to the 
minimum value of ResMean, being  considered the closest to the unknown exact 
solution. The case selected from Table 2 is number 5 (CF78). 
 The computation of the 6 values of ResMean eliminates also the problem 
risen by Fig.1d. This problem was signaled, in [2], but not completely elucidated. 
It is owed to the methodology itself , namely to the relation (3.17). In fact, when 
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ResL and ResR have close values, the denominator of (3.17) tends to zero and may 
have great values. This falsifies the [ ]{ }RL

combinedCz / , the consequence being a distorted 
graph like in Fig.1d. and great values of the Residual. For instance ResMean for the 
Case 4 (CF67) is more then 50 times greater than that corresponding to Case 5 
(CF78). This is enough for the program to eliminate the Case 4 from the 
“contest”, in behalf of the Case 5 that has been already selected as "winner". 
Obviously this happens always, without the intervention of the user, which is not 
even informed. 
 It is interesting to follow - in Table 3 - the variation of ResMean 
corresponding to CF78, with the modification of the dimensions of the Testing 
domain.   
                                                                                                                                                                 Table 3 

xmin= ymin 0.19 0.24 0.29 0.34 0.39 0.44 0.49 

xmax= ymax 0.81 0.76 0.71 0.66 0.61 0.56 0.51 

ResMean 5.50×10-1 3.50×10-1 1.77×10-1 6.75×10-2 1.63×10-2 1.52×10-3 1.19×10-6 

  

 When the Test Domain is extended near  the edges (xmin= ymin=0.19), the 
value of ResMean increases, while in proximity of the Target (xmin= ymin=0.49) it 
drops abruptly to 1.19×10-6. 
 
5. The integration of an elliptic PDE using a SINGLE CELL compared with 
a multi-cell integration based on a well-known commercial code  
 The following PDE will be used as a benchmark test  

061230246243018121445423 322322
2

22

2

2
=−−−−+−−−−−φ−

∂

φ∂
+

∂∂
φ∂

+
∂

φ∂ yxyyxxyxyxyx
yyxx

     (5.1) 

 The integration takes place on a square domain having B=1 and H=1. The 
boundary conditions vary linearly between the four corners, where the values of 
the function are: 

( ) 70,01 ===φ yx ;     ( ) 90,12 =φ ;     ( ) 101,03 =φ ;     ( ) 141,14 =φ . 
 According to (1.2), the PDE (6.1) is elliptic because       

04443424 22 <−=××−=− cab . 
a. Integration using MATLAB 

Because (5.1) is be considered as a benchmark, a fine triangular mesh was 
generated automatically by the program. It is realized using 20992 triangles and 
10657 nodes. Nevertheless, the nearest point from the intersection of the 
diagonals is at x=0.5049, y=0.5049, for which the value of the function results as 
being FT=7.018. 
b. Integration using with the method described in this paper 

The program, written by the author, is based on the steps established in 
Par.3. The Target Point is considered T (xT=0.5049, yT=0.5049). The output 



158                                                   Maty Blumenfeld 

1. The value of the function, which is      zT= 6.9498 
2. The combined Concordant Function [Cz]. 
The program can provide, upon request: 
 - the values of the Mean Square Root Residuals; 

- the maximum value of the function and the coordinates of the 
point in which it appears. 
 Based on Table 3, the Concordant Function selected by the 

programme is [ ]{ }8/7
combinedCz . 

               Table 4 

Case 1 2 3 4 5 6 

CF CF6 CF7 CF8 CF67 CF78 CF68 

ResMean 1.0379 1.0458 0.6045 4.4676 0.07571 0.08613 

 

From the values found using the two fundamentally different methods, it 
results (considering FT as the reference value) 
Target Function Error=(zT- FT)/ FT=(6.9498-7.018)/7.018= -9.71×10-3 that means 

-0. 971 % . 
The variation of the function computed by MATLAB is given in Fig.3a, 

while that based on [ ]{ }8/7
combinedCz in Fig.3b. A visual comparison shows no difference 

between them. 
The Single-cell method has passed successfully the benchmark test. 

5

1

10

1
0.5

15

0.5

0 0

 
  Fig.3a      Fig.3b 

Remark. a. For those readers who desire to verify the value of zT or to represent 
the Fig.3b, the matrix [Cz] is given in APPENDIX  B. For this purpose it is also 
given a short MATLAB [function]. The reader will be able to observe that [Cz] 
can be employed similarly to an exact analytic solution. The difference between 
them consists in the fact that [Cz] leads to an approximate solution, but which is 
obtained quickly using a numerical method. In fact [Cz] may be considered a 
quasi-analytic solution of the PDE. 
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b. From Fig.3b results that the function has a minimum, whose value is 
zmin=6.3969, at a point having the coordinates x=0.35, y=0.35. 
 
6. Examples 
 
Example 1. 

PDE:    
0966448328016328064

1664804832384232

4322343223

22
2

22

2

2

=−−+−−−−−−

−+−−−−−φ+
∂
φ∂

+
∂∂
φ∂

+
∂
φ∂

yxyyxyxxyxyyxx

yxyxyx
yyxx  

Square dimensions: B=1 ; H=1.                 Boundary conditions: 
2

12 12132)0,( xxyx −+==φ , 
2

13 8112),0( yyyx −+==φ , 2
24 43),1( yyyx ++==φ , 2

34 855)1,( xxyx +−==φ . 
 
Results. Target Point: xT=yT=0.5.  Test Domain : xmin= ymin=0.3 ; xmax= ymax=0.7.   
The values of ResMean 

Case 1 2 3 4 5 6 

CF CF6 CF7 CF8 CF67 CF78 CF68 

ResMean 4.4657 4.4630 2.4182 6.28×107 0.2355 0.2744 

The selected case is number 5 (CF78). The graph of the function is given in Fig.4 
. 
Function value at T= -11.861.Minimum value of the function zMin= -12.036, at 
x=0.55,y=0.55. 
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Fig.4 

Example 2. 

    PDE:        05.015232 2

22

2

2

=−++
∂
φ∂

+
∂
φ∂

+
∂
φ∂

+
∂∂
φ∂

−
∂
φ∂ yx

yxyyxx
        

Boundary conditions:             ( ) 40,01 ===φ yx , ( ) 30,12 =φ , ( ) 11,03 =φ , ( ) 81,14 =φ ,   
with linear variation between corners.  
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Tests will be made with three Square dimensions: a. B=1 , H=1  ; the two others 
have very high dimensions  b. B=10 , H=10   ;   c. B=20 , H=20 .   
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            B=H=1      B=H=5         B=H=10 
     zT(0.5,0.5)= 4.4179                   zT(5,5)= 30.914     zT(10,10)= 73.900 
      ResMean=5.32×10-3                   ResMean=6.32×10-3                 ResMean=1.52×10-2 
              Fig.4a                                   Fig.4b                                       Fig.4c 
 
Results. For all three tests was selected [ ]{ }8/7

combinedCz . The graphs of the function are 
given in Fig.4a,b,c. When B and H increase, the influence of W(x,y) produce a 
great modification of the solution, leading to extreme values in the tests Fig4b. 
(zMax= 35.226 at x=3.5, y=3.5) and Fig4c. (zMax= 90.830 at x=6, y=6), which do 
not exist in the test  Figa. If the dimensions of the square increase to the large 
value B=H=30, MATLAB delivers for the Concordant Function CF8 the 
warning: “Matrix is close to singular or badly scaled”. 
Example 3. 
 

PDE:    
048322416408164032

832402416192

4322343223

22
2

22

2

2

=++−++++++

+−+++++φ+
∂
φ∂

+
∂
φ∂

+
∂
φ∂

+
∂∂
φ∂

−
∂
φ∂

yxyyxyxxyxyyxx

yxyxyxP
y

N
x

M
y

c
yx

b
x

a
  (6.1) 

where     a=2 ;  b=-3.4 ;  c=3 ;  M=-4 ;  N=3 ;  P=2 . 
Square dimensions: B=1 ; H=1.                 Boundary conditions:     

2
12 12132)0,( xxyx −+==φ ;  
 2

13 8102),0( yyyx −+==φ ;  2
24 423),1( yyyx +−==φ ; 2

34 874)1,( xxyx +−==φ  
 Results. Target Point: xT=yT=0.5.  Test Domain : xmin= ymin=0.3 ; xmax= ymax=0.7.  
The values of ResMean: 

Case 1 2 3 4 5 6 
CF CF6 CF7 CF8 CF67 CF78 CF68 

ResMean 3.1977 3.3515 2.1400 4.5220 0.3477 0.5361 
The selected case is number 5 (CF78). The graph of the function is given in Fig.5a 
Function value at T: zT= 13.210. Maximum value of the function zMax= 13.346, at 
x=0.55,y=0.45. 
Remark. The duration of the entire procedure for these examples (except the 
drawings) is 1.4...1.7 seconds, on an outdated desktop, using a program written by 
the (unprofessionally) author. 
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7. PDEs with variable coefficients 
 

The “two steps” method can be used also for the integration of elliptic 
PDEs with variable coefficients. Such PDE can be written, similarly to (1.1), as  

 

( ) 0,),(),(),(),(),(),( 2

22

2

2
=+φ+

∂
φ∂

+
∂
φ∂

+
∂
φ∂

+
∂∂
φ∂

+
∂
φ∂

= yxWyxP
y

yxN
x

yxM
y

yxc
yx

yxb
x

yxaPDE    (7.1)  

 The main difference, as compared to PDE with constant coefficients, 
consists in a more difficult establishing of the PDE derivatives. For instance, the 

first term of (3.4), namely  2

2

x
za

∂
∂   that is designate as     2

2

),(
x

zyxaf
∂
∂

=  (7.2) 

illustrates this difference. The first and second order derivatives of (7.2) are 
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                             Fig.5a.                                                                Fig.5b.   
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The other terms follow the same procedure, leading to a great number of 
terms that are not written here. The Integral equation (VI) follows the procedure 
described in [1], taking into account that the coefficients are variable. 
Example 4. The PDE (6.1) from Example 3 has the following variable coefficients 

22 2.05.04.02.04.02 yxyxyxa +++++=    ;   22 2.03.01.03.02.04.3 yxyxyxb +++++−=  
22 2.03.02.03.04.03 yxyxyxc +++++=    ;    22 2.03.01.03.01.04 yxyxyxM +++++−=  
22 2.01.04.03.01.03 yxyxyxN +++++=    ;    22 3.03.04.01.02.02 yxyxyxP +++++=  
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The selected case is also number 5 (CF78) with ResMean=0.6150. The graph of the 
function is given in Fig.5b. Function value at T: zT= 9.9316e. Maximum value of 
the function zMax=10.042, at x=0.5,y=0.45 
Acknowledgement. The author wants to thank professor Stefan Sorohan, from 
the University Politehnica Bucarest, Department of Strength of Materials, who has 
computed  - using the part dedicated to PDEs from MATLAB  - several examples 
that have been used as benchmarks. One example was included in paragraph 5. 
 

Appendix A 
 
A.1 Selecting the equations for CF736 
 The procedure follows the same path as in Par 3.1, taking into account the 
increased number of unknown coefficients from 28 to 36. 

a. Boundary conditions: 26 equations 
As compared to CF628, the degree of CF736 has raised from 6 to 7. This means 

that an additional condition must be added to each side, which raises the number of limit 
conditions from 22 to 26. Consequently there is enough information to write 26 
equations. 
 b. Target Point: 10 equations 
 There are necessary other 10 equations that added to the 26 already found, to 
complete the number of 36. They result by adding to the 6 equations (I)… (VI) written 
above, the 4 equations obtained from the third order partial derivatives of PDE (1.1).  

[ ] [ ] 0* 3

3

7 =










∂
∂

+
Tx

WCzS (VII), [ ] [ ] 0* 2

3

8 =










∂∂
∂

+
Tyx

WCzS ( VIII) , 

[ ] [ ] 0* 2

3

9 =










∂∂
∂

+
Tyx

WCzS (IX),     [ ] [ ] 0* 3

3

10 =










∂
∂

+
Ty

WCzS (X),          where 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]TTTTTT YXPYXNYXMYXcYXbYXaS )0()3()1()3()0()4()2()3()1()4()0()5(
7 +++++=  

[ ] [ ] [ ] [ ] [ ] [ ] [ ]TTTTTT YXPYXNYXMYXcYXbYXaS )1()2()2()2()1()3()3()2()2()3()1()4(
8 +++++=  

[ ] [ ] [ ] [ ] [ ] [ ] [ ]TTTTTT YXPYXNYXMYXcYXbYXaS )2()1()3()1()2()2()4()1()3()2()2()3(
9 +++++=  

[ ] [ ] [ ] [ ] [ ] [ ] [ ]TTTTTT YXPYXNYXMYXcYXbYXaS )3()0()4()0()3()1()5()0()4()1()3()2(
10 +++++=  

A.2 Selecting the equations for CF845 
 The procedure follows the same path, taking into account the increased number of 
unknown coefficients from 36 to 45. 

a. Boundary conditions: 30 equations 
By adding one boundary condition on each side, the number of equations raises 

from 26 to 30. 
 b. Target Point: 15 equations 
 There are necessary other 15 equations that added to the 30 already found, to 
complete the number of 45. They result by adding to the 10 equations (I)… (X) written 
above, the 5 equations obtained from the fourth order partial derivatives of PDE (1.1).  
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[ ] [ ] 0* 4
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WCzS  (XV),          where 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]TTTTTT YXPYXNYXMYXcYXbYXaS )0()4()1()4()0()5()2()4()1()5()0()6(
11 +++++=  

[ ] [ ] [ ] [ ] [ ] [ ] [ ]TTTTTT YXPYXNYXMYXcYXbYXaS )1()3()2()3()1()4()3()3()2()4()1()5(
12 +++++=  

[ ] [ ] [ ] [ ] [ ] [ ] [ ]TTTTTT YXPYXNYXMYXcYXbYXaS )2()2()3()2()2()3()4()2()3()3()2()4(
13 +++++=  

[ ] [ ] [ ] [ ] [ ] [ ] [ ]TTTTTT YXPYXNYXMYXcYXbYXaS )3()1()4()1()3()2()5()1()4()2()3()3(
14 +++++=  

[ ] [ ] [ ] [ ] [ ] [ ] [ ]TTTTTT YXPYXNYXMYXcYXbYXaS )4()0()5()0()4()1()6()0()5()1()4()2(
15 +++++=  

Appendix B 
 The following function can be used in MATLAB to compute the value of the 
function. Input data: the coordinates of the point, the degree of the Concordant Function 
(usually 8) and the matrix [Cz] that that can be found below. 
 
function[FZ]=FunctionZ(x,y,Degree,Cz) 
NT=(Degree+1)*(Degree+2)/2; 
RF=[0 1 0 2 1 0 3 2 1 0 4 3 2 1 0 5 4 3 2 1 0 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 ... 
      8 7 6 5 4 3 2 1 0  9 8 7 6 5 4 3 2 1 0 ]; 
SF=[0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6 ... 
        0 1 2 3 4 5 6 7   0 1 2 3 4 5 6 7 8   0 1 2 3 4 5 6 7 8 9 ]; 
for i=1:NT 
    R=RF(i);S=SF(i);     MF(i)=x^R*y^S; 
end 
FZ=MF*Cz'; 
 

[Cz]↓ PDE (5.1) Example 1 Example 3 Example 4 
1 7 2 2 2 
x 2 13 13 13 
y 3 10 10 10 
x2 0 -12 -12 -12 
xy -94.739e+01 -546.39 11.179 30.410 
y2 0 -8 -8 -8 
x3 0 0 0 0 

x2y 27.256 1471.2 217.88 -20.097 
xy2 23.3282 1178.6 -226.26 47.247 
y3 0 0 0 0 
x4 0 0 0 0 

x3y -362.98 -1991.9 -891.48 161.59 
x2y2 -892.22 -4347.9 997.60 -426.06 
xy3 -224.51 -1127.1 905.96 -208.64 
y4 0 0 0 0 
x5 0 0 0 0 

x4y 217.37 1316 1705.8 -415.25 
x3y2 1356.5 6636.8 -601.43 315.51 
x2y3 1057.7 5069.4 -4370.1 1116.8 
xy4 75.729 437.90 -881.97 79.382 
y5 0 0 0 0 
x6 0 0 0 0 

x5y -14.298 -269.32 -1287.1 298.61 
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x4y2 -859.20 -4268.7 -2130.7 553.89 
x3y3 -1669.0 -7952.2 5829.9 -1513.0 
x2y4 -450.28 -2222.3 3711.7 -613.75 
xy5 26.034 72.397 152.87 51.815 
y6 0 0 0 0 
x7 0 0 0 0 

x6y -15.915 9.4792 231.76 -67.260 
x5y2 146.19 822.74 2204.6 -545.84 
x4y3 967.64 4563.3 -1448.3 357.61 
x3y4 700.36 3395.0 -4703.0 1030.6 
x2y5 -1.1363 15.252 -518.85 -57.130 
xy6 -13.335 -34.396 18.226 -20.218 
y7 0 0 0 0 
x8 0 0 0 0 

x7y 0 0 0 0 
x6y2 15.915 -9.4792 -231.76 67.260 
x5y3 -131.89 -553.42 -917.45 247.23 
x4y4 -325.81 -1610.6 1873.3 -496.24 
x3y5 -24.898 -87.650 365.97   5.3150 
x2y6 13.335 34.396 -18.226   20.218 
xy7 0 0 0 0 
y8 0 0 0 0 
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