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USING LAPLACE DECOMPOSITION METHOD TO SOLVE 

NONLINEAR KLIEN-GORDON EQUATION 

Emad K. JARADAT1, Amer D. ALOQALI1, Wajd ALHABASHNEH2 

The nonlinear Klein-Gordon equation used to model many nonlinear 

phenomena. In quantum field theory, the corresponding Klein-Gordon field 

characterized by “particles” with rest mass m and no other structure (e.g., no spin, 

no electric charge, etc.) Therefore, the Klein-Gordon field is physically the simplest 

of the relativistic fields that one can study. In this paper, an analytical technique 

proposed to solve the nonlinear Klein-Gordon equation with high order nonlinearity. 

The proposed method based on applying the Laplace transform to nonlinear partial 

differential equation and replacing the nonlinear terms by the Adomian polynomials. 

This method known as the Laplace decomposition method (LDM). The obtained 

approximate analytical solution of the equation will be in the form of a summation 

with easily obtainable terms. An application discussed to illustrate the effectiveness 

and the performance of the proposed method, which successively provided for finding 

the solutions of the nonlinear Klein-Gordon equation. 

 

Keywords: nonlinear Klein-Gordon equation, Laplace transform, nonlinear partial 

differential equation, Laplace decomposition method, Analytical solution.  

1. Introduction 

Nonlinear phenomena, that occurs in an incredible amount of areas of 

science and engineering such as plasma physics m fluid physics , fluid dynamics , 

solid state physics , mathematical biology and chemical kinetics , can be modeling 

by partial differential equations. One of the most important class of all partial 

differential equations appearing in applied science is that associated with the Klein 

Gordon. The Klein-Gordon equation represents a relativistic wave equation, related 

to the Schrodinger equation, which predict the behavior of particles at high energies 

and velocities comparable to the speed of light. The solutions of linear and 

nonlinear Klein-Gordon equation play a significant role in many scientific 

applications. In this paper, we consider the one-dimensional nonlinear Klein-

Gordon equation with power nonlinearity: 

𝑢𝑡𝑡(𝑥, 𝑡) = 𝑢𝑥𝑥 + 𝜆𝑢𝜌                                                           (1.1) 

Subject to initial conditions 
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𝑢(𝑥, 0) = 𝑓(𝑥)         , 𝑢𝑡(𝑥, 0) = 𝑘(𝑥)                         (1.2) 

and appropriate boundary conditions  

𝑢(0, 𝑡) = 𝑔(𝑡)         ,    𝑢𝑥(0, 𝑡) = ℎ(𝑡)                               (1.3) 

          Where u is a function of x and t, it represents the wave displacement at 

position x and time t , λ is a physical constant and the term λ uρ represents the 

nonlinear force which arises in the study of theoretical physics. ρ takes the values 

1,2,3,… and the indices t and x denote derivatives with respect to these variables. 

Unless ρ=1, the eq.(1.1) is a nonlinear Klein-Gordon equation. The solutions of 

eq.(1.1) include the motion of quantum scalar or a pseudo-scalar field which is a 

field whose quanta are spineless particles.  

Many powerful methods have improved to solve this type of nonlinear 

partial differential equations. Sine-Gordon equation solved in [1[by presenting a 

new form of B¨acklund transformations, which gives a unified method of finding 

B¨acklund transformations for solutions of certain nonlinear evolution equations. 

The authors in]2[ developed Daraboux's idea to solve linear and nonlinear partial 

differential equations arising in Soliton theory. The extended tanh method was used 

in ]3[ to derive abundant solitary wave solutions of nonlinear wave equations. 

Paper]4[ constructed the wave solutions of the approximate equations for long 

water waves by using a homogeneous balance method.  

 Nonlinear KGE and its various forms are all well studied constructed and 

solved in various papers. Authors in ]5[ implemented a reduced differential 

transform method (RDTM) for solving the linear and nonlinear Klein-Gordon 

equations. A method which is known as the homotopy analysis was applied in ]6[ 

to obtain the solution of nonlinear fractional Klein-Gordon equation. A numerical 

method based on collocation points was developed in ]7[ to solve the nonlinear 

Klein-Gordon equations by using the Taylor matrix method. In paper ]8[ the 

nonlinear one-dimensional Klein-Gordon equation was solved with the help of the 

cubic B-spline collocation method on the uniform mesh points. In this paper a 

simple but effective technique will be used to approximate the solution of the 

nonlinear KGE. The technique known as Laplace decomposition method (LDM) 

which is a combination of the Laplace transform and the Adomian decomposition 

method. 

   2. Laplace decomposition method  

The Adomian decomposition method, introduced by G.Adomian in 1980's 

]9-11[ , has proven to be a successive method to find the approximate solutions for 

a wide class of ordinary differential equations. A powerful technique developed 

with the help of the Adomian decomposition. The technique known as the Laplace 

decomposition method, which used to solve nonlinear ordinary, partial differential 

equations. The method is very well suited to physical problems since it can solve 
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nonlinear problems without linearization, perturbation or discretization methods, 

on the other hand it requires less number of calculation work than traditional 

approaches. 

Many papers introduced this method to solve a various nonlinear partial 

differential equations. Khuri ]12[ used this method for the approximate solution of 

a class of a nonlinear ordinary differential equations. Handibag and Karande ]13[ 

applied this method for the solution of the linear and nonlinear heat equation. 

Elgazery ]14[ exploited this method to solve Falkner-Skan equation. The Laplace 

decomposition method was employed in ]15[ to get approximate analytical 

solutions of the linear and the nonlinear fractional diffusion-wave equations.  

  The method is based on applying the Laplace transform to a nonlinear 

differential equation Gu=g , where G represents a nonlinear differential operator . 

the method consists of decomposing the linear part of G in L+R , where L is an 

operator that have inverse L-1 , and R is the remaining part . denote the nonlinear 

term by N , then the equation in standard form is : 

𝐿𝑢 + 𝑅𝑢 + 𝑁𝑢 = 𝑔                                                               (2.1)    
Taking the L-1 to both sides  

𝐿−1𝐿𝑢 = 𝐿−1𝑔 − 𝐿−1𝑅𝑢 − 𝐿−1𝑁𝑢                                (2.2)  
 The key of this technique is to decompose the nonlinear term Nu in the 

equation (2.1) into a particular series of polynomials.  

𝑁𝑢 = ∑ 𝐴𝑛

∞

𝑛=0

   ; 𝐴𝑛 ≡ Adomian polynomials.                          (2.3) 

𝐴𝑛(𝑢0, 𝑢1 , 𝑢2, …  , 𝑢𝑛) =  
1

𝑛!
 [

𝑑𝑛

𝑑𝜆𝑛
𝑁 (∑ 𝜆𝑖

∞

𝑖=0

𝑢𝑖)]

𝜆=0

  (2.4) 

In the next section we will use this methodology (LDM) to solve eq.(1.1) 

and obtain the solution of it in x as well as t direction by taking the Laplace 

transform with respect to t and x.  
 

3. Method of solution 

The aim of this section is to discuss the use of the Laplace decomposition method 

to solve the form]16[of the nonlinear Klein-Gordon equation (1.1). We consider the 

general form of nonlinear Klein-Gordon equations, with initial conditions (1.2) and 

(1.3) ,  is given below 

𝐿𝑢(𝑥, 𝑡) + 𝑅𝑢(𝑥, 𝑡) + 𝜆𝑢𝜌 = 0                             (3.1) 

where  L =
∂2

∂𝑡2   , 𝑅 =
∂2

∂𝑥2 ,  

 𝑁𝑢 represents the general nonlinear operator  𝜆𝑢𝜌. 
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Apply the Laplace transform on both sides of equation (3.1) with respect to t, we 

get 

                         𝑠2𝑢(𝑥, 𝑠) − 𝑠𝑓(𝑥) − 𝑘(𝑠) = ℒ𝑡{𝑢𝑥𝑥 + 𝜆𝑢𝜌}                                       

 𝑢(𝑥, 𝑠) =
1

𝑠
𝑓(𝑥) +

1

𝑠2
𝑘(𝑥) +

1

𝑠2
ℒ𝑡{𝑢𝑥𝑥 + 𝜆𝑢𝜌}                     (3.2) 

where ℒ𝑡 is the laplace transform with respect to 𝑡. Applying inverse 

Laplace transform on both sides of equation (3.2) with respect to t, we get 

𝑢(𝑥, 𝑡) = 𝑓(𝑥) + 𝑘(𝑥)𝑡 + ℒ𝑡
−1 {

1

𝑠2
ℒ{𝑢𝑥𝑥 + 𝜆𝑢𝜌}}                               (3.3) 

The Laplace decomposition method (LDM)  ]17[ assumes a series solution 

of the function u(x,t) is given by  

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛

∞

𝑛=0

(𝑥, 𝑡)                                                                                     (3.4) 

The nonlinear term in equation (3.1) can be decomposed by using 

Adomian polynomials An ]18[which is given by the formula (2.4)  

The first five Adomian polynomials for the variable Nu=f(u) are given by  

𝐴0 = 𝑓(𝑢0) , 𝐴1 = 𝑢1𝑓′(𝑢0) 𝐴2 = 𝑢2𝑓′(𝑢0) +
1

2!
𝑢1

2𝑓′′(𝑢0)                      

 𝐴3 =  𝑦3𝑓′(𝑢0) + 𝑢1𝑢2𝑓′′(𝑢0) +
1

3!
𝑢1

3𝑓(3)(𝑢0)                                             

𝐴4 = 𝑢4𝑓′(𝑢0) + (𝑢1𝑢3 +
1

2!
𝑢2

2) 𝑓′′(𝑢0) +
1

2!
𝑢1

2𝑢2𝑓(3)(𝑢0) +
1

4!
𝑢1

4𝑓(4)(𝑢0)      

Therefore;   𝑁𝑢(𝑥, 𝑡) = ∑ 𝐴𝑚
∞
𝑚=0           (3.5) 

We obtain the first few Adomian polynomial components for as. 

Nu(x,t)=λuρ as  

𝐴0 = 𝜆𝑢0
𝜌   ,      𝐴1 = 𝜆𝜌𝑢1𝑢0

𝜌−1       ,   𝐴2 = 𝜆𝜌𝑢2𝑢0
𝜌−1 +

1

2!
𝑢1

2𝜌(𝜌 − 1)𝑢0
𝜌−2 

𝐴3 = 𝜆𝜌𝑢3𝑢0
𝜌−1 + 𝜌𝜆𝑢1𝑢2(𝜌 − 1)𝑢0

𝜌−2 +
1

3!
𝜌𝜆𝑢1

3(𝜌 − 1)(𝜌 − 2)𝑢0
𝜌−3 

and so on … putting eq. (3.4) and eq. (3.5) in eq. (3.3) , we get  

∑ 𝑢𝑛

∞

𝑛=0

(𝑥, 𝑡) = 𝑓(𝑥) + 𝑘(𝑥)𝑡 + ℒ−1 {
1

𝑠2
ℒ {∑ 𝑢𝑛𝑥𝑥

∞

𝑛=0

(𝑥, 𝑡) + ∑ 𝐴𝑚

∞

𝑚=0

}}        (3.6) 

Match the both sides of the above equation, we get  

𝑢0(𝑥, 𝑡) = 𝑓(𝑥) + 𝑘(𝑥)𝑡          ,           𝑢1(𝑥, 𝑡) = ℒ−1 {
1

𝑠2 ℒ{𝑢0𝑥𝑥(𝑥, 𝑡) + 𝐴0}}  

𝑢2(𝑥, 𝑡) = ℒ−1 {
1

𝑠2
ℒ{𝑢1𝑥𝑥(𝑥, 𝑡) + 𝐴1}}  ,  𝑢3(𝑥, 𝑡) = ℒ−1 {

1

𝑠2
ℒ{𝑢2𝑥𝑥(𝑥, 𝑡) + 𝐴2}} 

And so on … In general , the recursive relation is given by  

𝑢0(𝑥, 𝑡) = 𝑓(𝑥) + 𝑘(𝑥)𝑡   

 𝑢𝑛+1(𝑥, 𝑡) = ℒ−1 {
1

𝑠2 ℒ{𝑢𝑛𝑥𝑥(𝑥, 𝑡) + 𝐴𝑛}}  𝑛 ≥ 0                                    (3.7) 
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By using relation (3.7) we can find the components of u(x,t) ; u0 , u1 , ... , 

un  for n ≥ 0 . Substitute all these values in equation (3.4), we get the solution of 

eq.(3.1) in t direction. If we take the Laplace transform of (3.1) with respect to x, 

we will get the same solution in x direction. The recursive equation in x direction 

is 

𝑢0(𝑥, 𝑡) = 𝑔(𝑡) + ℎ(𝑡)𝑥                                                                      , 

    𝑢𝑛+1(𝑥, 𝑡) = ℒ𝑥
−1 {

1

𝑠2 ℒ𝑥{𝑢𝑛𝑡𝑡(𝑥, 𝑡) − 𝐴𝑛}}  𝑛 ≥ 0                   (3.8) 

where ℒ𝑥 represent the Laplace transform with respect to x.  
 

4. Illustrate application 

       We will illustrate the technique of Laplace decomposition method to solve the 

nonlinear Klein Gordon equation by setting λ=1 in eq. (1.1) and taking the 

following initial conditions  

𝑢(𝑥, 0) = 𝑒𝑥 ,                        𝑢𝑡(𝑥, 0) = 0                            
Then, we get the Klein-Gordon equation  

𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝑢𝜌   ;  𝜌 = 1,2,3, …                                   (4.1) 

         Let us obtain the general solution to eq.(4.1) for any value of ρ in t direction. 

Consider the special case when ρ=1 which represents the linear Klein-Gordon 

equation. Then the eq.(4.1) will take the form  

𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝑢                                       (4.2)   
We need to find the related Adomian polynomials for eq.(4.2) which simply 

can be written as 

𝐴0 = 𝑢0    , 𝐴1 = 𝑢1   , 𝐴2 = 𝑢2  , … and so on . 
Using the recursive relation (3.7), we get  

𝑢0(𝑥, 𝑡) = 𝑒𝑥                                                                             

 𝑢1(𝑥, 𝑡) = 2𝑒𝑥
𝑡2

2!
   , 𝑢2(𝑥, 𝑡) = 4𝑒𝑥

𝑡4

4!
 ,          𝑢3(𝑥, 𝑡) = 8𝑒𝑥

𝑡6

6!
                     

                                                                         
And so on. Putting these individual terms in eq.(3.4) one we get the exact 

solution in t direction.  

𝑢(𝑥, 𝑡) = 𝑒𝑥 + 2𝑒𝑥
𝑡2

2!
+ 4𝑒𝑥

𝑡4

4!
+ 8𝑒𝑥

𝑡6

6!
+ ⋯                               (4.3) 

Now, let us take ρ = 2,3,4,… then, eq.(4.1) represents the nonlinear Klein-Gordon 

equation. For ρ =2  

𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝑢2                                                                       (4.4) 

the Adomian polynomials can be found from relation (2.4) , we get  

𝐴0 = 𝑢0
2    , 𝐴1 = 2𝑢0𝑢1   , 𝐴2 = 2𝑢0𝑢2 + 𝑢1

2      , 𝐴3 = 2𝑢0𝑢3 + 2𝑢1𝑢2       
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The same steps we followed in previous case with the help of recursive 

relation (3.7) can be used to find the terms of u(x,t).  

𝑢0(𝑥, 𝑡) = 𝑒𝑥  ,      𝑢1(𝑥, 𝑡) = (𝑒𝑥 + 𝑒2𝑥)
𝑡2

2!
   , 𝑢2(𝑥, 𝑡) = (2𝑒3𝑥 + 6𝑒2𝑥 + 𝑒𝑥)

𝑡4

4!
,

𝑢3(𝑥, 𝑡) = (10𝑒4𝑥 + 42𝑒3𝑥 + 32𝑒2𝑥 + 𝑒𝑥) 
𝑡6

6!
  

  
and so on … this yields  the slution of eq. (4.4) 

   𝑢(𝑥, 𝑡) = 𝑒𝑥  + (𝑒𝑥 + 𝑒2𝑥)
𝑡2

2!
+ (2𝑒3𝑥 + 6𝑒2𝑥 + 𝑒𝑥)

𝑡4

4!

+ (10𝑒4𝑥 + 42𝑒3𝑥 + 32𝑒2𝑥 + 𝑒𝑥) 
𝑡6

6!
+ ⋯                    (4.5) 

  
        Many values for ρ must be substituted in eq.(4.1) to enable us writing a general 

formula for the solution of this form of the nonlinear Klein-Gordon equation and 

obtaining the solution for high order power of the nonlinear force with the same 

initial conditions supposed previously. So let us take that ρ=3 , this makes eq.(4.1) 

takes the form 

𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝑢3                                            (4.6) 
In addition, the relation (2.4) helps us to obtain the Adomian polynomials, which 

are  

 𝐴0 = 𝑢0
3 , 𝐴1 = 3𝑢0

2𝑢1  , 𝐴2 = 3𝑢0
2𝑢2 +

6

2!
𝑢1

2 𝑢0, 𝐴3                                                    

= 3𝑢0
2𝑢3 + 6𝑢0𝑢1𝑢2  +  

6

3!
 𝑢1

3       

For the solution of this equation in t direction we use the same relation (3.7) to get 

the terms of u(x,t). The few terms of the solution are  

𝑢0(𝑥, 𝑡) = 𝑒𝑥  ,𝑢1(𝑥, 𝑡) = (𝑒𝑥 + 𝑒3𝑥)
𝑡2

2!
, 𝑢2(𝑥, 𝑡) =   (3𝑒5𝑥 + 12𝑒3𝑥 + 𝑒𝑥)

𝑡4

4!
 

𝑢3(𝑥, 𝑡) = (27𝑒7𝑥 + 147𝑒5𝑥 + 129𝑒3𝑥 + 𝑒𝑥)
𝑡6

6!
 

The rest of terms are found by the same steps then the summation of all 

terms gives the solution of eq.(4.6) 

𝑢(𝑥, 𝑡) = 𝑒𝑥 + (𝑒𝑥 + 𝑒3𝑥)
𝑡2

2!
+  (3𝑒5𝑥 + 12𝑒3𝑥 + 𝑒𝑥)

𝑡4

4!
                                           

+ (27𝑒7𝑥 + 147𝑒5𝑥 + 129𝑒3𝑥 + 𝑒𝑥)
𝑡6

6!
+ ⋯                                       (4.7) 

From all obtained solutions, the terms of the solution u(x,t) for the nonlinear 

equation when ρ = 4 may be expected. The results indicate that the solution for ρ = 
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4 will be in terms of ex , e4x , e7x , e10x and t2 , t4 , t6 , and so on … so , let us find it 

when ρ = 4 for the equation  

𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝑢4                                                                (4.8) 

The related polynomials for eq.(4.8) are  

𝐴0 = 𝑢0
4    , 𝐴1 = 4𝑢0

3𝑢1   , 𝐴2 = 4𝑢0
3𝑢2 +

12

2!
𝑢1

2 𝑢0
2    

                            𝐴3 = 4𝑢0
3𝑢3 + 12𝑢0

2𝑢1𝑢2 +

 
24

3!
 𝑢1

3𝑢0                                                           

The verification of our expectation can be done by getting u0 , u1 , u2 ,.. from 

relation (3.7).  

𝑢0(𝑥, 𝑡) = 𝑒𝑥, 𝑢1(𝑥, 𝑡) = (𝑒𝑥 + 𝑒4𝑥)
𝑡2

2!
, 𝑢2(𝑥, 𝑡)  =  (4𝑒7𝑥 + 20𝑒4𝑥 +

𝑒𝑥)
𝑡4

4!
          

𝑢3(𝑥, 𝑡) = (34𝑒10𝑥 + 312𝑒7𝑥 + 342𝑒4𝑥 + 𝑒𝑥)
𝑡6

6!
                                                                             

So, the terms of solution of eq.(4.8) include what we expected and the exact 

solution of it is  

𝑢(𝑥, 𝑡) = 𝑒𝑥 + (𝑒𝑥 + 𝑒4𝑥)
𝑡2

2!
+ (4𝑒7𝑥 + 20𝑒4𝑥 + 𝑒𝑥)

𝑡4

4!
                                         

+ (34𝑒10𝑥 + 312𝑒7𝑥 + 342𝑒4𝑥 + 𝑒𝑥)
𝑡6

6!
+           …       4.9) 

        If we generalize these solutions we can get the solution for higher order of ρ. 

From equations (4.3),(4.5),(4.7),(4,9)  we can write a general formula for the terms 

of the solution for eq.(4.1) and for any value of ρ with the same initial conditions . 

𝑢0(𝑥, 𝑡) = 𝑒𝑥, 𝑢1(𝑥, 𝑡) = (𝑒𝑥 + 𝑒𝜌𝑥)
𝑡2

2!
, 𝑢2(𝑥, 𝑡) =  (𝑒𝑥 + 𝑎𝑒𝜌𝑥 + 𝑏𝑒(2𝜌−1)𝑥)

𝑡4

4!
 

𝑢3(𝑥, 𝑡) = (𝑒𝑥 + 𝑐𝑒𝜌𝑥 + 𝑑𝑒(2𝜌−1)𝑥 + 𝑚𝑒(3𝜌−2)𝑥)
𝑡6

6!
                           

And so on ,… where a,b,c,d,m are constants , in this manner we get the solutions.  

      Similarly, a solution of the nonlinear KGE can be obtained in x direction with 

given initial boundary conditions if we apply a Laplace transform with respect to x  

(Lx
-1) on both sides of eq.(3.1) and representing the nonlinear term by Adomian 

polynomials which can be evaluated from relation (2.4) . then, the obtained solution 

can be written in the form of summation in x direction.  

        Some space-time graphs for different cases of 𝜌 and the estimate solutions 

plotted for different values of ρ. Since Klein-Gordon equation describes the 

quantum amplitude for finding a point particle in various places and describes the 

relativistic waves function, we can show from these figures the effect of the 

nonlinear force power on the behavior of the particles. 
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Fig. 1. Space-time graph of the solution terms u0, u1, u2 and u3 for linear equation 

 

 
Fig. 2. Space-time graph of solution terms u0, u1, u2 and u3 for ρ=2. 

 

 
Fig. 3.Space-time graph of the solution terms u0, u1, u2 and u3 for ρ=3 

 

 
Fig. 4. Space-time graph of the solution terms u0, u1, u2 and u3 for ρ=4 



221        Using Laplace decomposition method to solve nonlinear Klien-Gordone equation 

For a free particle nonlinear Klein-Gordon equation, it has a nonlinearity in 

the mass term (proposed in our paper) which, in contrast to what happens in the 

standard linear case, is proportional to the power of the wave function. Fig.5 Shows 

how the power of the nonlinear term effects on the propagation of the waves and 

the behavior of the particles. On the other hand, Fig. 6 Shows the same behavior 

for the waves at considerable time t = 2s. 

 
Fig.5. Wave forms of different powers nonlinearity 

 
Fig. 6. The approximate solution of different powers for Klein-Gordon eq., -2 ≤ x ≤ 2 , 0 ≤ t ≤ 3 .              

Nonlinearity for Klein-Gordon equation, -2 ≤ x ≤ 2 , 0 ≤ t ≤ 3 

5. Conclusion 

            Analytical solutions enable researchers to study and construct the effect of 

different variables or parameters on the function under study in easy way. The 

Laplace decomposition method is considered a powerful tool of the analytical 

methods which capable of handling linear /nonlinear partial differential equations. 

In this paper, this method has successfully applied to nonlinear Klein-Gordon 

equation with high order nonlinearity. The implementation LDM is simple as finite 

difference methods. The solutions obtained in the previous section demonstrate the 

effectiveness and the success of this technique, more exactly, we have solved 

different first , second , third  and fourth of nonlinearity equation to explain the 

efficiency of this method to get the general solution for high order nonlinearity. It 

noted that the tool found the solutions without any discretization or restrictive 

assumptions. The scheme described in this paper is expected to be further employee 

to solve most of the nonlinear problems in science.  
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