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NUMERICAL APPROXIMATION OF HUNTER-SAXTON

EQUATION BY AN EFFICIENT ACCURATE APPROACH ON

LONG TIME DOMAINS

Mohammad Izadi1

This paper aimed to propose a combined effective technique for obtaining
an approximate solution to the Hunter-Saxton equation arising in the modelling of
the direct field of a nematic liquid crystal. The time-marching algorithm is based
on the linearized Taylor expansion series while a collocation method based on novel
Bessel polynomials is utilized for the space variable. The main advantage of this
method is that, in each time step, it converts the problem into a fundamental
matrix equation so that the computation is effective and straightforward. Through
numerical simulations, the efficiency of the combined scheme is compared with
exact solutions as well as existing available numerical models. The results of
comparisons indicate that the combined method developed by a large time step and
over a large time domain is an efficient approach.

Keywords: Hunter-Saxton equation, Bessel functions, Collocation points, Tay-
lor expansion.

MSC2020: 26A33 65L60 42C05 65L05.

1. Introduction

The main goal of this work is to propose an effective approximation algorithm
to solve the nonlinear Hunter-Saxton equation [6]#

wxt � wwxx �
1
2 w

2
x � 0

w|t�0 � w0pxq,
(1)

subjected to the boundary condition [3]

lim
xÑ8

wpx, tq � 0. (2)

In addition, enforcing the boundary condition wpx, tq Ñ 0 as t Ñ 8 and using the
separable solution approach give rise to a class of solutions with algebraic decay [3]

wpx, tq �
w0pxq

1� λt
, (3)

where w0pxq satisfies an appropriate second-order ordinary differential equation and
λ ¡ 0. Historically, the origin of Hunter-Saxton (HS) equation dates backed to
Hunter and Saxton who first suggested it as a simplified model for stuying a nematic
liquid crystal [6]. Over the past decade, various analytical techniques and compu-
tational procedures have been proposed to investigate the model problem (1)-(2).
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Among analytic methods, various kinds of separable as well as self-similar solu-
tions have been found in [3] to the equation. Rational approximate solutions using
the Padé approach are obtained in [1] for the generalized HS equation. On the
other hand, numerous finite difference methods with convergence results were pro-
posed and analyzed in [7]. The development of a local discontinuous Galerkin (DG)
method as well as a new dissipative DG method to solve the HS-type equations
were considered in [15, 16], see also [8, 9]. The combination of a finite difference
method in time and the technique of quasilinearization along with Haar wavelet
basis functions in space was used in [2]. The collocation method based on cubic
trigonometric B-spline and the collocation finite element approach based on quintic
B-spline basis functions were developed for solving the HS equation [5, 11]. A hy-
brid computational approach based on the generalized Chebyshev polynomials along
with quasilinearization technique was applied in [14]. In addition, two H1-preserving
Galerkin methods were presented for the HS equation in [13].

In this research work, the chief aim is to devise a new hybrid approximation
technique for the nonlinear HS equation. Due to the fact that the HS equation is
a time-dependent problem, developing an accurate algorithm for the time advance-
ment is of interest. For this purpose, the Taylor approach with second-order accuracy
is utilized. Hence, in each time level, we employ the novel Bessel functions in con-
junction with collocation points to approximate the solution with respect to space
variable. In fact, the Bessel polynomial of order l is defined explicitly as [12, 4, 10]

Blpxq �
ļ

k�0

1

k!

pl � kq!

pl � kq!

�x
2

	k
, l � 0, 1, . . . . (4)

The main benefits of these polynomials can be summarized as follows. First, all
the coefficients of these polynomials are positive integers. The second fact is about
the strictly totally positiveness of any collocation matrix of these polynomials at
positive points, which has recently been proved in [4].

2. Time discretization: Taylor approach

Assuming that T ¡ 0 is a given final time. To discretize the Hunter-Saxton
equation in time, we partition r0, T s into M uniform subintervals with grid points
t0 � 0   t1 � ∆t   . . .   tM � M∆t � T and ∆t � tn � tn�1 is the time step.
For obtaining a higher-order approximation in time, the idea of Taylor expansion is
employed for vnt � vpx, tnq to get

vnt �
vn�1 � vn

∆t
�

∆t

2
vntt �Op∆t2q. (5)

Using v � wx in (5) we obtain

wn
xt �

wn�1
x � wn

x

∆t
�

∆t

2
wn
xtt �Op∆t2q. (6)

Differentiation of both sides (1) with respect to time yields

wn
xtt � �pwnwn

xx �
1

2
pwn

xq
2qt � �wn

t w
n
xx � wn pwn

t qxx � wn
x pw

n
t qx.
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Replacing the first order derivatives wn
t by the aid of forward difference approxima-

tion pwn�1 � wnq{∆t, we may write wn
xtt as

∆t wn
xtt � 2wnwn

xx � wn
xxw

n�1 � wnwn�1
xx � pwn

xq
2 � wn

x w
n�1
x . (7)

Next, we insert (7) into (6) and then equating to wn
xt � �wnwn

xx �
1
2 pw

n
xq

2. After
rearranging the terms, the following time discretized equation for (1) is obtained

∆t wn
xxw

n�1 � p2�∆t wn
xqw

n�1
x �∆t wnwn�1

xx � 2wn
x , n � 0, 1, . . . . (8)

According to (1), the initial condition becomes w0 � w0pxq. Furthermore, the
boundary conditions, which obtained from (3) at x � 0, 1 are expressed as

wn�1p0q � bn�1
0 :�

w0p0q

1� λtn�1
, wn�1p1q � bn�1

1 :�
w0p1q

1� λtn�1
, n � 0, 1, . . . . (9)

Similarly, we may impose the following initial conditions

wn�1p0q � bn�1
0 :�

w0p0q

1� λtn�1
,

d

dx
wn�1p0q � bn�1

1 :�
w10p0q

1� λtn�1
, n � 0, 1, . . . .

(10)

3. Bessel functions: Basic matrix relations

After discretizing the Hunter-Saxton equation in time by using (8), our next
aim is to approximate the solution in space variable. For this purpose, we approx-
imate wn�1 in terms of Blpxq. Obviously, for n � 0 the value w0 is known from
the initial condition w0pxq. Assuming that the approximate solution Wn,N pxq of
wn is at hand in the time level tn, we seek Wn�1,N pxq at the next time level tn�1,
n � 0, 1, . . . ,M in the form

Wn�1,N pxq �
Ņ

l�0

al,n Blpxq, x P r0, 1s, (11)

where the unknown coefficients al,n, l � 0, 1, . . . , N to be determined. We can
rewrite the finite series (11) in a matrix form compactly as

Wn�1,N pxq � BBBN pxqAAAn,N , (12)

where the unknown vector AAAn,N and known vector BBBN pxq are defined as

AAAn,N � ra0,n a1,n . . . an,N s
T , BBBN pxq � rB0pxq B1pxq . . . BN pxqs .

Moreover, we can write BBBN pxq in the matrix representation as follows

BBBN pxq �XXXN pxqDDD
T , (13)

where

XXXN pxq �
�
1 x x2 . . . xN

�
,
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and the lower triangular matrix DDD of size pN � 1q � pN � 1q takes the form

DDD �

��������������������

1 0 0 . . . 0 0

1 1 0 . . . 0 0

1 3 3 . . . 0 0

...
...

. . .
. . .

. . .
...

1
2�1N !

pN � 2q! 1!

2�2 pN � 1q!

pN � 3q! 2!
. . .

21�N p2N � 2q!

0! pN � 1q!
0

1
2�1 pN � 1q!

pN � 1q! 1!

2�2 pN � 2q!

pN � 2q! 2!
. . .

21�N p2N � 1q!

1! pN � 1q!

2�N p2Nq!

0!N !

��������������������

.

On the other hand, an easy calculation shows that the following relationship between
XXXN pxq and its first derivative holds

d

dx
XXXN pxq �XXXN pxqMMM

T , MMMT �

�������
0 1 0 . . . 0
0 0 2 . . . 0
...

...
. . .

...
...

0 0 0
. . . N

0 0 0 . . . 0

�������
pN�1q�pN�1q

. (14)

Ultimately, to obtaining an approximate solution of the form (11) for the
solution of equation (8), the following collocation points are used on 0 ¤ x ¤ 1,

xi �
i

N
, i � 0, 1, . . . , N. (15)

4. Taylor-Bessel collocation method

Now, we are able to complete the process of finding an approximate solution of
the form (11) for the discretized model (8). To this end, we represent the unknown
wn�1, wn�1

x , and wn�1
xx in (8) in the matrix representation forms and then use the

collocation points (15) to find the unknown coefficients in (11).
To proceed, we combine the relation (12) and (13) to express (11) in the matrix

form

Wn�1,N pxq �XXXN pxqDDD
T AAAn,N . (16)

With the help of collocation points (15) and replacing them into the relation (16),
we get

WWWn�1 � YYY DDDT AAAn,N , WWWn�1 �

�����
Wn�1,N px0q
Wn�1,N px1q

...
Wn�1,N pxN q

����� , YYY �

�����
XXXN px0q
XXXN px1q

...
XXXN pxN q

����� , (17)
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With the aid of relations (16) and (14) we can represent the first and second-
order derivatives involved in (8) in the matrix forms#

wn�1
x �W

p1q
n�1,N pxq �XXXN pxqMMM

T DDDT AAAn,N ,

wn�1
xx �W

p2q
n�1,N pxq �XXXN pxq pMMM

T q2DDDT AAAn,N .
(18)

Analogously, by exploiting the collocation points, the first and second derivatives
in (18) can be expressed as

9WWWn�1 � YYY MMMT DDDT AAAn,N , :WWWn�1 � YYY pMMMT q2DDDT AAAn,N , (19)

where

9WWWn�1 �

������
W
p1q
n�1,N px0q

W
p1q
n�1,N px1q

...

W
p1q
n�1,N pxN q

������ , :WWWn�1 �

������
W
p2q
n�1,N px0q

W
p2q
n�1,N px1q

...

W
p2q
n�1,N pxN q

������ .
According to (8), we introduce

sn,0pxq � ∆t wn
xx, sn,1pxq � 2�∆t wn

x , sn,2pxq � ∆t wn, fnpxq � 2wn
x .

Utilizing the approximations Wn�1,N pxq,W
p1q
n�1,N pxq,W

p2q
n�1,N pxq we may rewrite (8)

as

sn,2pxqW
p2q
n�1,N pxq � sn,1pxqW

p1q
n�1,N pxq � sn,0pxqWn�1,N pxq � fnpxq, 0 ¤ x ¤ 1.

(20)
By substituting the collocation points into (20) to get the system

SSSn,2
:WWWn�1 �SSSn,1

9WWWn�1 �SSSn,0WWWn�1 � FFFn. (21)

In (21), the matrices SSSn,l, and the vector FFFn take the forms

SSSn,l �

�����
sn,lpx0q 0 . . . 0

0 sn,lpx1q . . . 0
...

...
. . .

...
0 0 . . . sn,lpxN q

�����
pN�1q�pN�1q

, FFFn �

�����
fnpx0q
fnpx1q

...
fnpxN q

�����
pN�1q�1

,

for l � 0, 1, 2. Let us put the relations (17) and (19) into (21). This yields the
fundamental matrix equation

UUUnAAAn,N � FFFn, or rUUUn;FFFns, (22)

where

UUUn :�
 
SSSn,2YYY pMMMT q2 �SSSn,1YYY MMM

T �SSSn,0YYY
(
DDDT .

Clearly, the fundamental matrix equation (22) is a set of pN � 1q linear equations
in terms of pN � 1q unknown coefficients a0,n, a1,n, . . . , aN,n to be found.

In order to implement the boundary conditions (9), we must also convert
them into a matrix form. Based on the representation (16), these conditions i.e.,
Wn�1,N p0q � bn�1

0 and Wn�1,N p1q � bn�1
1 can be expressed in the matrix notationssUUUn,0AAAn,N � bn�1

0 , sUUUn,0 :�XXXN p0qDDD
T � rū0,0 ū0,1 . . . ū0,N s,sUUUn,1AAAn,N � bn�1

1 , sUUUn,1 :�XXXN p1qDDD
T � rū1,0 ū1,1 . . . ū1,N s.
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In the case of the initial conditions (10), we need to replace the vector sUUUn,1 with
XXXN p0qMMM

T DDDT . Next, we replace the first and last rows of the augmented matrix
rUUUn;FFFns by the vectors rsUUUn,0; bn�1

0 s and rsUUUn,1; bn�1
1 s. Thus, the following modified

linear system of equations is obtained

�sUUUn; sFFFn

�
�

���������

ū0,0 ū0,1 ū0,2 ū0,3 . . . ū0,N ; bn�1
0

u1,0 u1,1 u1,2 u1,3 . . . u1,N ; fnpx1q
u2,0 u2,1 u2,2 u2,3 . . . u2,N ; fnpx2q
...

...
...

. . .
...

... ;
...

uN�1,0 uN�1,1 uN�1,2 uN�1,3 . . . uN�1,N ; fnpxN�1q
ū1,0 ū1,1 ū1,2 ū1,3 . . . ū1,N ; bn�1

1

���������
.

(23)
Now, by solving the above linear system we are able to obtain the unknown Bessel
coefficients in (16).

5. Numerical experiments

Our aim is to demonstrate the advantages of the proposed combined Taylor
and Bessel-collocation method by simulating a test problem for the nonlinear initial
and boundary value problem (1)-(3). The numerical models and calculations are ver-
ified through a comparison with existing computational schemes and experimental
measurements. We use MATLAB 2017a for simulation analysis.

We consider w0pxq � 2x and λ � 1 in (3) to get following exact solution [2,
14, 5, 11]

wpx, tq �
2x

1� t
.

We first consider ∆t � 1, T � 10, and then looking for the approximate solutions
in the form Wn�1,N pxq �

°N
l�0 al,n Blpxq for n � 0, 1, . . . , 10. Using the proposed

method with N � 1, the following approximative solutions for 0 ¤ x ¤ 1 are
obtained

W1,1pxq � 1.0x, W2,1pxq � 0.66666666666666666667x,
W3,1pxq � 0.5x, W4,1pxq � 0.4x,
W5,1pxq � 0.33333333333333333333x, W6,1pxq � 0.28571428571428571429x,
W7,1pxq � 0.25x, W8,1pxq � 0.22222222222222222222x,
W9,1pxq � 0.2x, W10,1pxq � 0.18181818181818181818x,

which are well matched to the exact solutions at t � 1, 2, . . . , 10 respectively. Graphs
of approximation solutions Wn�1,2pxq for n � 0, 1, . . . , 9 using N � 2 are visualized
in Fig. 1. In order to validate our results, we make a comparison in the next ex-
periments. Table 1 shows the numerical solutions obtained by the proposed scheme
evaluated at t � 0.1 and various x P r0, 1s. Note the same results are obtained with
either N � 1, 2 or N � 3. The corresponding absolute errors are also reported in
Table 1. Furthermore, analogue results of the previously well-established methods
are given in Table 1. These include the Haar wavelet quasilinearization method
(HWQM) [2], the cubic trigonometric B-spline (CTBS) collocation method [5], the
quintic B-spline (QBS) [11] collocation finite element approach, and a collocation
method based on bi-variate (generalized) fractional-order of the Chebyshev functions
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Figure 1. Comparison of numerical model results with the exact
solutions (left) and the corresponding absolute errors at t � s∆t, s �
1, 2, . . . , 10 (right) for ∆t � 1, N � 2, and T � 10.

(B-GFCF) [14]. It can be observed that our numerical results are in excellent align-
ment with the corresponding exact solutions while needing significantly less com-
putational efforts compared to other existing methods. We next consider T � 10,

Table 1. Results of the absolute errors for N � 1, 2, 3 and various
x P r0, 1s at time t � 0.1.

Present pN � 1, 2, 3q HWQA [2] CTBS [5] QBS [11] B-GFCF [14]

x
128 Numerical A.E. 256 nodes 128 nodes 128 nodes 225 nodes

1 0.014204545454545454545 0 1.0�11 5.087110�8 6.384110�6 7.75�16

3 0.042613636363636363636 0 5.0�11 5.841630�8 1.400953�6 2.93�15

5 0.071022727272727272727 0 7.0�11 7.164139�8 5.637072�7 1.45�15

7 0.099431818181818181818 0 1.0�10 6.602419�8 4.695398�6 1.10�14

9 0.12784090909090909091 0 1.0�10 6.333948�8 5.169489�6 1.82�14

59 0.83806818181818181818 0 1.1�09 5.930189�8 3.997275�6 9.20�14

61 0.86647727272727272727 0 2.0�10 5.862473�8 3.415639�6 8.73�14

63 0.89488636363636363636 0 4.0�10 5.790172�8 2.199316�6 7.89�14

65 0.92329545454545454545 0 1.0�09 5.713122�8 1.356332�6 6.86�14

67 0.95170454545454545455 0 1.0�09 5.531186�8 4.494994�6 5.86�14

69 0.98011363636363636364 0 2.0�09 5.544210�8 4.728788�6 5.09�14

119 1.6903409090909090909 0 4.0�09 1.291484�8 1.341862�7 1.26�13

121 1.7187500000000000000 0 4.0�09 1.020638�8 5.446600�9 1.20�13

123 1.7471590909090909091 0 4.0�09 7.406883�9 1.386507�6 1.31�13

125 1.7755681818181818182 0 4.0�09 4.514845�9 2.113729�6 1.52�13

127 1.8039772727272727273 0 4.0�09 1.528773�9 1.522962�6 1.51�13

∆t � 0.05, and N � 2 for computations obtained over long-time periods. The snap-
shots of numerical solutions at different time instants t � s∆t, s � 1, 2, . . . , 200 are
shown in Fig. 2. The corresponding approximated solutions for t � ∆t and t � T
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are obtained as follows

W1,2pxq � 1.9047619047619047619x,

W200,2pxq � �8.5159� 10�108 x2 � 0.181818181818181818x� 1.4193� 10�109.
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Figure 2. Numerical solutions at different time instants t �
s∆t, s � 1, 2, . . . , 200 with ∆t � 0.05, T � 10, and N � 2.

In Table 2, we calculate the maximum absolute errors denotes by L8 as well
as the L2 error norms evaluated at the final time t � T via

L8 :� max
0¤x¤1

|wpx, T q �WM�1,N pxq|, L2 :�
�³1

0rwpx, T q �WM�1,N pxqs
2dx

N � 1

	 1
2
.

We use different N � 1, 2, . . . , 5 in Table 2. Also various final times T � 50, 100, 500,
and T � 1000 are utilized with the step size ∆t � 1. As seen in Table 2, the
achievement of excellent approximations to the exact solutions are possible using
only a few terms of Bessel polynomials.

Table 2. Comparison of L8 and L2 error norms for various N �
1, 2, . . . , 5 and ∆t � 1 on large time domain evaluated at the final
times t � T , with T � 50, 100, 500, 1000.

T � 50 T � 100 T � 500 T � 1000

N L8 L2 L8 L2 L8 L2 L8 L2

1 0 0 5.322�110 0 6.653�111 0 0 0

2 5.322�110 0 5.322�110 0 6.653�111 0 0 0

3 1.064�109 0 5.322�110 0 6.653�111 0 0 0

4 2.129�109 0 1.064�109 0 1.331�110 0 9.980�111 0

5 1.064�109 0 1.064�109 0 1.331�110 0 6.653�111 0
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Finally, the results presented in Table 2 indicate that the corresponding ap-
proximated solutions for N � 2, ∆t � 1, and T � 50, 100, 500, 1000 are

W50,2pxq � 1.06448996000203768� 10�109 x2 � 0.039215686274509803922x,

W100,2pxq � �5.3224498000101883999� 10�110 x2 � 0.01980198019801980198x,

W500,2pxq � 0.0039920159680638722555x,

W1000,2pxq � 0.001998001998001998002x.

The exact solutions for these values of T are respectively

wpx, 50q �
2x

51
, wpx, 100q �

2x

101
, wpx, 500q �

2x

501
, wpx, 1000q �

2x

1001
.

The exact solutions indicate that our developed combined approach gives highly con-
vincing accuracy level to simulate the HS equation on large time domains especially
under a large time step.

6. Conclusions

A practical matrix approach based on novel Bessel polynomials was presented
to solve the Hunter-Saxton equation. For the time discretization, the popular Tay-
lor expansion method with second-order accuracy was used. Hence, a collocation
approach based on Bessel polynomials is applied to approximate the space variable
in each time level. With the aid of the matrix representations of these polynomi-
als and the collocation points, the scheme transformed the model problem into a
system of algebraic linear equations. The efficiency of the proposed technique has
been assessed by means of numerical experiments. Comparisons with available well-
established numerical simulations and experimental measurements have also been
made. Based on the experiments, it was found that the numerical approximations
were in an excellent agreement, which demonstrated the reliable efficiency and the
great potential of the presented technique for the Hunter-Saxton equation even under
a large time step on long-time computations.
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