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STOCHASTIC OPTIMIZATION AND RISK PROBLEMS 

Dumitru POPESCU1, Catalin DIMON2, Alina PETRESCU-NITA3 

The paper presents a procedure for solving stochastic optimization problems 
encountered in industrial control applications in which it is considered that random 
disturbances act directly on the parameters of the criterion function and/or on the 
restrictions that define the admissible domain. The objective is to construct this 
problem, and to reformulate it by an equivalent deterministic problem. This problem 
is introduced as a risk problem and is solved using appropriate non-linear 
mathematical programming techniques. In many cases the solution of the stochastic 
optimization problem represents the optimal decision for the control level in 
industrial applications. 
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1. Introduction 

  The parametric optimization theory has been developed using the 
numerical means for solving linear or nonlinear mathematical programming 
problems. 
  Different numerical methods can be used for evaluating the solution of the 
standard linear or non-linear problem [1],[2],[3].  
  We consider the problem: 

( ){ }max f( )TI =

 ≤
 ≥

y c y

Ay b
y 0

, (1) 

where I(y) is the criterion function defined of the admissible domain admD , limited 
by the inequalities’ constraints in (1), nr nc×∈A R  ( nr nc≤ ) and nc∈c,b,y R . We 
should highlight that in (1) vector f(y) is nonlinear with respect to the y 
components. 
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  In many practical applications, the optimization problems are expressed in 
a stochastic manner. In this case, the parameters of the optimization criterion 
and/or the associated constraints functions depend on a random process, ω . Thus, 
the problem described in (1) becomes a stochastic nonlinear programming 
problem: 

( ) ( ){ }
( ) ( )

max f( )TI = ω

 ω ≤ ω

≥

y c y

A y b
y 0

 (2) 

  As an example, we can consider a pyrolysis reactor, an important 
petrochemical installation, which is usually optimized by a criterion function 
which maximizes the concentration of the main product, ethylene. The quality of 
the used raw material, gasoline, depends on a stochastic variable, which can 
modify strongly the operating point of the plant [4]. 
  In a thermo-energy installation, the efficient exploitation goal is to 
increase the energy transfer from the thermal agent to the product. The stochastic 
variable can be considered the quality of the thermal agent (which is expressed by 
two parameters: temperature and pressure), distributed by the provider which is, 
in this case, a thermal power plant. The thermal agent provides the heat exchanger 
with variable temperature and/or pressure, either due to the energy provider that 
does not deliver the agent to pre-specified parameters, or due to heat losses on the 
transport pipes. It is therefore necessary to maximize the heat transfer efficiency 
from the agent to the product in actual stochastic operating conditions. 
  It is known that a combustion process is described by an extremal 
characteristic that expresses the evolution of the temperature, depending on the air 
flow and the fuel flow. The extremal characteristics are parameterized by the used 
fuel flow values. A good control solution for the combustion process can ensure 
the correct fuel and air flow rate for optimal operation. At an industrial level, there 
is a random variable ω , that changes the position of the extremal point, namely 
the quality of the fuel, which is supplied at random calorific values. An efficient 
exploitation approach of the combustion process is thus obtained by solving a 
stochastic optimization problem [5]. 
  A typical example can also be considered the process of preheating a blast 
furnace which ensures the air heating in a supplying facility. This installation uses 
a fuel that is a random mixture of stochastic components: coke oven gas, blast 
furnace gas and methane. By solving a stochastic optimization problem for the 
combustion regime, we can optimize and reduce the consumption of methane, 
which is the most expensive component, and therefore the price of the product [6]. 
  Another significant example is associated with the combustion process of 
vehicles engine (Diesel engine), which can be controlled to reduce engine fuel 
consumption and pollution. An efficient solution for the combustion process is 
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achieved by properly proportioning the fuel and the air flow which can 
significantly improve engine performances. However, the Diesel fuel (e.g. normal, 
or premium) quality is a random variable, ω , and an optimal operation of the 
engine is guaranteed by solving a stochastic problem [5].  
  The last example and perhaps most illustrative one is inspired by the 
exploitation of a wind turbine or photovoltaic panels. The objective is to 
maximize the quantity of electrical generated energy, from renewable sources, 
which depends on environmental parameters: speed and direction of the wind, 
solar radiation and temperature; the process of electrical generation is by its 
nature, a random process [7].  
  If we relate to photovoltaic generators, the functional characteristic that 
expresses the dependence of the generated power on the voltage at the generator 
terminals has an extreme representation with a maximum power point (MPP). 
This representation depends on a random variable, considered as the parameter ω , 
which represents the solar radiation. The problem can be solved with the help of 
stochastic programming [8]. 
  In all these cases, the effect of the perturbation ω  will lead to random 
variations of the criterion function’s parameters and/or of the admissible domain 

admD , limited by constraints. The idea is to adapt the deterministic optimization 
algorithms to this stochastic case, or to find a deterministic equivalent 
representation for the stochastic problem. 
  In the first approach, the gradient algorithm was adapted to a stochastic 
gradient algorithm. The promoters of studies on the techniques of the stochastic 
gradient are mainly H. Robbins and D. Sigmund [9], J. Kieffer and J. Wolfowitz 
[10].  Based on this work, other authors have studied in some cases the 
performance of the stochastic gradient algorithm in terms of efficiency and 
asymptotic convergence.  
  From the more recent studies we can quote those of B.T. Polyak on the 
convergence and convergence speed for this type of algorithm [11]. In this case, 
B.T. Polyak has obtained an important result: the introduction of the stochastic 
gradient algorithm of the averaging technique which guaranteed a certain sense of 
optimality. 

Taking into consideration that for the first approach there are known 
results in the specialized literature and that deterministic techniques for 
mathematical programming are available, the paper is focused on the second 
option consisting in the construction of a deterministic problem equivalent to the 
stochastic optimization problem. 

After a short introduction, to illustrate that industrial applications demand 
to solve stochastic optimization problems, in the second section a non-linear 
stochastic optimization problem is detailed; depending on the requirements that 
need to be fulfilled by the solution we have either a totally or a partially 
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admissible set of solutions. Section 3 formulates the risk problem and section 4 
gives a numerical example to support the validity of the presented solution. In the 
last section, some concluding remarks are given. 

2. Stochastic optimization problem 

Let us consider the stochastic optimization problem given by (2), where 
the triplet ( ) ( ) ( ){ }, ,ω ω ωA b c  is a set of stochastic variables defined for each 
elementary event ω∈Ω  (Ω  being the events’ space). Then (2) is a non-linear 
stochastic program.  

For all the values admD∈y , where admD  is the admissible domain of the 
variables in (2), the expression: 

( ) ( ){ }max f( )
admD

I
∈

= ωT

y
y c y , (3) 

has lost the optimization sense, since ( )I y  is a random variable which is not 
submitted to the order relation. A similar consideration is valid for the constraints 
inequalities which define the domain admD . 

Suppose that for each ω∈Ω  we can solve the problem given in (2), for a ω  
set, with inequalities constraints. Let ( )* ωy  be the optimal solution and 

( ) ( )* * *) f( )T(y c yI ω = ω  the optimal value of the criterion corresponding function 
( )I y . Since ( )* ωy  and ( )* * )((yI ω  are random variables, it results that ( )* * )(yI ω  

cannot be calculated in an exact manner, but it can be expressed in statistical 
terms. In order to find the solution to the problem (3), we consider the case where 
this problem can be reformulated in a deterministic point of view. 

If we have the repartition function F , the calculation of the probability P 
for which ( )jI y  belongs to the given interval [ ],a b  is easily made. It is obvious 
that: 

( ) ( ) ( )( ) F FyP a I b b a≤ ≤ = − , (4) 
In the case where we do not have the possibility to calculate F  in an 

exact or even approximate manner, the probability P is expressed using the 
Laplace function: 

( )
2

2

0

1
2

x t

L x e dt
−

=
π ∫ , (5) 

 2.1. Stochastic optimization with totally admissible solutions 
We specified that if vector c  is a random vector, then the non-linear 

problem (3) has no sense in terms of optimization. This remark is also valid for 
representation (3) in the case of the triplet ( ), ,A b c  being a random variable. In 
order to determine an optimal decision admD∗ ∈y , it is possible to build an 
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optimization problem in a deterministic sense, with totally admissible solutions, 
when ∗y  verifies all the realizations of the random variables ( ),A b,c . 

We consider the non-linear stochastic problem (3) with the associated 
triplet ( ),A b,c  as random variables: 

( ){ }max ( ) f( )

)

TI = ω

 ω ≤ ω
 ≥

y c y

A( )y b(
y 0

, (6) 

and notice that, for each ω∈Ω , the inequalities: 
( ) ( )

0

 ω ≤ ω


≥

A y b
y

, (7) 

give the following convex set: 
( ) ( ) ( ){ }, 0D ω = ω ≤ ω ≥y A y b y , (8) 

We define the global convex set through the following relation: 
( )D D

ω∈Ω

= ω , (9) 

If ensemble D  is non-empty, we name it the set of totally admissible solutions to 
problem (2). The domain D  can be easily determined with ( ),A b  as discrete 
random variables, only taking the values { } 1,

,i i i l∈
A b  [12]. 

In this case: 

{ }
1

| , 0
l

i i
i

D
=

= ≤ ≥y A y b y , (10) 

and the problem has totally admissible solutions corresponding to some types of 
applications [13]. 

2.2. Stochastic optimization with partially admissible solutions 
Sometimes, the requirement the totally admissible solution *y  must fulfill 

is difficult to achieve. In this case, a richer set than the domain D  must be 
employed. 

Let us consider in this case the general problem below: 
( ){ }max T


 = =
 ≥

c f (y)

Ay b
Cy d
y 0

, (11) 

where (A, b, c) is a random triplet and (C, d) are constants. 
We define: 

{ }1 , 0D = = ≥y Cy d y , (12) 
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the set of all the solutions that verify the deterministic constraints. For each 1D∈y , 
the constraints violation is tested through the expression: 

= −Be b Ay , (13) 
The elements of matrix B  are set depending on the way one would like to have a 
correspondence in (13). For example, B  can be expressed by the unit matrix I , in 
order to have the natural correspondence. 

The set: 
{ }1 | , ( ) 0, ( ) ( ) ( )D y D= ∈ ∀ω∈Ω ∃ ω ≥ ω = ω − ωy Be by A , (14) 

gathers all the partially admissible solutions. 
Let ( ) ( ),Ay b eM M=  be the function expressing the losses associated to the 

original problem (as a result of constraints violation). This function will be 
defined and evaluated with the help of vector e  from equation (13). 

Problem (13) with losses, is formulated as follows: 
( ) ( ){ }

1

min ( )
y

c y Ay, bT

D
f M

∈
+ , (15) 

The most usual representations of ( ),Ay bM  are: 
- in linear form, 

( ) ( )TM =Ay,b k b - Ay , (16) 
where k  is a vector of constant weights; in this case, problem (15) is equivalent 
to: 

( ){ }
1

min ( )
y

c y k b - AyT T

D
f

∈
+ , (17) 

- of first order, 
 

( ) ( ) ( )1
TM = +Ay,b k b - Ay A b - Ay , (18) 

where A  is a constant matrix a priori chosen; in this case, problem (15) is 
equivalent to: 

( ) ( ){ }
1

1min ( )
y

c y k b - Ay A b - AyT T

D
f

∈
+ + , (19) 

- of second order, 
( ) ( ) ( ) 2

1
TL = +Ay,b k b - Ay A b - Ay , (20) 

and problem (15) is then equivalent to: 
( ) ( ){ }

1

2

1min ( )
y

c y k b - Ay A b - AyT T

D
f

∈
+ + , (21) 

This type of problems generally leads to convex nonlinear programs, 
which are approached by the corresponding methods in order to provide the ∗y  
solutions [14]. 
 In some cases, the loss function is non-convex, and the optimization 
problem becomes difficult to solve. In this situation, solutions that have an 
imposed probability and that violate the constraints without losses are considered. 
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A minimal limit iα  of the probability is set, so that the constraint 1,i nr∈  can be 
verified for 1jy D∈ : 

1

nc

ij j i i
j

P a y b
=

 
≤ α 


>


∑ , (22) 

The set of the admissible solutions is defined below as: 

1
1

, 1,y
nc

a ij j i i
j

D D P a y b i nr
=

   = ∈ ≤ ≥ α ∀ ∈  
   
∑ , (23) 

To remain in the lines of representation (11), this problem should be 
expressed like the one with totally admissible solutions (see section 2.1), but for 

aD  instead of admD . The domain aD  is easy to determine for a constant matrix A  
[13]. 

 

3. The risk problems 

  We can consider the following relation: 

( )( ){ }max f( )
adm

T

D
E

∈
ω

y
c y , (24) 

where E is the mean (average) operator. For a random vector ( )c ω  with a normal 
distribution, we have:  

( )
( ) ( )

i i

ij i i j j

m E c

v E c m c m

 =
  = − −  

, (25) 

and problem (24) becomes: 

{ }max ( )
y

y m f(y)T
aD

I
∈

= , (26) 

where m is a vector of im  components. 

  The solution to (26), i.e. *
a admD∈y , is the solution of the average 

representation, respectively of problem (24) and it is calculated, as a deterministic 
problem, by means of an exact optimization method [1].  
  Based on the result from (26) associated with the problem given by (2), we 
propose the following problem: 

{ }
( )0

min

f( )T

adm

P I

D

 α

 < = α


∈

c y

y

, (27) 
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in order to minimize α , where α  is  the probability P that the criterion function 
( ) ( )y yTI c f=  takes a smaller  value than an imposed value 0I  ( 0I  is a value 

inferior to the value *( )aI y ). In this case we have: 

( )( ) *
0 0( ) , ( )T

aP I I with I I y= ω ≤ ≤y c f(y)  (28) 
The α  probability corresponds to the risk of not obtaining values of the function 

( )I y  smaller than 0I . 

  Problem (28) is usually considered as a problem of minimal risk and now, 
we build the minimal risk problem, in the following representation: 

{ } ( ){ } 0
0

0

min min min )

min

TT T
T

T T

T

T

I
P I P

I
L

  −  α = < = <     
  −  =      

m f(y)c f (y)-m f(y)c f(y)
y Vy y Vy

m f(y)

y Vy

 (29) 

  In equation (29), L  is the Laplace function, mT  the vector of components 
( )i im E c=  and V  is the auto covariance matrix with elements 
( )( )ij i i j jv E c m c m = − −  . 

  Since the Laplace function L is increasing and V  is a positive definite 
matrix, the problem (29) is reduced to the new optimization problem for the 
argument of L: 

0min
y

-m f(y)

y Vy

T

TD

I
∈

  
 
  

, (30) 

  In any case, our intent is to solve the stochastic optimization problem with 
an imposed risk 0α , and let us consider the problem: 

max ( ) ( )f( )
adm

T

y D
I

∈
= ωy c y , (31) 

and 0 0{ ( ) ( ) f( ) }y c yTP I I= ω < = α , is now the imposed probability P that the criterion 
function ( ) f( )TI c=y y  takes a smaller value than a value 0I , inferior to the value 

*( )aI y . 

  Using the results from (29) and (30), we have: 

( ) 0
0 0 )

TT T
T

T T

I
P I P

 − α = < = <
 
 

m f(y)c f(y)-m f(y)c y
y Vy y Vy

, (32) 

  For 0α  imposed risk and L  a bijective function, it results: 
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( ) 1
0 0L ( )

f f
a a

T

I I −= β = α
*y - (y )

(y)V (y)
, (33) 

  The equivalent deterministic problem for (33), will be: 
*

0max{ ( ) ( ) f ( ) f( )}y y y V yT
a aI I= +β , (34) 

The 0α  probability corresponds to the  imposed risk of not obtaining the values of 
the function ( )I y  smaller than the 0I  value. The problem (34) is usually considered 
as a problem of imposed risk. 

4. Numerical example 

Over the last decade, there have been major concerns in reorienting 
policies to produce renewable energy, from solar and wind power sources. The 
results are quite promising, but the production from renewable sources is still 
costly and strongly dependent on environmental parameters. In this context, 
automated control tools can provide effective solutions for the exploitation of 
renewable energy sources. 

Let us consider the characteristic of a photovoltaic generator, that 
expresses the dependence of the electrical power by the generated current and 
voltage, ( , )P f U I= , illustrated in Figure 1. In this case the random variable ω  is 
the solar radiation. Based on the instances of ω , a set of corresponding functional 
characteristics is generated. 

 
Fig. 1. 3D characteristic, power as a function of voltage and current 

 
We consider a region on the side of the previous characteristic, in which 

the dependence ( , )P f U I=  can be approximated by a linearized criterion 
function and the optimization problem becomes linear stochastic.  



194                Dumitru Popescu, Catalin Dimon, Alina Petrescu-Nita 

By using the previous considerations, the stochastic optimization problem 
can be constructed: 

( ){ }max ( )TI = ω

 ≤
 ≥

y c y

Ay b
y 0

 (35) 

In relation (35), the criterion function I(y) represents the electrical 
generated power; y is the vector of the generated electric variables: voltage(y1) 
and current(y2), and the solar radiation is the stochastic variable ω . For this 
problem, we can find a deterministic equivalent, if we accept the hypotheses: 

• the random vector ( )c ω  has a normal non-degenerated distribution with, 
( )
( ) ( )

i i

ij i i j j

m E c

v E c m c m

 =
  = − −  

, (36) 

• the optimization problem, 

{ }max ( ) T
aD

I
∈

=
y

y m y , (37) 

with mT  of components ( )i im E c=  is a deterministic vector. 

The deterministic problem (37) admits the solution *ya  and the maximum 
value of the criterion function will be * *( ) T

a a aI =y m y , for which we choose 
*

0 )(ya aI I< . 

For the initial problem (35), we computed, using ω  instantiations, the set 
(A, b): 

1 1
3 2

 
=  − 

A , 2
3

 
=  − 

b  (38) 

The parameters  vector  c  is a random vector with a normal repartition of 
an average value [ ]2 3=Tm , and the auto covariance matrix V , based on 
relations (36), it results: 

1 1
1 2
 

=  
 

V  (39) 

By using an adequate method, [14],[15], the initial problem (37) admits 
the following optimal solution: 

1

2

1.5

1
a

a

y

y

∗

∗

 =


=
, * *( ) 6.1a a aI = =Ty m y  (40) 

We propose 0 1.25I = , a value which respects the condition 
*

0(y ) 1.25a aI I≥ = , and consider the equivalent problem with (34) according to (29): 
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0min
T

T

I  −   
   
 ≤
 ≥

m y

y Vy

Ay b
y 0

 (41) 

Relation (43), becomes: 

[ ]
1 2

1
1 2

2

1 2

1 2

1 2

2 3 1,25
1 1max
1 2

2
3 2 3
, 0

y y
y

y y
y

y y
y y

y y

 + − 
              
 + ≤
− − ≤
 ≥

 (42) 

The solution of this problem, evaluated by means of the corresponding 
gradient method [14],[15], is: 

1

2

0.556
1.455

y
y

∗

∗

 =


=
, (43) 

where 1y∗  and 2y∗  are the voltage and the current values in the optimal exploitation 
point. The minimal risk α̂  was calculated from relation (29): 

[ ]

1.25 2 0.556 3 1.455
ˆ 1 1 0.556 0.045

0.556 1.455
1 2 1.455

L
− ⋅ − ⋅ 

 
α = =    

        

 (44) 

The value α̂= 0.045  represents the minimal risk and ˆ1 0.955− α = , represents 
respectively, the level of confidence for the criterion function value * )(yI 5.477= , 
which is superior to the imposed value, 0 1.25I = . For computational ease, in this 
numerical example, normalized values are used. 

5. Conclusions 

The paper presents a methodology for the mathematical solution of 
stochastic optimization problems encountered in industrial applications, where 
random disturbances act directly on the parameters of the criterion function and/or 
on the constrains.  

We proposed to solve a stochastic optimization problem by reformulating 
it as an equivalent nonlinear optimization deterministic problem. This problem is 
considered as a minimal risk problem or as an imposed risk problem, and it is 
solved by appropriate non-linear mathematical programming techniques. 

In order to validate the proposed mathematical solution, a calculus on an 
illustrative numerical example, i.e. solar generated renewable energy, for a linear 
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stochastic optimization problem is presented. This example can be adapted for 
linear/nonlinear stochastic problems in order to efficiently manage the optimal 
decisions in modern control of industrial applications. 
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