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TRANSMUTED UNIT RAYLEIGH QUANTILE REGRESSION
MODEL: ALTERNATIVE TO BETA AND KUMARASWAMY

QUANTILE REGRESSION MODELS

Mustafa Ç. Korkmaz1, Christophe Chesneau2, Zehra Sedef Korkmaz3

In this paper, a new alternative unit distribution is presented.
It consists of applying the quadratic transmutation scheme with the unit
Rayleigh distribution. The quantile regression model of the proposed dis-
tribution is developed, as well as the maximum likelihood estimation of the
unknown regression model parameters. We consider a real data application
that links a measure of the educational attainment of OECD (Organization
for Economic Co-operation and Development) countries with some of their
Better Life Index such as life satisfaction, homicide rate, and voter turnout.
It is shown that the proposed quantile regression model provides a better fit
than well-known regression models in the literature when the unit response
variable has skewed observations and outliers.
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1. Introduction

The beta distribution is the first probability distribution that comes to
mind for the modeling of the percentage and proportions. In certain situations,
however, it is not precise enough to capture all of the information conveyed
by the data. For this reason, using an appropriate transformation of the ran-
dom variables (rvs), some alternative unit distributions have been proposed
in the literature. The most popular are the Kumaraswamy (Kw) (see [15]),
log-Lindley (see [10]), unit-Weibull (see [18]), unit generalized half normal (see
[14]), log-weighted exponential (see [1]) and log-extended exponential geomet-
ric (LEEG) (see [11]) distributions.

On the other hand, when the response variable is observed on the unit
interval, the beta regression model by [7] is generally applied to explain the
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mean response as a function of some values of the covariates. If the response
variable has outliers, quantile regression modeling is preferable to classical
regression modeling because the mean is sensitive to outliers and is delicately
affected by biased data (see [13]). In these cases, the mean is not an appropriate
choice for the measure of central tendency. Using a median-based method is
more illustrative and robust than the mean-based method. The fundamentals
of the unit quantile response regression modeling can be found in [4, 19, 11].

The aim of the paper is to provide a new alternative unit distribution with
its quantile regression modeling for the percentages and proportions. The pro-
posed distribution is based on the unit Rayleigh distribution by [3] combined
with the quadratic transmutation scheme by [22]. Among its advantages, its
cumulative distribution function (cdf) and probability density function (pdf)
can be easily re-parameterized in terms of its quantile function (qf). It is also
showing its modeling capacity with an application of interest, which relates ed-
ucational attainment measurements of the OECD countries with some Better
Life Index. On this topic, Reference [1] has related the educational attainment
values of the OECD countries with Labor market insecurity and homicide rate
variables via the mean response regression based on the log-weighted exponen-
tial distribution. It concluded that the Labor market insecurity and homicide
rate affect educational attainment negatively. In light of the above, we will
investigate whether the variables of life satisfaction, homicide rate, and voter
turnout belonging to the OECD countries affect educational attainment via
the median response regression based on the newly defined distribution.

The paper contains the following sections. Section 2 defines the new
distribution. The related quantile regression model, its parameters estimation
and its residual analysis are developed in Section 3. An actual data application
is illustrated in Section 4. Finally, the paper ends with the conclusion in
Section 5.

2. Transmuted unit Rayleigh distribution

Here, we present the transmuted unit Rayleigh distribution defined by
the quadratic transmutation of the unit Rayleigh distribution by [3]. That is,
its cdf and pdf are given as

F (x, α, β) = e−α(− log x)2(1 + β − βe−α(− log x)2)

and

f(x, α, β) = α
(− log x)

x
e−α(− log x)2(1 + β − 2βe−α(− log x)2), x ∈ (0, 1),

respectively, with the standard modifications when x 6∈ (0, 1), where α > 0 and
β ∈ [−1, 1]. We denote this distribution as TUR or TUR(α, β). From the prob-
abilistic point of view, the TUR distribution corresponds to the one of the rv
X defined by X = inf(X1, X2) with probability (1+β)/2 and X = sup(X1, X2)
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with probability (1− β)/2, where X1 and X2 denote two independent rvs fol-
lowing the unit Rayleigh distribution. Thus, the parameter β operates as a
flexible compromise between the two extreme order statistics of (X1, X2). In
some senses, it amplifies the modeling capabilities of the unit Rayleigh distri-
bution with moderate parametric complexity. This aspect will be illustrated
later with a re-parameterized version of the TUR distribution (see Figure 1).
In full generality, the benefits of using the quadratic transmutation scheme
to extend existing distributions can be found in the survey of [21], and the
references therein. Another interest of the TUR distribution is to have a man-
ageable qf. After some algebraic operations, it is obtained as

Q(u, α, β) = exp

−α−1/2

√√√√− log

(
1 + β −

√
(1 + β)2 − 4βu

2β

) , u ∈ (0, 1).

(1)
This expression will be at the center of our quantile regression analysis.

3. An alternative quantile regression model

3.1. Motivation

It is well-known that the response variable is explained as the mean
response modeling via certain values of the covariates according to classical
regression modeling. The response variable can be defined in the unit inter-
val. When this is valid, there is no doubt that the beta regression model of
[7] can be used first for the modeling of the unit mean response. We note
that some alternative unit regression models to beta regression modeling have
been proposed by some researchers. See, for instance, [12, 5, 10, 16, 1, 2]. In
contrast, the classical regression modeling approach is easily affected by out-
liers or response variables with skewed distribution. Appropriate inferences
can not be obtained because the mean is disturbed by these situations pre-
cisely. Thus, robust methods are needed to relate the response variable to the
covariates. Quantile regression modeling is the right alternative approach to
classical regression modeling for the above issues (see [13]). In this way, the
response variable is explained as the quantile response. In particular, median
response modeling is preferred to classical regression modeling for obtaining
robust estimations. One can refer to [20, 4, 19, 11, 8] concerning the unit
median response regression modeling.

3.2. Proposed quantile regression model

This subsection aims to present an alternative quantile regression mod-
eling based on the TUR distribution. We thus use the qf specified in Equation
(1). In order to lighten the notations, let Υ(u, β) = [1+β−

√
(1 + β)2 − 4βu]/(2β).
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Then, µ = Q(u, α, β) entails that α = − log [Υ(u, β)] /(log µ)2. The re-
parameterized cdf and pdf of the quantile TUR distribution are given by

G(y, β, µ) = Υ(u, β)(
log y
log µ)

2 (
1 + β − βΥ(u, β)(

log y
log µ)

2)
(2)

and

g(y, β, µ) =
log [Υ(u, β)]

(log µ)2
log y

y
Υ(u, β)(

log y
log µ)

2 (
1 + β − 2βΥ(u, β)(

log y
log µ)

2)
, (3)

respectively, where y ∈ (0, 1), β ∈ [−1, 1] is the shape parameter, µ ∈ (0, 1)
is the quantile parameter, and u ∈ (0, 1) is known. We denote this re-
parameterized distribution as TURQ or TURQ(β, µ, u). For instance, when
u = 0.5 is taken, Equation (3) is reduced to the pdf of the median TURQ
distribution. Some possible shapes of the TURQ distribution are shown in
Figure 1. We see that these shapes can decrease and be unimodal with various
skewed forms.
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Figure 1. Some examples of the pdf shapes of the TURQ distribution.

We are now able to describe our new quantile regression model. First,
let Y1, Y2, . . . , Yn be n rvs such that Yi ∼ TURQ (β, µi, u) for i = 1, 2, . . . , n,
where µi and β are unknown parameters and u is known. Consider obser-
vations of these rvs denoted by y1, y2, . . . , yn. Then, the TURQ quantile re-
gression model is defined as g(µi) = xiθ

T , where θ = (θ0, θ1, . . . , θp)
T and

xi = (1, xi1, xi2, . . . , xip) are the unknown regression parameter vector and
known ith vector of the covariates, respectively. By definition, the link func-
tion g(x) aims to connect the covariates with the conditional quantile of the
response variable. Its choice depends on the support of the distribution. We
use the logit link function which is given by g(x) = logit(x) = log [x/(1− x)],
for i = 1, 2 . . . n, to connect covariates with the response variable, since the
TURQ distribution is defined on (0, 1). If u = 0.5 is taken, the covariates are
connected with the conditional median of the response variable.
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3.3. Estimation of the model parameters

In this subsection, we estimate the unknown parameters via the maxi-
mum likelihood estimation (MLE) method for the TURQ quantile regression
modeling. In this regard, based on the link function g(x), let Y1, Y2, . . . , Yn be
n independent rvs such that Yi ∼ TURQ (β, µi, u) for i = 1, 2 . . . , n, where

µi =
exiθ

T

1 + exiθ
T . (4)

For any known u, let Ψ =
(
β,θT

)T
be the unknown parameter vector. Then,

putting Equation (4) into Equation (3), the log-likelihood function of the
TURQ model is given by

` (Ψ) =n log [− log [Υ(u, β)]] +
n∑
i=1

log

[
− log yi
yi

]
− 2

n∑
i=1

log (log µi)

+
n∑
i=1

log

[
1 + β − 2βΥ(u, β)

(
log yi
log µi

)2
]

+ log (Υ(u, β))
n∑
i=1

(
log yi
log µi

)2

.

(5)

The normal equations, which are requested by the author when they are
needed, are obtained by routine procedure of the MLE method. Since they
contain nonlinear functions according to model parameters, the log-likelihood
function in Equation (5) can be maximized directly by software such as R,

S-Plus and Matlab. Let us denote by Ψ̂ =
(
β̂, θ̂

T
)T

the theoretical MLEs of

Ψ. Then, the asymptotic distribution behind (Ψ̂−Ψ) is multivariate normal
Np+1 (0, I−1 (Ψ)), where I (Ψ) is the expected information matrix. Practically,
the observed information matrix is used for the estimation of I (Ψ). Its ele-
ments can be found numerically by the software. Here, we use the maxLik
function of R software to maximize Equation (5). This function also gives
asymptotic standard errors numerically, which are obtained by the observed
information matrix.

3.4. Model validity

The residual analysis can be applied to check whether the regression
model is valid. In order to understand this, the randomized quantile residuals
can be discussed. The ith randomized quantile residual is defined by r̂i =

Φ−1
[
G(yi, β̂, µ̂i)

]
, for i = 1, . . . , n, where G(y, β, µ) is the cdf of the TURQ

distribution given by Equation (2), Φ−1(x) is the qf of the standard normal

distribution, and µ̂i is defined by Equation (4) with θ̂ instead of θ. If the
fitted model successfully processes the data set, the distribution of the random
quantile residuals should be distributed as a normal distribution with a mean
of 0 and a variance of 1. Further elements in this regard can be found in [6].
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4. Data analysis

In this section, a real data application is performed in order to see the
applicability and efficiency of the proposed quantile regression model. Three
competitor regression models are considered for comparing the fitting results.
They are the beta regression by [7] model as well as the Kw and LEEG quantile
regression models, by [20] and [11], respectively. For the TURQ, Kw and
LEEG regression models, the quantile level parameter u has been taken as 0.5.
In such a way, they are unit median response models.

The considered data set is obtained from OECD.Stat with link
https://stats.oecd.org/. It includes data and metadata for the OECD

countries and selected non-member economies. The OECD.Stat consists of
themes such as Agriculture and Fisheries, Demography, Education and Train-
ing, Finance, Health, Labor, and Social Protection and Well-being etc. Each
theme is divided into several topics. The used data set can be found in the in-
dicator of the Better Life Index in the Social Protection and Well-being theme
of the OECD.Stat. The reference year is 2017. It can be directly accessed via
https://stats.oecd.org/index.aspx?DataSetCode=BLI link. The aim of the ap-
plication is to relate the percentage of the educational attainment values of the
OECD countries (variable y) with the percentage of the voter turnout (variable
x1), homicide rate (variable x2), and life satisfaction (variable x3). Educational
attainment considers the number of adults aged 25 to 64 holding at least an
upper secondary degree over the population of the same age.

The regression model based on µi is given by

logit (µi) = θ0 + θ1xi1 + θ2xi2,+θ3xi3 i = 1, 2, . . . , 38,

where µi is the mean for the beta model whereas it denotes the median for the
LEEG, Kw and TURQ quantile regression models. Some summary statistics
of the response variable y and its box plot are given in Table 1 and Figure
2, respectively. From them, it is seen that the data are left skewed and five
outliers are detected for the unit response variable. For these reasons, relating
the unit response variable with covariates via the median quantile regression
will be more useful for inferences, since the mean is affected by skewed data
with the outliers precisely. Thus, it can be obtained as a more illustrative and
more robust inference than the mean response regression.

Table 1. Some summary statistics of the response variable y
Minimum Mean Median Maximum Variance Skewness Kurtosis n

0.3700 0.7724 0.8150 0.9500 0.0256 -1.2770 3.5361 38
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Figure 2. The box plot of the response variable y

We give the results of the regression analysis in Table 2. We see that
the TURQ regression model has lower values of the AIC (Akaike Information
Criterion) and BIC (Bayesian Information Criterion) statistics with upper log-

likelihood values (ˆ̀) than those of other regression models. Therefore, it can
be decided that the proposed regression model is the best among the consid-
ered regression models in terms of the best modeling ability. Further, for the
TURQ regression model, all the parameters of the covariates have been seen
as statistically significant at the level of 5%. The parameter θ3 positively af-
fected the median response while the parameters θ1 and θ2 negatively affected
the median response. All covariates have marginal effects, negative for voter
turnout and homicide rate, representing that an increase in voter turnout and
homicide rate decreases the median of the response variable, and positive for
life satisfaction, representing that an increase in life satisfaction increases the
median of the response variable. It is concluded that when life satisfaction
increases, the percentage of educational attainment increases, as expected. In
addition, when the homicide rate and voter turnout decrease, the percentage of
educational attainment also increases. The result of the voter turnout variable
may be surprising.

Table 2. The results of fitted regression models with the con-
sidered model selection criteria.

Parameters
Beta Kw LEEG TURQ

Estimate SE p-value Estimate SE p-value Estimate SE p-value Estimate SE p-value

θ0 0.9615 0.9685 0.3208 1.6247 1.1740 0.1664 0.3275 1.0754 0.7607 -0.3469 1.0407 0.7389
θ1 -2.9211 1.0176 0.0041 -4.1197 1.3892 0.0030 -4.0917 1.4520 0.0048 -1.7892 0.8534 0.0360
θ2 -0.0470 0.0178 0.0084 -0.0404 0.0168 0.0159 -0.0477 0.0145 0.0010 -0.0673 0.0237 0.0046
θ3 0.3794 0.1492 0.0110 0.4237 0.2546 0.0960 0.6214 0.1745 < 0.001 0.4754 0.1356 < 0.001
β 11.5900 2.6100 < 0.0001 6.2167 1.0787 < 0.0001 7.8378 1.7365 < 0.0001 -0.4272 0.5474 0.4352

ˆ̀ 30.9024 29.4339 28.6480 32.9941

AIC -51.8048 -48.8677 -47.2961 -55.9881

BIC -43.6169 -40.6798 -39.1082 -47.8002
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Moreover, the Vuong likelihood ratio test (see [23]) can be used for
comparison of the non-nested two regression models to whether there is any
significant difference in the fit models. The Vuong statistic is defined as

T = [1/(ω
√
n)]

n∑
i=1

log [g(yi, θ)/f(yi, λ)], where

ω2 = (1/n)
n∑
i=1

{log (g(yi, θ)/f(yi, λ))}2−
{

(1/n)
n∑
i=1

log (g(yi, θ)/f(yi, λ))

}2

,

g(y, θ) and f(y, λ) are the corresponding competitor pdfs calculated at the
MLEs. It is noticed that, while n→∞, the asymptotic distribution behind T
is the standard normal distribution. When this test was applied to the rival
TURQ quantile regression model with the Kw quantile regression model, the
value of the T statistic was found as 1.1964 (with p-value 0.1158). Hence,
the test rejects the null hypothesis at 12% level of significance, in favor of the
hypothesis that the TURQ quantile regression model is not equivalent to the
Kw quantile regression model. In addition, if the LEEG quantile regression
model is taken as the rival, the test rejects the null hypothesis at 10% level of
significance, in favor of the TURQ quantile regression model.

Since the randomized quantile residuals have a theoretical standard nor-
mal distribution, one may see whether they fit this corresponding distribu-
tion. The results of the Kolmogorov-Smirnov (KS), Anderson-Darling (A∗)
and Cramer-von Mises (W ∗) goodness-of-fits statistics are given in Table 3.
From this table, it is clear that the results based on the TURQ quantile re-
gression model of the randomized quantile residuals are more suitable than
those of other regression models as well as its model fitting is acceptable.

Table 3. The goodness-of-fit results of the randomized quantile
residuals for the regression models.

Models KS p-value A∗ p-value W ∗ p-value

TURQ 0.0891 0.8971 0.3134 0.9273 0.0367 0.9512
Beta 0.1240 0.5613 0.6425 0.6077 0.1008 0.5833

LEEG 0.1198 0.6033 0.8716 0.4313 0.1377 0.4308
Kw 0.1291 0.5095 0.7516 0.5163 0.1302 0.4578

5. Conclusions and future work

The following findings have been obtained by this paper.

(1) A new alternative unit distribution model and its quantile regression
model for the analysis of measures of proportions and percentages have
been proposed.

(2) Educational attainment measurement of the OECD countries has been
related with covariates, which are some Better Life Index such as life
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satisfaction, homicide rate, and voter turnout. All covariates have been
seen statistically significant at the level of 5% for the median response.

(3) For describing the median of the data, the quantile regression analysis
application has indicated that the proposed model has provided better
fits than the famous beta and Kumaraswamy regression models based
on a skewed unit response variable with outlier observations.

(4) It has been seen that the proposed modeling strategy is suitable for
illustrating its potential usages.

This is how we define a new alternative unit distribution model as a quan-
tile model for a unit response variable that distributes the TUR distribution.
Hence, it can be a remarkable addition to applications of applied sciences and
data scientists.

Future research would be another work about the combination of the
quadratic transmutation scheme and the unit Weibull distribution [18]. This
distribution and its regression modeling will propose strong competitors of the
unit distributions by generalizing the TUR and TURQ models.
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