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PROJECTION SUBGRADIENT ALGORITHMS FOR SOLVING

PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND

PSEUDOMONOTONE EQUILIBRIUM PROBLEMS

Wenping Guo1, Youli Yu2, Zhichuan Zhu3

In this paper, we investigate pseudomonotone variational inequalities and pseu-

domonotone equilibrium problems in Hilbert spaces. We present a projection subgradient

algorithm with self-adaptive technique for finding a common solution of pseudomono-

tone variational inequalities and pseudomonotone equilibrium problems. The proof of

the strong convergence theorem is additionally established under some mild conditions

on the operators and parameters.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a

nonempty closed convex subset of H. Let φ : C → C be a nonlinear operator. Recall that

the variational inequality problem (VI) is to seek a point ũ ∈ C such that

〈φ(ũ), u− ũ〉 ≥ 0, ∀u ∈ H. (1)

The solution set of VI (1) is denoted by V I(C, φ).

VI (1) is said to be pseudomonotone variational inequality if φ is pseudomonotone on C,

i.e.,

〈φ(ũ), u− ũ〉 ≥ 0⇒ 〈φ(u), u− ũ〉 ≥ 0, ∀u, ũ ∈ C.
Theories and numerical iterative methods have been proposed, adopted and extended broadly

as algorithmic solutions to the notion of variational inequalities. This concept, that mainly

relates to many important operators, plays a critical role in sciences and engineering, such

as fixed point problems ([7, 11, 18, 23, 26, 33]), optimization problems ([4, 28]), obstacle

problems, as a unified framework for the study of a large number of significant real-word

problems. For more information, please refer to [2, 27, 29, 31, 34, 35, 40]. Among them, the

basic methods for solving (1) are projection method ([1]), proximal point method ([5, 14, 17]),

extragradient method ([3, 13, 21]), Tikhonov regularization method, hybrid method ([6]) and

subgradient method ([32]). Especially, in order to relax the constraints added on operator

φ, self-adaptive technique is used without knowing the Lipschitz constant of the operator φ

in advance, see [1].
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Let ϕ : C × C → R be a bifunction. Recall that the equilibrium problem (EP) is to

seek a point u† ∈ C such that

ϕ(u†, u) ≥ 0, ∀u ∈ C. (2)

The solution set of VI (1) is denoted by EP (C,ϕ).

EP (2) is said to be pseudomonotone equilibrium problem if ϕ is pseudomonotone on C, i.e.,

ϕ(u†, u) ≥ 0⇒ ϕ(u, u†) ≤ 0, ∀u†, u ∈ C.

Theories and methods of equilibrium problems offer a powerful tool for studying a large

number of nonlinear problems, such as optimization problems ([8, 44]), variational inequality

problems ([30, 39, 41]), complementarity problems, minimax inequality problems ([12]), and

fixed point problems ([19, 20, 25, 36]). The most approaches to the equilibrium problem

are relied on the resolvent of equilibrium bifunction ([16, 22]) in which a strongly monotone

regularization problem is solved at each iterative step. Iterative algorithms for solving (2)

have been presented and developed in the literature, see, for instance ([9, 24, 37, 38, 42]).

Motivated and inspired by the work in this field, the main purpose of this paper is

to investigate pseudomonotone variational inequality (1) and pseudomonotone equilibrium

problem (2) in Hilbert spaces. We suggest a projection subgradient algorithm with self-

adaptive technique for finding a common solution of pseudomonotone variational inequality

(1) and pseudomonotone equilibrium problem (2). Under some mild conditions on the

operators and parameters, strong convergence result of the proposed algorithm is shown.

2. Notations and Lemmas

Let C be a nonempty convex and closed subset of a real Hilbert space H. ⇀ means the

weak convergence and → means the strong convergence. Use ωw(pk) to denote the set of all

weak cluster points of the sequence {uk}, i.e., ωw(uk) = {u† : ∃{uki} ⊂ {uk} such that uki ⇀

u† as i→∞}.
For any x† ∈ H, there exists a unique point projC [x†] ∈ C such that

‖x† − projC [x†]‖ ≤ ‖x− x†‖, ∀x ∈ C.

It is known that projC satisfies the following inequality

‖projC [v∗]− projC [v†]‖2 ≤ 〈projC [v∗]− projC [v†], q∗ − v†〉, ∀v∗, v† ∈ H. (3)

Furthermore,

〈v∗ − projC [v∗], v† − projC [v∗]〉 ≤ 0, ∀v∗ ∈ H, v† ∈ C. (4)

Let φ : C → C be an operator. φ is said to be L-Lipschitz if

‖φ(u)− φ(u†)‖ ≤ L‖u− u†‖, ∀u, u† ∈ C,

where L > 0 is a constant.

Let ϕ : C × C → R be a bi-function. ϕ is said to be jointly sequently weakly

continuous, if there exist two sequence {uk} ⊂ C and {vk} ⊂ C satisfying uk ⇀ u† and

vk ⇀ v†, then ϕ(uk, vk)→ ϕ(u†, v†).

Let f : C → (−∞,+∞] be a proper, lower semicontinuous and convex function.

Then, the subdifferential ∂f of f is defined by

∂f(u) := {v† ∈ H : f(u) + 〈v†, u† − u〉 ≤ f(u†),∀u† ∈ C} (5)

for each u ∈ C.

It is well known that u† is a solution of the optimization problem minu∈C f(u) if and

only if 0 ∈ ∂f(u†) + NC(u†), where NC(u†) stands for the normal cone of C at u† defined

by NC(u†) = {ω ∈ H : 〈ω, u− u†〉 ≤ 0,∀u ∈ C}.
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Let ϕ : C×C → R be a bi-function. In what follows, assume that ϕ satisfies conditions

(BF1)-(BF4) below

(BF1): ϕ(u†, u†) = 0 for all u† ∈ C;

(BF2): ϕ is pseudomonotone on EP (C,ϕ);

(BF3): ϕ is jointly sequently weakly continuous on C × C;

(BF4): ϕ(u†, ·) is convex and subdifferentiable for all u† ∈ C.

Lemma 2.1 ([16]). Let C be a nonempty closed convex subset of a real Hilbert space H.

Let ϕ : C × C → R be a bifunction satisfying the conditions (BF1)-(BF4). Let {$k} be a

sequence satisfying $k ∈ [$,$] ⊂ (0, 1],∀k ≥ 0. For given vk ∈ C, set

yk = arg min
u†∈C

{
ϕ(vk, u†) +

1

2$k
‖vk − u†‖2

}
.

If vk is bounded, then yk is bounded.

Lemma 2.2 ([43]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let

ϕ : C×C → R be a bifunction satisfying the conditions (BF1)-(BF4). Let {uk} and {vk} be

two sequences in C. Assume that uk ⇀ ū ∈ C and vk ⇀ v̄ ∈ C. Then, for any ε > 0, there

exist η > 0 and a positive integer N0 such that

∂2ϕ(vk, uk) ⊂ ∂2ϕ(v̄, ū) +
ε

η
B, ∀k ≥ N0,

where B := {x ∈ H|‖x‖ ≤ 1}.

Lemma 2.3 ([10]). Let C be a nonempty closed convex subset of a real Hilbert space H.

Let φ : C → C be a continuous and pseudomonotone operator. Then x† ∈ V I(C, φ) iff x†

solves the following variational inequality

〈φ(u†), u† − x†〉 ≥ 0, ∀u† ∈ H.

Lemma 2.4 ([15]). Let C be a nonempty closed convex subset of a real Hilbert space H.

Let {xk} be a sequence in H and p† be a fixed point in H. Assume that ωw(xk) ⊂ C and

‖xk − p†‖ ≤ ‖projC [p†]− p†‖,∀k ≥ 0. Then xk → projC [p†].

3. Main results

In this section, we present our iterative algorithm for finding a common solution of

pseudomonotone variational inequality (1) and pseudomonotone equilibrium problem (2).

Consequently, we show the convergence of the proposed algorithm.

Let C be a nonempty closed convex subset of a real Hilbert space H. Let the operator

φ be pseudomonotone on H, weakly sequentially continuous and L-Lipschitz continuous on

C. Let ϕ : C × C → R be a function satisfying the conditions (BF1)-(BF4). Assume that

Ω := V I(C,ψ)∩EP (C,ϕ) 6= ∅. Let σ ∈ (0, 1), τ ∈ (0, 1), δ ∈ (0, 2), θ ∈ (0, 1) and η ∈ (0, 1)

be five constants. Let {$k} ⊂ (0, 1), {ςk} ⊂ (0, 1) and {βk} ⊂ (0, 2) be three real number

sequences satisfying the following conditions:

(C1): $k ∈ [$0, 1] with 0 < $0 ≤ 1,∀k ≥ 0;

(C2): 0 < lim infn→∞ βk ≤ lim supn→∞ βk < 2;

(C3): 0 < lim infk→∞ ςk ≤ lim supk→∞ ςk < 1.

Next, we present our iterative algorithm.
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Algorithm 3.1. Let x0 be a fixed point in H. Set C1 = C and compute x1 = projC1
[x0].

Set k = 0.

Step 1. Calculate

wk = projC [xk − στnφ(xk)], (6)

where n = min{0, 1, 2, 3, · · · } and satisfies

στn‖φ(xk)− φ(wk)‖ ≤ θ‖xk − wk‖, (7)

Set τn = τk. If wk = xk, then set vk = xk and go to Step 3. Otherwise, compute

vk = projC

[
xk − δ(1− θ)‖xk − wk‖2 tk

‖tk‖2
]
, (8)

where tk = xk − wk + στkϕ(wk).

Step 2. Compute

yk = arg min
y†∈C

{
ϕ(vk, y†) +

1

2$k
‖vk − y†‖2

}
. (9)

Find the smallest positive integer m such that

ϕ(zk,m, yk) +
δ

2$k
‖vk − yk‖2 ≤ 0, (10)

where

zk,m = (1− ηm)vk + ηmyk. (11)

Set ηm = ηk and zk,m = zk and calculate

uk =

projC
[
vk +

ςkβkϕ(zk, yk)

(1− ςk)‖ψk‖2
ψk
]
, 0 /∈ ∂2ϕ(zk, zk),

vk, 0 ∈ ∂2ϕ(zk, zk),

(12)

where ψk ∈ ∂2ϕ(zk, zk).

Step 3. Calculate

Ck+1 = {u† ∈ Ck : ‖uk − u†‖ ≤ ‖xk − u†‖}, (13)

and

xk+1 = projCk+1
[x0]. (14)

Step 4. Set k := k + 1 and return to Step 1.

Proposition 3.1. We have the following statements:

(i) There exists n such that (7) holds and 0 < τθ
σL < τk ≤ 1, k ≥ 0.

(ii) If wk = xk, then wk ∈ V I(C, φ). If wk 6= xk, then tk 6= 0.

(iii) For each u† ∈ C, we have (see [16, 43])

ϕ(vk, u†) ≥ ϕ(vk, yk) +
1

$k
〈vk − yk, u† − yk〉. (15)

(iv) There exists m such that (10) holds. In this case, ϕ(zk, yk) < 0 when zk 6= yk.

Proof. (i) By the L-Lipschitz continuity of φ, στn‖φ(xk)−φ(wk)‖ ≤ στnL‖xk−wk‖. Then,

we can choose n such that στnL ≤ θ, i.e., τn ≤ θ
σL . If n = 0, then τk = 1. If n > 0, then

τθ
σL < τk < 1.

(ii) If projC [xk − στkφ(xk)] = xk, then wk ∈ V I(C, φ) due to the property (4) of projC .
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Take z† ∈ Ω. Since wk ∈ C and xk ∈ C, 〈φ(z†), wk− z†〉 ≥ 0 and 〈φ(z†), xk− z†〉 ≥ 0. With

the help of the pseudomonotonicity of φ, we deduce

〈φ(wk), wk − z†〉 ≥ 0, (16)

and

〈φ(xk), xk − z†〉 ≥ 0. (17)

According to (4) and (6), we obtain

〈xk − στnφ(xk)− wk, wk − z†〉 ≥ 0. (18)

Owing to (16)-(18), we obtain

〈tk, xk − z†〉 = 〈xk − wk − στkφ(xk), xk − z†〉+ στk〈φ(xk), xk − z†〉

+ στk〈φ(wk), xk − wk〉+ στk〈φ(wk), wk − z†〉

≥ 〈xk − wk − στkφ(xk), xk − z†〉+ στk〈φ(wk), xk − wk〉

= 〈xk − wk − στk(φ(xk)− φ(wk)), xk − wk〉

+ 〈xk − wk − στkφ(xk), wk − z†〉

≥ 〈xk − wk − στk(φ(xk)− φ(wk)), xk − wk〉

≥ ‖xk − wk‖2 − στk‖φ(xk)− φ(wk)‖‖xk − wk‖

≥ (1− θ)‖xk − wk‖2

> 0.

(19)

So, tk 6= 0.

(iv) If vk = yk, then zk = yk and ϕ(zk, yk) = 0. Thus, (10) holds and set m = 1. Suppose

that (10) is not satisfied when vk 6= yk. In this case, for any m ≥ 1, we deduce

ϕ(zk,m, yk) +
δ

2$k
‖vk − yk‖2 > 0. (20)

Lettingm→∞ in (11), we obtain that zk,m → vk. Hence, ϕ(zk,m, vk)→ 0 and ϕ(zk,m, yk)→
ϕ(vk, yk). This together with (20) implies that

ϕ(vk, yk) ≥ − δ

2$k
‖vk − yk‖2. (21)

Setting z† = vk in (15), we deduce

ϕ(vk, yk) ≤ − 1

$k
‖vk − yk‖2. (22)

It follows from (21) and (22) that 0 ≤ ( 1
$k
− δ

2$k
)‖vk − yk‖2 ≤ 0 which implies that

vk = yk. It is impossible. Therefore, the search rule (10) is well-defined. It is obvious that

ϕ(zk, yk) ≤ − δ
2$k
‖vk − yk‖2 < 0 when vk 6= yk. �

Theorem 3.1. The sequence {xk} generated by (14) converges strongly to projΩ[x0].

Proof. Step 1. For any k, Ck is closed convex and the sequence {xk} is valid.
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We use induction to prove Ω ⊂ Ck,∀k ≥ 1. (i) Ω ⊂ C1 is obvious. (ii) Suppose that

Ω ⊂ Ck for some k ∈ N. Pick up z† ∈ Ω ⊂ Ck. By (8), we obtain

‖vk − z†‖2 ≤ ‖xk − z† − δ(1− θ)‖xk − wk‖2 tk

‖tk‖2
‖2

= ‖xk − z†‖2 − 2δ(1− θ)‖x
k − wk‖2

‖tk‖2
〈tk, xk − z†〉+ δ2(1− θ)2 ‖xk − wk‖4

‖tk‖2

which together with (19) implies that

‖vk − z†‖2 ≤ ‖xk − z†‖2 − (2− δ)δ(1− θ)2 ‖xk − wk‖4

‖tk‖2

≤ ‖xk − z†‖2.
(23)

Since z† ∈ EP (C,ϕ), ϕ(z†, zk) ≥ 0. It follows from the pseudomonotonicity of ϕ that

ϕ(zk, z†) ≤ 0. Owing to ψk ∈ ∂2ϕ(zk, zk) and ϕ(zk, zk) = 0, by the subdifferential in-

equality, we have ϕ(zk, z†) ≥ 〈ψk, z† − zk〉. It yields that 〈ψk, z† − zk〉 ≥ −ϕ(zk, z†) ≥ 0.

Then,

〈ψk, vk − z†〉 = 〈ψk, vk − zk〉+ 〈ψk, zk − z†〉 ≥ 〈ψk, vk − zk〉.
Observe that vk − zk = ηk

1−ηk (zk − yk) and ϕ(zk, yk) ≥ 〈ψk, yk − zk〉. Therefore,

〈ψk, vk − z†〉 ≥ ηk
1− ηk

〈ψk, zk − yk〉 ≥ −ηk
1− ηk

ϕ(zk, yk). (24)

By virtue of (12) and (24), we obtain

‖uk − z†‖2 ≤
∥∥∥∥vk +

ςkβkϕ(zk, yk)

(1− ςk)‖ψk‖2
ψk − z†

∥∥∥∥2

= ‖vk − z†‖2 +
2ςkβkϕ(zk, yk)

(1− ςk)‖ψk‖2
〈ψk, vk − z†〉+

ς2kβ
2
kϕ

2(zk, yk)

(1− ςk)2‖ψk‖2

≤ ‖vk − z†‖2 − 2ς2kβkϕ
2(zk, yk)

(1− ςk)2‖ψk‖2
+
ς2kβ

2
kϕ

2(zk, yk)

(1− ςk)2‖ψk‖2

= ‖vk − z†‖2 − βk(2− βk)
ς2kϕ

2(zk, yk)

(1− ςk)2‖ψk‖2
.

(25)

Based on (23) and (25), we have

‖uk − z†‖2 ≤ ‖xk − z†‖2 − (2− δ)δ(1− θ)2 ‖xk − wk‖4

‖tk‖2

− βk(2− βk)
ς2kϕ

2(zk, yk)

(1− ςk)2‖ψk‖2

≤ ‖xk − z†‖2.

(26)

This implies that z† ∈ Ck+1.

In the case of 0 ∈ ∂2ϕ(zk, zk), we have uk = vk and ‖uk − p‖ ≤ ‖xk − p‖. Thus,

Ω ⊂ Ck for all k ≥ 1.

It is obviously that Ck(∀k ≥ 1) is closed convex. Therefore, the sequence {xk} is

valid.

Step 2. ‖xk+1 − xk‖ → 0, ‖wk − xk‖ → 0, ‖vk − xk‖ → 0 and ‖uk − vk‖ → 0.

Thanks to (14), we have

‖xk − x0‖ ≤ ‖x0 − u‖, ∀u ∈ Ck, (27)
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which implies that {xk} is bounded. Then {vk} and {uk} are bounded. By Lemma 2.1,

{yk} is bounded. So, {zk} is bounded. Applying Lemma 2.2, {ψk} is bounded.

Noting that xk = projCk
[x0] and xk+1 ∈ Ck, from (4), we have

〈xk − x0, xk − xk+1〉 ≤ 0.

It follows that

‖xk − xk+1‖2 = 2〈xk − x0, xk − xk+1〉+ ‖x0 − xk+1‖2 − ‖x0 − xk‖2

≤ ‖x0 − xk+1‖2 − ‖x0 − xk‖2.
(28)

In (27), setting u = xk+1, we conclude that ‖xk−x0‖ ≤ ‖xk+1−x0‖. Therefore, limk→∞ ‖xk−
x0‖ exists. This together with (28) implies that

lim
k→∞

‖xk+1 − xk‖ = 0. (29)

According to (13) and noting that xk+1 ∈ Ck, we get ‖uk − xk+1‖ ≤ ‖xk − xk+1‖. So,

‖uk − xk‖ ≤ ‖uk − xk+1‖+ ‖xk+1 − xk‖ ≤ 2‖xk+1 − xk‖.

It follows from (29) that

lim
k→∞

‖uk − xk‖ = 0. (30)

In the light of (26), we obtain

(2− δ)δ(1− θ)2 ‖xk − wk‖4

‖tk‖2
+ βk(2− βk)

ς2kϕ
2(zk, yk)

(1− ςk)2‖ψk‖2

≤ ‖xk − z†‖2 − ‖uk − z†‖2

≤ ‖uk − xk‖(‖xk − z†‖+ ‖uk − z†‖),

which implies that

lim
k→∞

‖xk − wk‖2

‖tk‖
= 0, (31)

and

lim
k→∞

ςkϕ(zk, yk)

(1− ςk)‖ψk‖
= 0. (32)

According to the boundedness of {tk}, we deduce from (31) that

lim
k→∞

‖xk − wk‖ = 0. (33)

From (8), we have

‖vk − xk‖ = ‖projC
[
xk − δ(1− θ)‖xk − wk‖2 tk

‖tk‖2
]
− xk‖

≤ δ(1− θ)‖x
k − wk‖2

‖tk‖
.

It results in that

lim
k→∞

‖vk − xk‖ = 0. (34)
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By (12), we get

‖uk − vk‖ = ‖projC
[
vk +

ςkβkϕ(zk, yk)

(1− ςk)‖ψk‖2
ψk
]
− vk‖

≤ ςkβkϕ(zk, yk)

(1− ςk)‖ψk‖
.

This together with (32) implies that

lim
k→∞

‖uk − vk‖ = 0. (35)

Step 3. ωw(xk) ⊂ V I(C, φ) ∩ EP (C,ϕ).

By the boundedness of the sequence {xk}, there exists a subsequence {xki} ⊂ {xk}
satisfying xki ⇀ p† ∈ ωw(xk). First, we show p† ∈ V I(C, φ). From (18), we have

〈xki − στkiφ(xki)− wki , wki − x†〉 ≥ 0,∀x† ∈ C.

It leads to that

〈φ(xki), x† − xki〉 ≥ 〈φ(xki), wki − xki〉+
1

στki
〈wki − x†, wki − xki〉, ∀x† ∈ C. (36)

As a result of (33) and (36), we obtain

lim inf
i→∞

〈φ(xki), x† − xki〉 ≥ 0, ∀x† ∈ C. (37)

Let {ζj} a positive real numbers sequence satisfying limj→∞ ζj = 0. For each ζj , there exists

the smallest positive integer ki such that

〈φ(xkij ), x† − xkij 〉+ ζj ≥ 0, ∀j ≥ ki. (38)

It is obvious that φ(xkij ) 6= 0, otherwise xkij ∈ V I(C, φ) and hence p† ∈ V I(C, φ). Putting

f(xkij ) = φ(x
kij )

‖φ(x
kij )‖2

, we obtain 〈f(xkij ), φ(xkij )〉 = 1. Based on (38), we have

〈φ(xkij ), x† + ζjf(xkij )− xkij 〉 ≥ 0.

Because of the pseudomonotonicity of φ, we obtain

〈φ(x† + ζjf(xkij )), x† + ζjf(xkij )− xkij 〉 ≥ 0.

It follows that

〈φ(x†), x† − xkij 〉 ≥ 〈φ(x†)− φ(x† + ζjf(xkij )), x† + ζjf(xkij )− xkij 〉

− 〈φ(x†), ζjf(xkij )〉.
(39)

Owing to φ(xkij ) ⇀ φ(p†), we have

lim inf
j→∞

‖φ(xkij )‖ ≥ ‖φ(p†)‖ > 0.

Thus,

lim
j→∞

‖ζjf(xkij )‖ = lim
j→∞

ζj

‖φ(xkij )‖
= 0.

This together with (39) implies that

〈φ(x†), x† − p†〉 ≥ 0. (40)

Consequently, by Lemma 2.3, we conclude that p† ∈ V I(C, φ).

Next, we show p† ∈ EP (C,ϕ). By (10), we have

ϕ(zk, yk) +
δ

2$k
‖vk − yk‖2 ≤ 0. (41)
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Case 1. lim supk→∞ ηk > 0. Without loss of generality, we assume that ηki ≥ η0 for some

η0 > 0 when i ≥ N0. By (32) and (41), we deduce

lim
i→∞

‖vki − yki‖ = 0. (42)

Noting that vki ⇀ p†, by (42), we have yki ⇀ p† ∈ C. By condition (C1), $k ≥ $0, k ≥ 0.

Since yki solves (9), for any y† ∈ C, we get

ϕ(vki , yki) +
1

2$ki

‖vki − yki‖2 ≤ ϕ(vki , y†) +
1

2$ki

‖vki − y†‖2

≤ ϕ(vki , y†) +
1

2$0
‖vki − y†‖2.

(43)

Letting i→∞ in (43), we obtain

0 ≤ ϕ(p†, y†) +
1

2$0
‖p† − y†‖2, ∀y† ∈ C. (44)

Therefore, p† ∈ EP (C,ϕ).

Case 2. limk→∞ ηk = 0, i.e., limk→∞ ηm = 0. Without loss of generality, we assume

that yki ⇀ q† ∈ C and $ki → ρ† > 0. By the definition of yki , we have

ϕ(vki , yki) +
1

2$ki

‖vki − yki‖2 ≤ ϕ(vki , y†) +
1

2$ki

‖vki − y†‖2, ∀y† ∈ C. (45)

Letting i→∞ in (45), we derive

ϕ(p†, q†) +
1

2ρ†
‖p† − q†‖2 ≤ ϕ(p†, y†) +

1

2ρ†
‖p† − y†‖2, ∀y† ∈ C. (46)

Setting y† = p† in (46) to deduce

ϕ(p†, q†) +
1

2ρ†
‖p† − q†‖2 ≤ 0. (47)

By the search rule (10), we have

ϕ(zki,m−1, yki) +
δ

2$ki

‖vki − yki‖2 > 0, (48)

where

zki,m−1 = (1− ηm−1)vki + ηm−1yki ⇀ p† (i→∞).

This together with (48) implies that

ϕ(p†, q†) +
δ

2ρ†
‖p† − q†‖2 ≥ 0. (49)

Taking into account (47) and (49), we deduce

0 ≤ 1− δ
2ρ†
‖p† − q†‖2 ≤ 0,

which implies that p† = q†. Therefore,

ϕ(p†, y†) +
1

2ρ†
‖p† − y†‖2 ≥ 0, ∀y† ∈ C,

which implies that p† ∈ EP (C,ϕ). So, ωw(xk) ⊂ V I(C, φ) ∩ EP (C,ϕ).

Step 4. xk → projΩ[x0].

(i) By (27), we have

‖xk − x0‖ ≤ ‖x0 − projΩ[x0]‖.
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(ii) By Step 3, we have ωw(xk) ⊂ Ω.

All assumptions of Lemma 2.4 are satisfied. It follows that xk → projΩ[x0]. �

4. Acknowledgments

Wenping Guo was partially supported by The Humanities and Social Science Project

of the Chinese Ministry of Education [grant 20YJAZH033]. Zhichuan Zhu was supported

by the Education Department Foundation of Jilin province [grant No. JJKH20190742SK]

and Advanced Talents Research Fund of Liaoning University.

R E F E R E N C E S

[1] P.K. Anh and N.T. Vinh, Self-adaptive gradient projection algorithms for variational inequalities in-

volving non-Lipschitz continuous operators, Numerical Algorithms, 81(2019), 983–1001.

[2] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math.

Student, 63(1994), 123–145.

[3] L.C. Ceng, A. Petrusel, J.C. Yao and Y. Yao, Hybrid viscosity extragradient method for systems of

variational inequalities, fixed points of nonexpansive mappings, zero points of accretive operators in

Banach spaces, Fixed Point Theory, 19(2018), 487–502.

[4] L.C. Ceng, A. Petrusel, J.C. Yao and Y. Yao, Systems of variational inequalities with hierarchical

variational inequality constraints for Lipschitzian pseudocontractions, Fixed Point Theory, 20(2019),

113–133.

[5] C. Chen, S. Ma and J. Yang, A general inertial proximal point algorithm for mixed variational inequality

problem, SIAM J. Optim., 25(2014), 2120–2142.

[6] Q. Cheng, Parallel hybrid viscosity method for fixed point problems, variational inequality problems and

split generalized equilibrium problems, J. Inequal. Appl., 2019(2019), Art. ID. 169.

[7] S.Y. Cho, X. Qin, J.C. Yao and Y. Yao, Viscosity approximation splitting methods for monotone and

nonexpansive operators in Hilbert spaces, J. Nonlinear Convex Anal., 19(2018), 251–264.

[8] C. S. Chuang, Algorithms and convergence theorems for mixed equilibrium problems in Hilbert spaces,

Numer. Func. Anal. Optim., 40(2019),953–979.

[9] P.L. Combettes and S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex

Anal., 6(2005), 117–136.

[10] R.W. Cottle and J.C. Yao, Pseudomonotone complementarity problems in Hilbert space, J. Optim.

Theory Appl., 75(1992), 281–295.

[11] V. Dadashi and M. Postolache, Forward-backward splitting algorithm for fixed point problems and zeros

of the sum of monotone operators, Arab. J. Math. 9(2020), 89–99.

[12] Q.L. Dong, Y. Peng and Y. Yao, Alternated inertial projection methods for the split equality problem,

J. Nonlinear Convex Anal., 22(2021), 53–67.

[13] G. M. Korpelevich, An extragradient method for finding saddle points and for other problems, Ekon.

Matorsz. Metod., 12(1976), 747–756.

[14] Y. Malitsky, Proximal extrapolated gradient methods for variational inequalities, Optim. Meth. & Soft-

ware, 33(2018), 140–164.

[15] C. Martinez-Yanes and H.K. Xu, Strong convergence of the CQ method for fixed point iteration pro-

cesses, Nonlinear Anal., 64(2006), 2400–2411.

[16] T.D. Quoc, L.D. Muu and N.V. Hien, Extragradient algorithms extended to equilibrium problems,

Optim., 57(2008), 749–776.

[17] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim.,

14(1976), 877–898.



Pseudomonotone variational inequalities and pseudomonotone equilibrium problems 85

[18] B. S. Thakur, D. Thakur and M. Postolache, A new iterative scheme for numerical reckoning fixed

points of Suzuki’s generalized nonexpansive mappings, Appl. Math. Comput., 275(2016), 147–155.

[19] B.S. Thakur, D. Thakur and M. Postolache, A new iteration scheme for approximating fixed points of

nonexpansive mappings, Filomat, 30(2016), 2711–2720.

[20] D. Thakur, B.S. Thakur and M. Postolache, New iteration scheme for numerical reckoning fixed points

of nonexpansive mappings, J. Inequal. Appl., 2014(2014), Art. No. 328.

[21] P.T. Vuong, On the weak convergence of the extragradient method for solving pseudomonotone varia-

tional inequalities, J. Optim. Theory Appl., 176(2018), 399–409.

[22] P.T. Vuong, J.J. Strodiot and V.H. Nguyen, On extragradient-viscosity methods for solving equilibrium

and fixed point problems in a Hilbert space, Optim., 64(2015), 429–451.

[23] Y. Yao, L. Leng, M. Postolache and X. Zheng, Mann-type iteration method for solving the split common

fixed point problem, J. Nonlinear Convex Anal., 18(2017), 875–882.

[24] Y. Yao, H. Li and M. Postolache, Iterative algorithms for split equilibrium problems of

monotone operators and fixed point problems of pseudo-contractions, Optim., in press, DOI:

10.1080/02331934.2020.1857757.

[25] Y. Yao, Y.C. Liou and M. Postolache, Self-adaptive algorithms for the split problem of the demicon-

tractive operators, Optim., 67(2018), 1309-1319.

[26] Y. Yao, Y.C. Liou and J.C. Yao, Split common fixed point problem for two quasi-pseudocontractive

operators and its algorithm construction, Fixed Point Theory Appl., 2015(2015), Art. No. 127.

[27] Y. Yao, Y.C. Liou and J.C. Yao, Iterative algorithms for the split variational inequality and fixed point

problems under nonlinear transformations, J. Nonlinear Sci. Appl., 10(2017), 843–854.

[28] Y. Yao, M. Postolache and Y.C. Liou, Strong convergence of a self-adaptive method for the split feasi-

bility problem, Fixed Point Theory Appl., 2013(2013), Art. No. 201.

[29] Y. Yao, M. Postolache, Y.C. Liou and Z. Yao, Construction algorithms for a class of monotone varia-

tional inequalities, Optim. Lett., 10(2016), 1519-1528.

[30] Y. Yao, M. Postolache and J.C. Yao, Iterative algorithms for the generalized variational inequalities,

U.P.B. Sci. Bull., Series A, 81(2019), 3–16.

[31] Y. Yao, M. Postolache and J.C. Yao, An iterative algorithm for solving the generalized variational

inequalities and fixed points problems, Mathematics, 7(2019), Art. No. 61.

[32] Y. Yao, M. Postolache and J.C. Yao, Strong convergence of an extragradient algorithm for variational

inequality and fixed point problems, U.P.B. Sci. Bull., Series A, 82(1)(2020), 3-12.

[33] Y. Yao, X. Qin and J.C. Yao, Projection methods for firmly type nonexpansive operators, J. Nonlinear

Convex Anal., 19(2018), 407–415.

[34] Y. Yao, N. Shahzad and J.C. Yao, Convergence of Tseng-type self-adaptive algorithms for variational

inequalities and fixed point problems, Carpathian J. Math., in press.

[35] Y. Yao, Y. Shehu, X.H. Li and Q.L. Dong, A method with inertial extrapolation step for split monotone

inclusion problems, Optim., in press, DOI:10.1080/02331934.2020.1857754.

[36] Y. Yao, J.C. Yao, Y.C. Liou and M. Postolache, Iterative algorithms for split common fixed points of

demicontractive operators without priori knowledge of operator norms, Carpathian J. Math., 34(2018),

459-466.

[37] H. Yu and N. Huang, Stability of the set of solutions for generalized vector equilibrium problems with

cone constraints, Optim., in press.

[38] S. Yusuf, H. Ur Rehman and A. Gibali, A self-adaptive extragradient-CQ method for a class of bilevel

split equilibrium problem with application to Nash Cournot oligopolistic electricity market models, Com-

put. Appl. Math., 39(2020), Art. ID. 293.

[39] H. Zegeye, N. Shahzad and Y. Yao, Minimum-norm solution of variational inequality and fixed point

problem in Banach spaces, Optim., 64(2015), 453–471.



86 Wenping Guo, Youli Yu, Zhichuan Zhu

[40] X. Zhao, J.C. Yao and Y. Yao, A proximal algorithm for solving split monotone variational inclusions,

U.P.B. Sci. Bull., Series A, 82(3)(2020), 43–52.

[41] X. Zhao and Y. Yao, Modified extragradient algorithms for solving monotone variational inequalities

and fixed point problems, Optim., 69(2020), 1987–2002.

[42] B. Zhou, Michiel C. J. Bliemer and X. Li, A modified truncated Newton algorithm for the logit-based

stochastic user equilibrium problem, Appl. Math. Modelling, 39(2015), 5415–5435.

[43] L.J. Zhu, Y. Yao and M. Postolache, Projection methods with linesearch technique for pseudomonotone

equilibrium problems and fixed point problems, U.P.B. Sci. Bull., Series A, 83(1)(2021), 3–14.

[44] S. Zou, Z. Ma and S. Liu, Load control problems in direct current distribution networks: optimality,

equilibrium of games, IEEE T. Contr. Syst. T., 28(2020), 347–360.


