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A REMARK ON THE LIMIT SHADOWING PROPERTY FOR
ITERATED FUNCTION SYSTEMS

Xinxing Wu, Shudi Liang, Yang Luo, Ma Xin, Xu Zhang∗

This paper shows that a class of iterated function systems (IFSs)
defined on the circle have the limit shadowing property, where this type
of IFSs is generated by two maps, one is a constant map, another is a
diffeomorphism with one attracting fixed point and one repelling fixed point.
This result answers affirmatively a question whether or not the IFS system
constructed in Example 4.6 of [M.F. Nia and S.A. Ahmadi, U.P.B. Sci.
Bull., Series A, 80 (2018), 145-154] has the limit shadowing property.
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1. Introduction

An iterated function system (IFS) F is a family of continuous self-maps
fλ : X → X (λ ∈ Λ) defined on a metric space X, where Λ is a nonempty
index set and X has a metric d, denoted by (X, d) [4]. For convenience, an
IFS is denoted by F = {X; fλ| λ ∈ Λ}. Barnsley [1] used IFSs as a unified
way for generating a broad class of fractals, which have been applied to many
fields, such as image compression and image processing, and so on.

The theory of shadowing provides tools for fitting real trajectories near to
approximate trajectories. The motivation comes from computer simulations,
where we always have a numerical error when calculating a trajectory, no
matter how careful we are, but at the same time we want to be sure that
what we see on the computer screen is a good approximation of the genuine
orbit of the system. Shadowing is a classical notion, which originated from the
works of Anosov, Bowen and others (see [9, 11] for historical remarks and more
recent advances). For more results on the IFS and shadowing properties, one
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is referred to [2, 3, 5, 6, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] and references
therein.

Throughout this paper, let N = {1, 2, 3, . . .} and Z+ = {0, 1, 2, . . .}.
For any σ = (λ0, λ1, λ2, . . .) ∈ ΛZ+

, denote

F0 = idX and Fσn = fλn ◦ · · · ◦ fλ0 for any n ∈ Z+.

A sequence {xi}+∞i=0 ⊂ X is called

(1) an orbit of F if there exists σ = (λ0, λ1, λ2, . . .) ∈ ΛZ+
such that fλi(xi) =

xi+1 for all i ∈ Z+, i.e., Fσi(x0) = xi+1 for all i ∈ Z+;

(2) an asymptotic pseudo-orbit of F if there exists σ = (λ0, λ1, λ2, . . .) ∈ ΛZ+

such that
lim

n→+∞
d(fλn(xn), xn+1) = 0.

Definition 1.1. [7] An IFS F has the limit shadowing property if every as-
ymptotic pseudo-orbit {xi}+∞i=0 is asymptotically shadowed by an orbit of some

point z ∈ X, i.e., there exists σ = (λ0, λ1, λ2, . . .) ∈ ΛZ+
such that

lim
n→+∞

d(Fσn(z), xn+1) = 0.

Consider the quotient space of the interval [0, 1] with 0 and 1 as a common
point. For convenience, this quotient space is denoted by [0, 1]/{0, 1}, or simply
[0, 1). Note that there exists an order for numbers in [0, 1). There exists a
natural homeomorphism between this quotient space [0, 1) and the unit circle
S1 contained in the complex plane C by the exponential map e2πix for x ∈ [0, 1).
For any sequence {zi}+∞i=0 ⊂ S1, there exists a sequence {xi}+∞i=0 ⊂ [0, 1) such
that zi = e2πixi .

Example 1.1. [7, Example 4.6] Consider the unit circle S1 with coordinate
x ∈ [0, 1) and denote by d the distance on S1 induced by the usual distance on
the real line, i.e., d(e2πix, e2πiy) = min{|x− y|, 1− |x− y|} for any x, y ∈ [0, 1).
For any c ∈ [0, 1), let φ1 : S1 → S1 be a dynamical system generated by the
map f1 : [0, 1)→ [0, 1) defined by

f1(x) = x− x2(x− 1

2
)(x− 1)2, x ∈ [0, 1),

and let φ2 : S1 → S1 be a dynamical system generated by the map f2 : [0, 1)→
[0, 1) defined by

f2(x) ≡ c, x ∈ [0, 1).

It is evident that φ1, φ2 are continuous self-maps defined on (S1, d). Let IFS
G(c) = {S1;φ1, φ2}.

Nia [5] obtained that every uniformly contracting IFS has the average
shadowing property and showed that Sierpinski IFS has the average shadowing
property. Recently, we proved that every IFS with the (asymptotic) average
shadowing property is chain mixing [16]. Nia and Ahmadi [7] proved that
every uniformly contracting or expanding IFS has the (exponential) limits
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shadowing property and the IFS G(
1
4
) does not have the exponential limit

shadowing property and proposed the following question:

Question 1. [7] Does the IFS G(
1
4
) in Example 1.1 have the limit shadowing

property?

This paper gives a positive answer to Question 1, that is, the IFS G(
1
4
)

has the limit shadowing property (see Corollary 2.1).

2. IFSs with the limit shadowing property

Theorem 2.1. Let φ1 : S1 → S1 be a dynamical system generated by a contin-
uously differentiable function f1 : [0, 1]→ [0, 1] satisfying that

(1) f1 has only three fixed points 0, p, 1 for some p ∈ (0, 1);
(2) f1 is a monotonically increasing function;
(3) min {f ′(0), f ′(1)} > 1 and f ′(p) < 1;

(3’) max{f ′(0), f ′(1)} < 1 and f ′(p) > 1;

and let φ2 : S1 → S1 be a dynamical system generated by a continuous function
f2 : [0, 1)→ [0, 1) defined by

f2(x) ≡ c for some c ∈ [0, 1).

If c ∈ (0, 1), then the IFS K(c) = {S1;φ1, φ2} has the limit shadowing property.

Proof. It suffices to prove that f1 satisfies (1), (2), and (3), as the rest for (3’)
can be proved similarly. First, it is easy to observe the following facts:

Fact (1) for any x ∈ (0, p), f1(x) > x;

Fact (2) for any x ∈ (p, 1), f1(x) < x;

Fact (3) for any x ∈ (0, 1), limn→+∞ f
n
1 (x) = p;

Fact (4) there exist an interval [a, b] ⊂ (0, 1) and 0 < α < 1 such that
p ∈ (a, b), f1([a, b]) ⊂ [a, b], and for any x ∈ [a, b], 0 < f ′(x) < α.

Given any fixed asymptotic pseudo-orbit {e2πixi}+∞i=0 ⊂ S1 of K(c), where

xi ∈ [0, 1), there exists σ = (λ0, λ1, λ2, . . .) ∈ {1, 2}Z
+

such that

lim
i→+∞

d(φλi(e
2πixi), e2πixi+1) = 0.

Let N (σ) = {i ∈ Z+ : λi = 2} and consider the following two cases:

Case 1. If N (σ) is a finite set, then there exists some K ∈ N such that
for any n ≥ K, λn = 1, implying that

lim
i→+∞

d(φ1(e
2πixi+K ), e2πixi+K+1) = 0,
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i.e., {e2πixi+K}+∞i=0 is an asymptotic pseudo-orbit of φ1. Applying [10, Theo-
rem 3.1.2] yields that (S1, φ1) has the limit shadowing property. Thus, there
exists z ∈ S1 such that

lim
i→+∞

d(φi1(z), e2πixi+K ) = 0.

Take z∗ = φ−K1 (z) and σ∗ = (1, 1, 1, . . .) ∈ {1, 2}Z+
. Hence,

lim
i→+∞

d(K
(c)
σ∗n−1

(z∗), e2πixi) = lim
i→+∞

d(φi1(z
∗), e2πixi) = 0.

Case 2. If N (σ) is an infinite set, suppose N (σ) = {k1, k2, k3, . . .}
with k1 < k2 < k3 < · · · . From Fact (3), it follows that there exists K ∈
N such that fK1 (c) > a. Take ζ = max{f ′(x) : x ∈ [0, 1)} > 1. For
any 0 < ε < min

{
1−α
100

, 1
4
(fK1 (c)− a), 1

4
(b− p)

}
, choose δ > 0 such that[

(K + 2)ζK + 1
1+α

]
δ < ε

2
. From limn→+∞ |fλn(xn)− xn+1| = 0, it follows that

there exists N ∈ N such that for any n ≥ N , |fλn(xn) − xn+1| < δ, implying
that

|fλkn (xkn)− xkn+1| = |c− xkn+1| < δ.

For any n ≥ N , consider the following two subcases:

(a) If kn+1 − kn ≤ K + 1, then for any i ∈ [kn + 1, kn+1],

|xi − fλi−1
◦ · · · ◦ fλkn+1

(c)|
≤ |xi − fλi−1

(xi−1)|+ |fλi−1
(xi−1)− fλi−1

(fλi−2
(xi−2))|+ · · ·

+|fλi−1
◦ · · · ◦ fλkn+1

(xkn+1)− fλi−1
◦ · · · ◦ fλkn+1

(c)|
= |xi − f1(xi−1)|+ |f1(xi−1)− f 2

1 (xi−2)|+ · · ·
+|f i−1−kn1 (xkn+1)− f i−1−kn1 (c)|

≤ δ + ζ · δ + · · ·+ ζ i−1−kn · δ ≤ (K + 1) · ζK · δ < ε

2
.

(b) If kn+1−kn > K+1, from (a), it follows that for any i ∈ [kn+1, kn+K+1],

|xi − fλi−1
◦ · · · ◦ fλkn+1

(c)| < ε

2
,

implying that

p+
ε

2
> fK1 (c) +

ε

2
= fλkn+K

◦ · · · ◦ fλkn+1
(c) +

ε

2

> xkn+K+1 > fλkn+K
◦ · · · ◦ fλkn+1

(c)− ε

2
= fK1 (c)− ε

2
.
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Applying mathematical induction, it follows from this, Fact (4), and

|xi − f i−(kn+K+1)
1 (xkn+K+1)|

≤ |xi − fλi−1
(xi−1)|+ |fλi−1

(xi−1)− fλi−1
◦ fλi−2

(xi−2)|+ · · ·
+|fλi−1

◦ · · · ◦ fλkn+K+2
(xkn+K+2)− f i−(kn+K+1)

1 (xkn+K+1)|
= |xi − f1(xi−1)|+ |f1(xi−1)− f 2

1 (xi−2)|+ · · ·
+|f i−(kn+K+2)

1 (xkn+K+2)− f i−(kn+K+1)
1 (xkn+K+1)|

that for any i ∈ (kn +K + 1, kn+1],

{xkn+K+1, . . . , xi} ⊂ [a, b] .

This, together with Fact (4), implies that

|xi − f i−(kn+K+1)
1 (xkn+K+1)|

≤ |xi − fλi−1
(xi−1)|+ |fλi−1

(xi−1)− fλi−1
◦ fλi−2

(xi−2)|+ · · ·
+|fλi−1

◦ · · · ◦ fλkn+K+2
(xkn+K+2)− fλi−1

◦ · · · ◦ fλkn+K+1
(xkn+K+1)|

= |xi − f1(xi−1)|+ |f1(xi−1)− f1(f1(xi−2))|+ · · ·
+|f i−(kn+K+2)

1 (xkn+K+2)− f i−(kn+K+2)
1 (f1(xkn+K+1))|

≤ δ + α · δ + · · ·+ αi−(kn+K+2) · δ < 1

1− α
δ.

Meanwhile,

|f i−(kn+K+1)
1 (xkn+K+1)− f i−(kn+K+1)

1 (fK1 (c))|
≤ αi−(kn+K+1)|xkn+K+1 − fK1 (c)|

< αi−(kn+K+1) · ε
2
<
ε

2
.

Then,

|xi − f i−kn−11 (c)| < 1

1− α
δ +

ε

2
< ε.

Note that for any z ∈ [0, 1) and any n ∈ N, K
(c)
σkn (e2πiz) = e

π
2
i. This,

together with (a) and (b), implies that for any z ∈ [0, 1) and any i ∈ [kn +
1, kn+1] (n ≥ N),

d(K(c)
σi−1

(e2πiz), e2πixi) < ε.

Therefore, by the arbitrariness of ε, one has

lim
i→+∞

d(K(c)
σi−1

(e2πiz), e2πixi) = 0.

Summing up Cases 1 and 2 yields that K(c) has the limit shadowing
property. �

Corollary 2.1. The IFS G(c) in Example 1.1 has the limit shadowing property
for any c ∈ (0, 1). In particular, G( 1

4
) has the limit shadowing property.

Proof. Applying Theorem 2.1, this holds trivially. �
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Remark 2.1. K(0) in Theorem 2.1 does not have the limit shadowing property.
In fact, it follows from Fact 3) that for any k ≥ 2, there exists nk > 2k such
that p

2
< fnk1 ( 1

k
) < p. Let L1 = 0 and Lk = 2(n2 + · · · + nk) for all k ≥ 2.

Choose a sequence ξ = {xi}+∞i=0 ⊂ [0, 1
2
) as following:

xi =

{
0, i ∈ Lk for some k ∈ N,
f i−Lk−11 ( 1

k+1
), i ∈ [Lk + 1, Lk+1) for some k ∈ N,

and take σ = (λ0, λ1, λ2, . . .) ∈ {1, 2}Z
+

with

λi =

{
2, i ∈ {Lk − 1 : k ≥ 2},
1, otherwise.

Figure 1. The illustration diagram of the construction of the
sequence ξ = {xi}+∞i=0 .

It is easy to see that

lim
i→+∞

|fλi(xi)− xi+1| = 0,

i.e., {e2πixi}+∞i=0 is an asymptotic pseudo-orbit of K(0). For any z = e2πix ∈ S1

with x ∈ [0, 1) and any σ′ = (λ′0, λ
′
1, λ
′
2, . . .) ∈ {1, 2}Z

+
, it can be verified that

(1) if there exists some i ∈ Z+ such that λ′i = 2 or x = 0, then for any k ≥ i,

d(K
(0)

σ′Lk+nk+1

(z), e2πixLk+nk+1+1) = d(1, e2πif
nk+1
1 ( 1

k+1
)) ≥ min

{p
2
, 1− p

}
;

(2) if for any i ∈ Z+, λ′i = 1 and x ∈ (0, 1), then limi→+∞K
(0)

σ′i
(z) = eπi,

implying that

lim
k→+∞

d(K
(0)

σ′Lk−1
(z), xLk) = d(eπi, 1) =

1

2
> 0.

Then, {e2πixi}+∞i=0 can not be asymptotically shadowed by {z,K(0)

σ′0
(z),K

(0)

σ′1
(z), . . .}.

Therefore, K(0) does not have the limit shadowing property due to the arbi-
trariness of z and σ′.

The main reasons ensuring that the IFS K(c) has the limit shadowing
property for any c ∈ (0, 1) are that all points in (0, 1) are attracted to p after
iterations by using f1 and that p is a hyperbolic fixed point of f1. However, we
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do not know whether the following IFS H(c) has the limit shadowing property
for any c ∈ (0, 1

2
) ∪ (1

2
, 1), when almost all points of f1 are attracted to non-

hyperbolic fixed points.
For any c ∈ [0, 1), let ψ1 : S1 → S1 be a dynamical system generated by

the map f1 : [0, 1)→ [0, 1) defined by

f1(x) = x+ x2(x− 1

2
)(x− 1)2,

and let ψ2 : S1 → S1 be a dynamical system generated by the map f2 : [0, 1)→
[0, 1) defined by

f2(x) ≡ c.

Let IFS H(c) = {S1;ψ1, ψ2}. Clearly, H( 1
2
) does not have the limit shadowing

property.
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