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OPTIMIZATION 
 

Octav OLTEANU
1
, Janina Mihaela MIHĂILĂ

2
 

Using minimum principle for concave functions, we prove a related 

constrained inequality, firstly for finite sums. The case of infinite sums is deduced 

from the previously mentioned inequality, passing to the limit. In the end, a similar 

result for a class of concave operators taking values in the positive cone of a 

special space of self-adjoint operators is discussed. Two related types of examples 

are given. 
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1. Introduction 

The importance of the notion of an extreme point of a convex subset, of 

Carathéodory’s and Krein-Milman theorems, finding the maximum point(s) of a 

real convex continuous function on such a subset and applications can be found in 

[1]. Generalizations to concave (or convex) operators can be got by means of the 

background contained in [2], [3]. Various further applications and/or 

generalizations are contained in [4]-[12] and references there. The proof of 

Carathéodory’s theorem can be found in [1]. From optimization viewpoint, a main 

result is the maximum principle for convex continuous real functions  on a 

convex compact finite dimensional set  It says that the maximum is attained at 

an extreme point of  In the case of finite dimensional closed convex unbounded 

subsets , a similar result remains valid for a convex continuous real function on 

 provided that the set  of all extreme points is not empty, and the 

maximum of  on  is attained at some point(s) of . Due to Krein-Milman 

theorem, for a convex compact subset  of an arbitrary (Hausdorff) locally 

convex space and  convex and continuous, we have 
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Applications of Krein-Milman theorem to the moment problem can be found in 

[9]. For optimization related to the moment problem see [8], [10]. Of course, to 

any maximum principle for convex functions there is a corresponding minimum 

principle for concave functions. The main purpose of the present work is to prove 

a constrained inequality related to an infinite sum of concave operators. Some of 

the results mentioned above are applied. The rest of the paper is organized as 

follows. In Section 2, the first aim is to apply the minimum principle for special 

concave continuous real functions on finite dimensional simplexes, in order to 

prove inequalities for such functions. Passing to the limit, from these inequalities 

one derives similar statements for infinite sums of special concave functions. Two 

classes of examples are pointed out. Section 3 presents an operatorial version of 

the first result of section 2. Section 4 concludes the paper.   
 

2. An inequality related to a special class of concave functions 

Let  be a natural number,  a concave 

strictly increasing continuous function, such that  

  

Theorem 2.1.  (a) For any  the following 

relation holds true: 

                                    
If  is strictly concave, then equality occurs in (1) if and only if there exists 

 such that  and  

(b) Using the same notations und hypothesis, under the weaker constraint  

 for a strictly concave and strictly increasing function , the 

same relation (1) holds, and equality occurs in the same case as that mentioned at 

point (a). 

Proof. (a) Define the  dimensional simplex  

 

 
 

This is a simplex of vertices  (the set 

 equals the set ).  is contained in the  

dimensional linear variety defined by 
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for any  On the other hand, the function  

 
is concave and continuous, as a sum of  functions having these two properties. 

Application of the minimum principle for  leads to 

 

 
 

This proves the first assertion of the theorem. Assume now that  is strictly 

concave. Then so is  If equality occurs in the relation from above for 

 then, due to Carathéodory’s theorem, there exist a 

subset  and  

such that  Now strict concavity of  and equality in the relation in 

discussion yield  

 

 

 
 

which is a contradiction. This concludes the proof of (a). To prove (b), consider 

the unbounded set   

 

 
 

Application of the results of (a) leads to 

 

 

 
 

Observe that the minimum of  on the unbounded closed subset  is attained at 

one of the extreme points of   Latter points are exactly the extreme points of 

 The conclusion follows.                                                                           □   
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Corollary 2.1.     Let  be a natural number and  

 
 

 

Then the following relation holds 

 
where equality occurs if and only if  and 

for some  

Corollary 2.2. Let  be a concave continuous strictly increasing function on 

 a bounded sequence of positive numbers such that  

Assume that ,   Then for any convergent 

series  of nonnegative numbers, we have 

 
Proof. Observe the series in the left hand side of the above inequality is 

convergent, because of 

 

 
 

For each  from Theorem 2.1 we know that  

 

 

 

Passing through the limit over  one obtains 

 

 

 
This concludes the proof.                                                                                   □ 

Theorem 2.2.      Let  be a strictly increasing strictly concave continuous real 
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function on  such that  and the associated function 

 is strictly increasing on .  

(a) Let  be such that 

  where  is a given constant. Then we have 

 

and equality occurs if and only if  

where  and the non- null component(s) of  is (are)  

 

(b) If  is a bounded sequence of positive numbers with  

assuming that   then for any sequence  of 

nonnegative numbers such that the sum ,we have 

 
Proof. To prove (a), one repeats the idea of the proof of Theorem 2.1, where we 

define the simplex 

 

 
 Then 

 

 

 

 

 
 

Due to concavity property of  one has  
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where the last inequality follows from the hypothesis on the function 

, which was assumed to be strictly increasing. The last 

assertion from (a) as well as that from (b), can be deduced in a similar way to the 

proof of Theorems 2.1 and Corollary 2.2, also using what we have already 

discussed of in the present proof.                                                                     □  

Example 2.1.   All assumptions in the statement of Theorem 2.2 are valid in the 

particular case when     

Example 2.2. The function  satisfies all 

requirements of Theorem 2.2. Verifying these assertions is an elementary task. 

Therefore, we shall omit the proof. In particular, Theorem 2.1 can be applied for 

these functions.  

Remark 2.1. The inequality of Theorem 2.2 point (a) remains valid under the 

weaker constraints   

The next result refers to some properties of the function 

 The proof will be omitted because is very 

elementary. 

Proposition 2.1. (a) The function  is strictly increasing, strictly concave on 

 and the horizontal line of equation  is an asymptote for the graph of 

the function  at infinity. 

(b) The unique fixed point  of the function  is  . The 

function  is a contraction from  

  to , 

of contraction constant  . Choosing  we 

have the following well-known relation controlling the rapidity of convergence 

 

 
 

(c)  Denote by  the collection of all functions  and let    

 

Then the unique fixed point of  is the constant function  
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(d) The unique self-adjoint operator  with the spectrum  

which verifies the equality  

 
is  

(e) The convex cone of all strictly increasing, strictly concave continuous functions 

from  to itself, is closed with respect to the operation of composition of 

functions. The set of all continuous strictly increasing strictly concave functions 

from  to itself, having a common fixed point, is convex and closed with 

respect to composition of functions operation. 
Similar results to (a)-(d) hold true for the function  

 

The unique fixed point of this function is  Observe 

that  

 
 

     3.  An operatorial variant  

We start this section by recalling some known results on self-adjoint (linear) 

operators acting on an arbitrary complex Hilbert space    Let  be the real 

vector space of self-adjoint operators from  to itself. Then   is an ordered 

vector space, endowed with the order relation defined by 

 
Unfortunately, for arbitrary  the supremum  or/and 

the infimum  might not exist in  However, the following 

main result holds true. 

Theorem 3.1. Let  be a nondecreasing upper bounded sequence of 

operators in  Then there exists  in  and 

 (  is the pointwise limit of the sequence 

). 

The proof of this theorem can be found in [2]. Obviously, a similar conclusion 

follows for decreasing bounded below sequences  of elements of  

Remark 3.1. A converse of Theorem 3.1 holds true in a much more general setting 

(its proof is obvious). Namely, let  be an ordered vector space, which is also a 

topological vector space such that the positive cone  is topologically closed. If 

 is an increasing sequence in  such that there exists  

, then there exists  and  
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To avoid the fact that  is not a vector lattice, as well as the non- 

commutativeness of multiplication of elements from   for any   one uses 

the construction of the following space  

Theorem 3.2. Let  

 

Then  is a commutative (real) Banach algebra and an order-complete Banach 

lattice, where 

 
 equals the positive square root of the positive self-adjoint operator ). 

The proof of Theorem 3.2 can be found in [3]. Having in mind these background-

type results and the above notations, we can prove the next main new theorem of 

this work. In the sequel, for  the space  will be that defined in 

Theorem 3.2. For a continuous real function  on the spectrum  of an 

operator  we will denote also by  the mapping obtained from  by means 

of functional calculus attached to   

Theorem 3.3. Let  be a positive operator, with the spectrum 

  a sequence of elements in  such that there exist 

 with the property that the spectrums  for all 

 Let  be a concave continuous increasing function on  such that 

 

and  a convergent numerical series of positive terms. Denote 

 Suppose there exists  such that 

 

Then the following inequalities hold 

 
(  is the identity operator). 

Proof. Observe the conditions on the spectrums of  imply: 

 
where is the (positive) spectral measure attached to the self-adjoint operator 

 Similarly, we have  for all natural numbers  hence 

 On the other hand, we have 
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Consequently, also using Theorem 3.1, we derive that the series 

 

  

 

is convergent in , because of 

 
The next step is to prove a result similar to that from Theorem 2.1, in the 

operatorial setting. The conclusion of the present theorem will follow via a 

passing to the limit operation. Let  be an arbitrary natural number,  

 

 
Obviously, for any fixed  the real function  is concave on 

, so that  is concave on . Let 

 The following relations hold 

 

 

 

 

 

 
 

Hence  is concave. It follows that ,   is 

concave too, for any  (one can multiply by a positive operator  both 
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members of an inequality, preserving the sense of that inequality, because the 

product of two self-adjoint positive permutable operators is self-adjoint and 

positive). On the other hand, it is straightforward that a finite sum of concave 

operators from a convex subset of a vector space to an ordered vector space is 

concave. It results that the operator  defined by (3) is concave. On 

the other hand, the set of extreme points of  is  where 

 
Let  Carathéodory’s theorem leads to the existence of 

 such that  Now we apply Jensen 

inequality for the concave operator  (which can be proved by induction, as in 

the case of concave real functions). Obviously, we have 

 

It results 

 
To conclude the proof, observe that the Lipchitz condition on  in 

variable  uniformly with respect to parameter  leads to 

 
 

 
This proves that  

 
Passing to the limit, also using (4), we get 

 

 

 
where the limits are considered in the pointwise convergence topology. Notice 

that convergence in the space Y defined in Theorem 3.2 implies pointwise 

convergence. The last relation in the statement follows too, because of 

.      □              

Remark 3.2. With the notations and under hypothesis of Theorem 3.3, consider the 

function  Application of Lagrange 

theorem yields 
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Similarly, for  considering the function  

 

 

one obtains 

 

 
where the Lipchitz constant  related to the variable does not depend 

on the parameter  Thus both examples 2.1 and 2.2 for  are suitable for 

the operatorial version of the first inequality (2) proved in Theorem 3.3. 

Corollary 3.1. Under the hypothesis and using the notations from Theorem 3.3, 

the following relations hold true 

 
where . 

Proof. Observe that for any  one has 

 
We have   In particular,  is not 

an element of  so that  is invertible.  Moreover, the following 

relations hold 

 
Integrating with respect to the spectral measure  one obtains 

 
Thus, the first inequality in the statement follows from Theorem 3.3. For the 

second one, observe that 

 
This concludes the proof.                                                                                    □  

 

4. Conclusion 

 

This work deals with inequalities related to a class of concave functions, 

by means of finite and respectively infinite sums of concave functions having 
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additional properties. These relations can be adapted to an operatorial version as 

well.  An example involving the function  is pointed out. Another 

example is briefly discussed. Applications to minimization problems could be 

obtained for particular other functions and operators verifying the required 

conditions. The linear constraints from Theorems 2.1 and 2.2 could be replaced by 

other linear constraints, accompanied by appropriate modifications. 
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