FUNDAMENTALS OF Γ-ALGEBRA AND Γ-DIMENSION

A. H. Rezaei1, B. Davvaz2, S. O. Dehkordi3

In this paper, we generalize the notion of algebra over a field. A Γ-algebra is an algebraic structure consisting of a vector space V, a groupoid Γ together with a map from $V \times \Gamma \times V$ to V, usually called multiplication. We introduce the notion of Γ-dimension and give some examples and prove some properties of Γ-algebras. Then, we give some results about $m \times n$ real matrices. Also, we study the notion of regular Γ-algebra and we obtain some results in this respect. Finally, we define the notions of T-functor and H-system over a Γ-algebra and prove some results. Moreover, we see that there exists a covariant functor between the categories of Γ-algebras and algebras. We see that this functor is exact.

Keywords: Γ-algebra, homomorphism, regular Γ-algebra, H-system, T-functor.

MSC2010: 16N60, 16Y30

1. Γ-algebra

In [5], Nobusawa introduced the notion of Γ-ring, as more general than ring. Barnes [2] weakened slightly the conditions in the definition of the Γ-ring in the sense of Nobusawa. After these two papers are published, many mathematicians made good works on Γ-ring in the sense of Barnes and Nobusawa. Luh [4] and Kyuno [3] studied the structure of Γ-rings and obtained various generalization analogous to corresponding parts in ring theory. In [1], Chakraborty and Pau defined an isomorphism, an anti-isomorphism and a Jordan isomorphism in a Γ-ring and developed some important results relating to these concepts, also see [6, 7].

An algebra over a field is a vector space equipped with a bilinear vector product. That is to say, it is an algebraic structure consisting of a vector space together with an operation, usually called multiplication, that combines any two vectors to form a third vector; to qualify as an algebra, this multiplication must satisfy certain compatibility axioms with the given vector space structure, such as distributivity. In other words, an algebra over a field is a set together with operations of multiplication, addition, and scalar multiplication by elements of the field. Now, we generalize this notion.

1PhD Student, Department of Mathematics, Yazd University, Yazd, Iran

2Professor, Department of Mathematics, Yazd University, Yazd, Iran, e-mail: davvaz@yazd.ac.ir and bdavvaz@yahoo.com

3Doctor, Department of Mathematics, Hormozgan University, Bandar-Abbas, Iran
Definition 1.1. Let \(\Gamma \) be a groupoid and \(V \) be a vector space over a field \(F \). Then, \(V \) is called a \(\Gamma \)-algebra over the field \(F \) if there exists a mapping \(V \times \Gamma \times V \to V \) (the image is denoted by \(x \alpha y \) for \(x, y \in V \) and \(\alpha \in \Gamma \)) such that the following conditions hold:

1. \((x + y) \alpha z = x \alpha z + y \alpha z, \\ x \alpha (y + z) = x \alpha y + x \alpha z,\)
2. \(x(\alpha + \beta)y = x \alpha y + x \beta y,\)
3. \((cx) \alpha y = c(x \alpha y),\)
4. \(0 \alpha y = y \alpha 0 = 0,\)
 for all \(x, y, z \in V, \ c \in F \) and \(\alpha \in \Gamma \).

Moreover, a \(\Gamma \)-algebra is called associative if

5. \((x \alpha y) \beta z = x \alpha (y \beta z),\)

and unital if for every \(\alpha \in \Gamma \), there is an element \(1_\alpha \) in \(V \) such that \(1_\alpha x = x = x 1_\alpha \) for all non-zero elements of \(V \).

A non-empty subset \(V' \) of a \(\Gamma \)-algebra \(V \) is called a \(\Gamma \)-subalgebra if it is a subspace of \(V \) and for all \(x, y \in V' \) and \(\alpha \in \Gamma \) we have \(x \alpha y \in V' \). A subset \(I \) of a \(\Gamma \)-algebra \(V \) is called a left (right) ideal if it is a \(\Gamma \)-subalgebra of \(V \) and for all \(a \in I \) and \(v \in V \) and \(\alpha \in \Gamma \) we have \(v \alpha a \in I \) (\(a \alpha v \in I \)) and is a (two-sided) ideal if it is both a left and right ideal. It easy to see that \(V \) and \(\{0\} \) are ideals of \(V \). An ideal \(I \) such that \(\{0\} \subset I \subset V \) is called proper.

Let \(X \) be a subset of \(\Gamma \)-algebra \(V \). Then, the smallest left (right, two-sided) ideal of \(V \) containing \(X \) exists and we shall call it the left (right or two-sided) ideal generated by \(X \), and will be denoted by \(\langle X \rangle \) (\(\langle X \rangle_r \) or \(\langle X \rangle_l \)). If \(X = \{x\} \), then we also write \(\langle x \rangle \) instead of \(\langle \{x\} \rangle \).

Example 1.1. Let \(A \) be a vector space and \(\Gamma \) be a groupoid. For every \(x, y \in A \) and \(\alpha \in \Gamma \) we define \(x \alpha y = 0 \). Then, \(A \) is a \(\Gamma \)-algebra.

Example 1.2. Let \(F \) be a field, \(V \) and \(W \) be two vector spaces and \(A = \text{Hom}_F(V, W), \\ \Gamma = \text{Hom}_F(W, V) \). For every \(f, g \in A \) and \(\alpha \in \Gamma \) we define \(f \alpha g = f \circ \alpha \circ g \), where \(\circ \) is the combination operation. Then, \(A \) is an associative \(\Gamma \)-algebra.

Example 1.3. Let \(A \) and \(\Gamma \) be the sets of \(n \times m \) and \(m \times n \) matrices over the field \(F \), respectively. Then, it is easy to see that \(A \) is an associative \(\Gamma \)-algebra.

Example 1.4. Consider the pervious example. Let \(A \) be the set of \(3 \times 2 \) matrices over the field of real numbers \(\mathbb{R} \) and

\[
\Gamma = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a, b \in \mathbb{R} \right\}.
\]

Then, \(A \) is an associative \(\Gamma \)-algebra and

\[
B = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} : x, y \in \mathbb{R} \right\},
\]

is a \(\Gamma \)-subalgebra of \(A \).
Let V_1 and V_2 be Γ_1- and Γ_2-algebras respectively, T be a linear transformation from V_1 to V_2, f be a homomorphism from Γ_1 to Γ_2. Then, we say that (T,f) is a (Γ_1, Γ_2)- homomorphism (homomorphism) from (V_1, Γ_1) to (V_2, Γ_2) if $(T,f)(x\alpha y) = T(x)f(\alpha)f(y)$.

Example 1.5. Let V_1 be the vector space of $n \times 1$ real matrices generated by $a = (a_{1i})_{n \times 1}$ such that $a_{11} = 1$ and $a_{1i} = 0$ for $i \neq 1$, $\Gamma_1 = \{ (\begin{array}{c} r_1 \\ 0 \\ \vdots \\ 0 \end{array}) : r_1 \in \mathbb{R} \}$, V_2 be the vector space of $m \times 1$ real matrices generated by $b = (b_{1i})_{m \times 1}$ such that $b_{11} = 1$ and $b_{1i} = 0$ for $i \neq 1$, $\Gamma_2 = \{ (\begin{array}{c} r_2 \\ 0 \\ \vdots \\ 0 \end{array}) : r_2 \in \mathbb{R} \}$, T be the linear transformation from V_1 to V_2 with the matrix

$$
\begin{pmatrix}
 k & 0 & \cdots & 0 \\
 0 & 0 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & 0
\end{pmatrix}
$$

where $0 \neq k \in \mathbb{R}$ and $f : \Gamma_1 \longrightarrow \Gamma_2$ defined by $f(X) = \frac{1}{k} \times X$. Then, (T,f) is a homomorphism from V_1 to V_2.

For non-empty subsets A and B of Γ-algebra V and non-empty subset Γ_1 of Γ. Let

$$
A\Gamma_1 B := \{ a\gamma b : a \in A, b \in B \text{ and } \gamma \in \Gamma_1 \},
$$

$$
A\Gamma_1 \Sigma B := \left\{ \sum_{i=1}^{n} a_i \gamma_i b_i : a_i \in A, b_i \in B, \gamma_i \in \Gamma_1 \text{ and } n \in \mathbb{N} \right\},
$$

$$
\mathbb{Z}X = \left\{ \sum_{i=1}^{n} n_i x_i : n_i \in \mathbb{Z}, x_i \in X \right\}.
$$

If $A = \{a\}$, then we also write $a\Gamma_1 B$ instead of $\{a\}\Gamma_1 B$.

An ideal P is called prime if $A\Gamma_1 \Sigma B \subseteq P$, then $A \subseteq P$ or $B \subseteq P$ and P is called semiprime if $A\Gamma_1 \Sigma A \subseteq P$ then $A \subseteq P$.

Lemma 1.1. Let V be a Γ-algebra and X be a non-empty subset of V. Then,

1. $<X> = \mathbb{Z}X + X\Gamma_1 \Sigma V$,
2. $<X> = \mathbb{Z}X + V\Gamma_1 \Sigma X$,
3. $<X> = \mathbb{Z}X + X\Gamma_1 \Sigma V + V\Gamma_1 \Sigma X + V\Gamma_1 \Sigma X\Gamma_1 \Sigma V$.

Definition 1.2. Let V be a Γ-algebra. Then, the ordinary dimension of V as a vector space is called the dimension and the dimension of the subspace of V generated by all products of the form $a\alpha b$ is called the Γ-dimension.

Example 1.6. Let A be the vector space of 2×3 real matrices with the basis

$$
\left\{ \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}.
$$
and Γ be a groupoid of 3×2 matrices of the form \[
\begin{pmatrix}
 r & 0 \\
- r & 0 \\
 0 & 0
\end{pmatrix}, \text{ where } r \in \mathbb{Z}.
\] Then, A is a Γ-algebra and the dimension of A is 4 but the Γ-dimension is 0. Since
\[
\begin{pmatrix}
 1 & 1 & 0 \\
 0 & 0 & 0 \\
 1 & 1 & 0
\end{pmatrix}\begin{pmatrix}
 r & 0 \\
- r & 0 \\
 0 & 0
\end{pmatrix} = \begin{pmatrix}
 0 & 0 \\
 0 & 0 \\
 0 & 0
\end{pmatrix},
\]
\[
\begin{pmatrix}
 0 & 0 & 0 \\
 1 & 1 & 0 \\
 0 & 0 & 0
\end{pmatrix}\begin{pmatrix}
 r & 0 \\
- r & 0 \\
 0 & 0
\end{pmatrix} = \begin{pmatrix}
 0 & 0 \\
 0 & 0 \\
 0 & 0
\end{pmatrix}.
\]

Example 1.7. Suppose that
\[
A = \left\{ \begin{pmatrix}
 a & 0 & 0 & 0 \\
 0 & 0 & b & c
\end{pmatrix} : a, b, c \in \mathbb{R} \right\}
\] and $\Gamma = \left\{ \begin{pmatrix}
 r & 0 \\
 0 & 0
\end{pmatrix} : r \in \mathbb{R} \right\}$.

Then, the dimension of A is 3 and the Γ-dimension of A is 1.

2. Results about $m \times n$ matrices

Lemma 2.1. Let A be the vector space of $m \times n$ real matrices and Γ be a set of $n \times m$ real matrices, where the ij entire is a real number and the others are zero. Then, the elements of Γ-algebra A are $m \times n$-matrices with dependent rows.

Proof. The proof is straightforward. \square

Proposition 2.1. Let A be the vector space of $m \times n$ real matrices and Γ is a set of $n \times m$ real matrices with $1 \leq k \leq mn$ non-zero entries. Then, every element of Γ-algebra A is the sum of k, $m \times n$ real matrices with dependent rows.

Proof. The proof obtains by Lemma 2.1 and the following relation,
\[
a(a_1 + a_2 + \cdots + a_k)b = a_1b + a_2b + \cdots + a_kb,
\]
where $a, b \in A$ and $a_i \in \Gamma$. \square

Proposition 2.2. Let A be the vector space of $m \times n$ real matrices and Γ is a groupoid of $n \times m$ real matrices with at least one non-zero entire. Then, the dimension and Γ-dimension of A are equals.

Proof. With out loss of generality, suppose that $a_{n \times m} = \begin{pmatrix}
 r & 0 & \cdots & 0 \\
 0 & 0 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & 0
\end{pmatrix}$ is an arbitrary element of Γ. Then, the basis element E_{ij} obtained from the product $A_{m \times n}a_{n \times m}B_{m \times n}$, where $A_{m \times n} = (a_{i'j'})$, $B_{m \times n} = (b_{i'j'})$
\[
a_{i'j'} = \begin{cases}
 \frac{1}{r} & i' = i, j' = 1 \\
 0 & \text{a.w}
\end{cases}
\]
\[b_{i', j'} = \begin{cases} 1 & i' = 1, j' = j \\ 0 & \text{o.w} \end{cases} \]

This completes the proof. \[\square\]

3. Regular Γ-algebra

A Γ-algebra V is regular if for every $x \in V$, there exists $y \in V$ and $\alpha, \beta \in \Gamma$ such that

\[x = x\alpha y\beta x. \]

In this case x is called an \((\alpha, \beta)\)-regular element. An ideal I of a Γ-algebra V is called \((\alpha, \beta)\)-regular if every element of I is \((\alpha, \beta)\)-regular. An element x of a Γ-algebra V is called α-idempotent if $x\alpha x = x$.

Example 3.1. Let F be a field, $V = F \times F$ and Γ be a sub-groupoid of F. For every $\alpha, \beta \in \Gamma$ and $x_1, x_2, x_3, x_4 \in F$, we define

\[(x_1, x_2) \oplus (x_3, x_4) = (x_1 + x_3, x_2 + x_4), \]

\[(x_1, x_2)(\alpha, \beta)(x_3, x_4) = (x_1\alpha x_3, x_2\beta x_4). \]

Then, V is a regular Γ-algebra.

Notice: Let V be a regular Γ-algebra. Then, $< x >_r = x\Gamma\Sigma V$. Indeed, since V is regular there exist $\alpha, \beta \in \Gamma$ and $y \in V$ such that $x = x\alpha y\beta x$. Hence, $Zx = Z(x\alpha y\beta x) \subseteq x\Gamma\Sigma V$. This implies that $< x >_r = x\Gamma\Sigma V$.

Proposition 3.1. Let V be an associative regular Γ-algebra such that every element is \((\alpha, \beta)\)-regular. Then, every finitely generated right (left) ideal of V is generated by idempotent elements.

Proof. Suppose that $x \in V$. Then, there exists $y \in V$ such that $x = x\alpha y\beta x$. We have $(x\alpha y)(\alpha, \beta)(x\alpha y) = (x\alpha y\beta x)\alpha y = x\alpha y$. Hence, $x\alpha y$ is a β-idempotent element of V. We see that

\[< x\alpha y >_r = (x\alpha y)\Gamma\Sigma V = \left\{ \sum_{i=1}^{n} (x\alpha y)\beta_i v_i : n \in \mathbb{N}, v_i \in V, \beta_i \in \Gamma \right\} \]

\[= \left\{ \sum_{i=1}^{n} x\alpha (y\beta_i v_i) : n \in \mathbb{N}, v_i \in V, \beta_i \in \Gamma \right\} \]

\[\subseteq x\Gamma\Sigma V = < x >_r. \]

On the other hand, since

\[x = x\alpha y\beta x \in (x\alpha y)\Gamma\Sigma V, \]

\[< x >_r \subseteq < x\alpha y >_r. \] Therefore, $< x >_r = < x\alpha y >_r$.

Without lose of generality we suppose that $I = < x, y >_r$. Now, $< x >_r = < a >_r$, for some β-idempotent element and since $y - a\beta y \in < x, y >_r$, we have $< a >_r \subseteq < x >_r$. Therefore, $< a >_r = < x >_r$.
Let $x, y >_r = < a, y - a \beta y >_r$, and there exists a β-idempotent element $b \in V$ such that $< b >_r = < y - a \beta y >_r$. Consequently, $a \beta b = 0$ and
\[
(b - b \beta a)\beta(b - b \beta a) = b \beta b - (b \beta b)\beta a - (b \beta a)\beta b + (b \beta a)\beta(b \beta a) = b - b \beta a;
\]
\[
b \beta(b - b \beta a) = b \beta b - b \beta(b \beta a) = b \beta b - (b \beta b)\beta a = b - b \beta a.
\]
We conclude that $< b - b \beta a >_r = < b >_r = < y - a \beta y >_r$.

Therefore, $< x, y >_r = < a, b - b \beta a >_r$. This completes the proof. □

Proposition 3.2. Let V be a Γ-algebra, $x_1 = x - x \alpha y \beta x$ and $x_1 = x_1 \alpha a \beta x_1$ for some $a \in V$. Then, $x = x_1 \alpha b \beta x$ for some $b \in V$.

Proof. We observe that
\[
x = x_1 + x \alpha y \beta x = x_1 \alpha a \beta x_1 + x \alpha y \beta x
\]
\[
= (x - x \alpha y \beta x)\alpha a \beta(x - x \alpha y \beta x) + x \alpha y \beta x
\]
\[
= x\alpha(a - a \beta x \alpha y - y \beta x \alpha + y \beta x \alpha a x \beta y)\beta x.
\]
This implies that $x = x_1 \alpha b \beta x$ for some, $b \in a - a \beta x \alpha y - y \beta x \alpha + y \beta x \alpha a x \beta y$. This completes the proof. □

Lemma 3.1. Let $V_1 \leq V_2$ be ideals in an associative Γ-algebra V. Then, V_2 is (α, β)-regular if and only if V_1 and $[V_2 : V_1]$ are both (α, β)-regular.

Proof. Suppose that V_2 is (α, β)-regular. Then, obviously $[V_2 : V_1]$ is (α, β)-regular.

Let $x \in V_1$. Then, we have $x = x \alpha y \beta x$ for some $y \in V_2$. We set $b = y \beta x \alpha y$. Then, b is an element of V_1 such that
\[
x_1 \alpha b \beta x = x\alpha(y \beta x \alpha y)\beta x = (x \alpha y \beta x)\alpha y \beta x = x \alpha y \beta x = x,
\]
Then, V_1 is (α, β)-regular.

Conversely, assume that V_1 and $[V_2 : V_1]$ are both (α, β)-regular and $x \in V_1$. Hence, there exist $\alpha, \beta \in \hat{\Gamma}$ and $y + V_1 \in [V_2 : V_1]$ such that
\[
x + V_1 = (x + V_1)\alpha(y + V_1)\beta(x + V_1) = x \alpha y \beta x + V_1,
\]
where $\hat{\Gamma} = \{ \gamma : \gamma \in \Gamma \}$. Hence, $x - x \alpha y \beta x \in V_1$ for some $y \in V_2$. Since V_1 is (α, β)-regular,
\[
x - x \alpha y \beta x = (x - x \alpha y \beta x)\alpha z \beta(x - x \alpha y \beta x)
\]
for some $z \in V_1$, from which we conclude that $x = x_1 \alpha b \beta x$. Therefore, V_2 is (α, β)-regular. □

Proposition 3.3. Let V be a regular associative Γ-algebra such that every element is (α, α)-regular. Then, $\theta = \{ x \in V : x \alpha y = y \alpha x \text{ for all } y \in V, \alpha \in \Gamma : x = x \alpha y \alpha x \}$ is (α, α)-regular.

Proof. Suppose that $x \in \theta$. There exists $y \in V$ such that $x = x \alpha y \alpha x$. We set $z = y \alpha x \alpha y$. Then, we obtain that
\[
x \alpha z \alpha x = x \alpha(y \alpha x \alpha y)\alpha x = (x \alpha y \alpha x)\alpha y \alpha x = x \alpha y \alpha x = x.
\]
We have
\[z\alpha v = y\alpha x\alpha y = (y\alpha y)\alpha\alpha x\alpha x = y\alpha x\alpha y\alpha x\alpha y = y\alpha x\alpha v.
\]

In the same way, \(v\alpha z = y\alpha x\alpha y\) = \(y\alpha x\alpha v = z\alpha v\), where \(v \in V\). Therefore, \(z \in \theta\) and \(\theta\) is \((\alpha, \alpha)\)-regular. \(\square\)

Let \(V\) be a \(\Gamma\)-algebra. An equivalence relation \(\rho\) on \(V\) is called regular if for every \(a_1, a_2, b_1, b_2\), such that \((a_1, b_1)\) and \((a_2, b_2)\) \(\in \rho\) and for all \(\alpha \in \Gamma\), \((a_1\alpha a_2, b_1\alpha b_2)\) \(\in \rho\) and is called strong regular if \((a_1 + a_2, b_1 + b_2)\) \(\in \rho\) and \((a_1\alpha a_2, b_1\beta b_2)\) \(\in \rho\) for every \(\alpha, \beta \in \Gamma\).

Suppose that \(\rho\) is a regular relation on a \(\Gamma\)-algebra. We define a binary operations on \([V : \rho]\), the set of all equivalence classes, as follows:
\[
\begin{align*}
\rho(a)\hat{\alpha}\rho(b) &= \rho(a\alpha b), \\
\rho(a) \oplus \rho(b) &= \rho(a + b).
\end{align*}
\]

Let \(a_1, a_2, b_1, b_2 \in V\) and \(\rho(a_1) = \rho(b_1)\) and \(\rho(a_2) = \rho(b_2)\). Then,
\[
(a_1, b_1) \in \rho \text{ and } (a_2, b_2) \in \rho \implies (a_1\alpha a_2, b_1\alpha b_2) \in \rho \\
\implies \rho(a_1)\hat{\alpha}\rho(a_2) = \rho(b_1)\hat{\alpha}\rho(b_2)
\]
and \(\rho(a_1) \oplus \rho(a_2) = \rho(b_1) \oplus \rho(b_2)\).

It is easy to see that \([V : \rho]\) is a \(\hat{\Gamma}\)-algebra. Suppose that \(\rho\) is a strong regular relation. Then, for every \(\alpha, \beta \in \Gamma\)
\[
\rho(a)\hat{\alpha}\rho(b) = \rho(a)\hat{\beta}\rho(b).
\]
Hence, \([V : \rho]\) is an algebra.

Suppose that \(V\) is a \(\Gamma\)-algebra and \(a\) is an element of \(V\). We say that \(b\) is an \((\alpha, \beta)\)-inversion of \(a\) if \(a\alpha b\beta a = a\), \(b\beta a\alpha b = b\).

Example 3.2. Let \(V = \mathbb{R}^3\) and \(\Gamma = \{(r, 0, 0) : r \in \mathbb{R}\}\). Then, \(V\) is a \(\Gamma\)-algebra with \(\Gamma\)-dimension 1. If \(a = (1, 0, 0), b = (3, 0, 0), \alpha = (2, 0, 0), \beta = (\frac{1}{6}, 0, 0)\), then \(b\) is an \((\alpha, \beta)\)-inversion of \(a\).

Suppose that \(V\) is an associative \(\Gamma\)-algebra and \(a\) is an \((\alpha, \beta)\)-regular. Then, there exist \(\alpha, \beta \in \Gamma\) and \(b \in V\) such that \(a = a\alpha b\beta a\). Let \(x = b\beta a\alpha b\). Then, we observe that
\[
\begin{align*}
a\alpha x\beta a &= a\alpha (b\beta a\alpha b)\beta a = (a\alpha b)\alpha b\beta a = a\alpha b\beta a = a; \\
x\beta a\alpha x &= (b\beta a)\alpha (b\beta a)\alpha b = b\beta (a\alpha b\beta a)\alpha (b\beta a) \\
&= b\beta a\alpha b\beta a = b\beta (a\alpha b\beta a) b = b\beta a b = x.
\end{align*}
\]

Proposition 3.4. Let \(\rho\) be a regular relation on a regular associative \(\Gamma\)-algebra and \(\rho(a)\) be an idempotent in \([V : \rho]\). Then, there exists an idempotent element \(e\) in \(V\) such that \(\rho(a) = \rho(e)\).
Proof. Suppose that $\rho(a)$ is a γ-idempotent element in $[V : \rho]$. Then, there exists $\gamma \in \Gamma$ such that $\rho(a) = \rho(a)\gamma \rho(a) = \rho(a\gamma a)$. Let x be an (α, β)-inversion of $a\gamma a$. Then,

$$(a\gamma a)\alpha x \beta(a\gamma a) = a\gamma ax \beta(a\gamma a)x = x.$$

Let $e = a\alpha x \beta a$. Then,

$$e_\gamma e = (a\alpha x \beta a)\gamma (a\alpha x \beta a) = a\alpha (x \beta a \gamma a\alpha x) \beta a = a\alpha x \beta a = e.$$

and so e is γ-idempotent. We have

$$(a\alpha x \beta a, (a\gamma a)\alpha x \beta (a\gamma a)) \in \rho,$$

and $(e, a\gamma a) \in \rho$. Therefore, $\rho(e) = \rho(a\gamma a)$. \qed

Theorem 3.1. Let V be an associative Γ-algebra such that $\{0\}$ is a semiprime ideal, every family of semiprime ideals has a maximal element and $[V : \rho]$ is (α, β)-regular for all prime ideal of V. Then, V is a regular algebra.

Proof. Suppose that V is not regular. Then, there exists $x \in V$ such that $x \notin x\Gamma VT x$. There exists a semiprime ideal P in V such that it is maximal with respect the property $x \notin x\Gamma VT x + P$. If $[V : P]$ is regular, then

$$x + P \in (x + P)\hat{\alpha}[V : P]\hat{\beta}(x + P).$$

Hence, there exists $y + P \in [V : P]$ such that

$$x + P \in (x + P)\alpha(y + P)\beta(x + P) = x\alpha y \beta x + P.$$

This implies that $x \in x\alpha y \beta x + P \subseteq x\Gamma y \Gamma x + P$, which is a contradiction. Thus, $x \notin x\Gamma VT x + P$. Then, P is not prime. Hence, there exist ideals A and B such that $A\Gamma B \subseteq P$ and $A \notin P$, $B \notin P$. Now, suppose that $T_1 = \{v \in V : v\Gamma \Gamma B \subseteq P\}$ and $T_2 = \{v \in V : T_1 \Gamma \Gamma v \subseteq P\}$. We see that T_1 and T_2 are semiprime.

Now, let A_1 and A_2 be two ideals such that $A_1 \Gamma A_2 \subseteq T_1$. Then, $(A_1 \Gamma A_2) \Gamma B$ and $A_1 \Gamma (A_1 \Gamma B) \subseteq P$. Since P is prime and $B \notin P$, implies that $A_1 \subseteq P$. In the same way, one can see that T_2 is a semiprime ideal. On the other hand

$$(T_1 \cap T_2)\Gamma \Gamma (T_1 \cap T_2) \subseteq T_1 \Gamma \Gamma T_2 \subseteq P.$$

Hence, $T_1 \cap T_2 \subseteq P$. Since $A \notin P$ and $B \notin P$, T_1 and T_2 properly contain P. Because the maximality of P, $[V : T_1]$ and $[V : T_2]$ are regular. Thus, there exist $x_1, x_2 \in V$ such that

$$x + P = (x + P)\hat{\alpha}(x_1 + P)\hat{\beta}(x + P),$$

$$x + P = (x + P)\hat{\alpha}(x_2 + P)\hat{\beta}(x + P).$$

Thus, $x - x\alpha x_1 \beta x \in T_1$ and $x - x\alpha x_2 \beta x \in T_2$. This implies that

$$x - x\alpha(x_1 + x_2 - x_1 \beta x)\alpha x_2 \beta x = (x - x\alpha x_1 \beta x) - (x - x\alpha x_1 \beta x)\alpha x_2 \beta x \in T_1$$

and

$$x - x\alpha(x_1 + x_2 - x_1 \beta x)\alpha x_2 \beta x = (x - x\alpha x_2 \beta x) - x\alpha x_1 \beta (x - x\alpha x_2 \beta x) \in T_2.$$
We conclude that $x \in x\Gamma VTx + T_1 \cap T_2 \subseteq x\Gamma VTx + P$, which is a contradiction. Therefore, V must be regular. \hfill \square

Proposition 3.5. Let V be an associative unital Γ-algebra and set

$$\Theta = \left\{ x \in V : V\Sigma (x \Gamma \Sigma V) \text{ is an } (\alpha, \beta)\text{-regular ideal} \right\}.$$

Then, Θ is an (α, β)-regular ideal and $[V : \Theta]$ has no non-zero (α, β)-regular ideal.

Proof. Suppose that $x, y \in \Theta$. Then, $V\Sigma (x \Gamma \Sigma V)$ and $V\Sigma (y \Gamma \Sigma V)$ are (α, β)-regular ideals. By Lemma 4.3, $V\Sigma (x \Gamma \Sigma V) + V\Sigma (y \Gamma \Sigma V)$ is a regular ideal. Since

$$V\Sigma (x + y) \Gamma \Sigma V \subseteq V\Sigma (x \Gamma \Sigma V) + V\Sigma (y \Gamma \Sigma V),$$

$V\Sigma (x + y) \Gamma \Sigma V$ is regular. In the same way, we can see that $\Theta \cap V, V\Theta \subseteq \Theta$. Let J be an (α, β)-regular ideal of V and $x \in J$. Then,

$$V\Sigma (x \Gamma \Sigma V) \subseteq V\Sigma (J \Gamma \Sigma V) \subseteq J.$$

Hence, $V\Sigma (x \Gamma \Sigma V)$ is (α, β)-regular and $J \subseteq \Theta$. Let $[J : \Theta]$ be an (α, β)-regular ideal of $[V : \Theta]$. Since Θ is (α, β)-regular, J is (α, β)-regular and $J \subseteq \Theta$. This implies that $[V : \Theta]$ has not non-zero (α, β)-regular ideal. \hfill \square

Proposition 3.6. Let V be a regular Γ-algebra. Then, the dimension and the Γ-dimension of V are equal.

Proof. Let $x \in V$. Since V is regular there exist $\alpha, \beta \in \Gamma$ and $y \in V$ such that $x = x\alpha y\beta x$. This completes the proof. \hfill \square

4. T-functor and H-system

The category ΓAL is the category whose objects are Γ-algebras. For Γ_1-algebra V_1 and Γ_2-algebra V_2, $Mor(V_1, V_2)$ is the set of all (Γ_1, Γ_2)-epimorphisms. The composition of morphisms denotes the usual composition of homomorphisms and so satisfies the associative law. $(Id_V, Id_V) : (V, \Gamma) \rightarrow (V, \Gamma)$ is the identity map satisfies the required property $(Id_V, Id_V) \circ (\varphi, f) = (\varphi, f)$ for every $(\varphi, f) \in Mor(V', V)$ and $(\varphi, f) \circ (Id_V, Id_V) = (\varphi, f)$, for every $(\varphi, f) \in Mor(V, V')$. The category AL is the category whose objects are algebras and $Mor(A_1, A_2)$ is the set of all algebra homomorphisms from A_1 to A_2 and it satisfies the associative law.

Let V be a Γ-algebra and

$$\Delta_V = \left\{ \prod_{i=1}^n (x_i, \alpha_i) : \alpha_i \in \Gamma, \ x_i \in V, \ n \in \mathbb{N} \right\}.$$

Then, the relation θ on Δ_V defined by

$$\left(\prod_{i=1}^n (x_i, \alpha_i) \right) \theta \left(\prod_{j=1}^m (y_j, \beta_j) \right) \text{ if and only if } \sum_{i=1}^n x_i \alpha_i x = \sum_{j=1}^m y_j \beta_j x, \ \forall x \in V,$$
is an equivalence relation. We denote the equivalence class containing $\prod_{i=1}^{n}(x_i, \alpha_i)$ by $\theta\left(\prod_{i=1}^{n}(x_i, \alpha_i)\right)$. Then, $[\Delta_V : \theta]$ forms a vector space. Now, we define a multiplication on $[\Delta_V : \theta]$ as follows:

$$\theta\left(\prod_{i=1}^{n}(x_i, \alpha_i)\right) \theta\left(\prod_{j=1}^{n}(y_j, \beta_j)\right) = \theta\left(\prod_{i,j}(x_i \alpha_i y_j, \beta_j)\right).$$

We denote this algebra by V_L and is called the left operator algebra. In the same way, we can define the right operator algebra.

Proposition 4.1. Let V_1 and V_2 be Γ_1- and Γ_2- algebras, respectively. If $(\varphi, f) : (V_1, \Gamma_1) \rightarrow (V_2, \Gamma_2)$ is an epimorphism, then there exists a unique homomorphism $(\varphi, f) : [\Delta_{V_1} : \theta_1] \rightarrow [\Delta_{V_2} : \theta_2]$ such that the following diagram is commutative:

\[
\begin{array}{ccc}
(V_1, \Gamma_1) & \xrightarrow{(\varphi, f)} & (V_2, \Gamma_2) \\
\downarrow & & \downarrow \\
[\Delta_{V_1}, \theta_1] & \xrightarrow{(\varphi, f)} & [\Delta_{V_2}, \theta_2]
\end{array}
\]

Moreover, if (φ, f) is an isomorphism, then (φ, f) is an isomorphism.

Proof. We define $(\varphi, f) : [\Delta_{V_1}, \theta_1] \rightarrow [\Delta_{V_2}, \theta_2]$ by

$$((\varphi, f))(\theta(\prod_{i=1}^{n}(x_i, \alpha_i))) = \theta(\prod_{i=1}^{n}(\varphi(x_i), f(\alpha_i))),$$

for every $\theta(\prod_{i=1}^{n}(x_i, \alpha_i)) \in [\Delta_{V_1}, \theta_1]$. It is easy to see that this function is well-defined and homomorphism. One can see that if (φ, f) is an isomorphism, then induced homomorphism (φ, f) is an isomorphism. \(\square\)

Corollary 4.1. There is a covariant functor between the subcategory of Γ-algebras and the category of algebras.

Proof. By Proposition 4.1, it is straightforward. \(\square\)

Let $(\varphi_1, f_1) : (V_1, \Gamma_1) \rightarrow (V_2, \Gamma_2)$ and $(\varphi_2, f_2) : (V_1, \Gamma_1) \rightarrow (V_2, \Gamma_2)$ be homomorphisms. We define

$$S(\varphi_1, \varphi_2) = \left\{ \sum_{i=1}^{n} \varphi_1(v_r)f_j(\alpha_r)v : v_r \in V_1, \alpha_r \in \Gamma_1, n \in \mathbb{N}, 1 \leq i, j \leq 2, i \neq j \right\}.$$

This homomorphism is said to be S-conjugate if $S(\varphi_1, \varphi_2) = 0$.

Let $V_1, V_2, \ldots V_n$ and V be Γ_1, Γ_2, \ldots, Γ_n- and $\Gamma = \Gamma_1 \times \Gamma_2 \ldots \Gamma_n$- algebras, respectively, and suppose that we are given (Γ_i, Γ)- homomorphisms $(\sigma_i, \chi_i) : (V_i, \Gamma_i) \rightarrow (V, \Gamma)$, $(1 \leq i \leq n)$ and (Γ, Γ)- homomorphism $(\pi_i, \vartheta_i) : (V, \Gamma) \rightarrow (V_i, \Gamma_i)$, $(1 \leq i \leq n)$ such that $\pi_j \sigma_i = \delta_{ij}$ and $\sum \sigma_i \pi_i = Id_V$. Then, V is called an H- system.
Proposition 4.2. Let V be an H-system and $(\varphi_i, f_i) : (V_i, \Gamma_i) \rightarrow (W, \Gamma)$, $(1 \leq i \leq n)$ be given. Then, there exists a unique homomorphism $(\varphi, f) : (V, \Gamma) \rightarrow (W, \Gamma)$ such that $(\varphi, f) \circ (\sigma, \chi_i) = (\varphi_i, f_i)$. If $(\psi_i, g_i) : (W, \Gamma) \rightarrow (V, \Gamma_i)$, then there exists a unique homomorphism $(\psi, g) : (W, \Gamma) \rightarrow (V, \Gamma)$ such that $(\psi, g) \circ (\psi, g_i) = (\psi_i, g_i)$.

Proof. Suppose that $(\varphi, g) : (W, \Gamma) \rightarrow (V, \Gamma)$ defined by $\varphi = \sum_{j=1}^{n} \varphi_j \phi_j$. Then,

$$\varphi \sigma_i = \left(\sum_{j=1}^{n} \varphi_j \phi_j \right) \sigma_i = \sum_{j=1}^{n} \varphi_j \phi_j \sigma_i = \sum_{j=1}^{n} \varphi_j \phi_j \delta_{ij} = f_i.$$

It is easy to see that this homomorphism is unique.

Now, we define $\psi : W \rightarrow V$ by $\psi = \sum_{j=1}^{n} \sigma_j \psi_j$. This is a unique homomorphism such that $\pi \psi = \psi_i$. This completes the proof.

Theorem 4.1. Let Ω be a subcategory of ΓAL such that for every H-system V of Ω, Δ_V is an H-system in AL. Then, for every morphism φ_1 and φ_2 in Ω, $T(\varphi_1 + \varphi_2) = T(\varphi_1) + T(\varphi_2)$.

Proof. Suppose that $(\varphi_i, f_i) : (V_i, \Gamma_i) \rightarrow (W_i, \Gamma_i)$, $(1 \leq i \leq 2)$ are morphisms. Since Δ_V is an H-system of AL, we have $T(\pi_1)T(\sigma_1 + \sigma_2)$ and $T(\pi_2)T(\sigma_1 + \sigma_2)$ are identity morphisms. Hence,

$$T(\sigma_1 + \sigma_2) = T(\sigma_1)T(\pi_1)T(\sigma_1 + \sigma_2) + T(\sigma_2)T(\phi_2)T(\sigma_1 + \sigma_2).$$

We define $\varphi : W \rightarrow V_2$ by $\varphi = \varphi_1 \pi_1 + \varphi_2 \pi_2$. Then, $\varphi \sigma_1 = \varphi_1$ and $\varphi \sigma_2 = \varphi_2$. Moreover, $\varphi(\sigma_1 + \sigma_2) = \varphi_1 + \varphi_2$. Hence,

$$T(\varphi_1 + \varphi_2) = T(\varphi_1) + T(\varphi_2).$$

This completes the proof.

Theorem 4.2. Let $0 \rightarrow (V_1, \Gamma_1) \xrightarrow{\pi_1} (V, \Gamma) \xrightarrow{\pi_2} (V_2, \Gamma_2) \rightarrow 0$ be an exact sequence in ΓAL. Then, the following statements are equivalent:

1. There exists (Γ_2, Γ)-homomorphism $(\sigma, f) : (V, \Gamma) \rightarrow (V, \Gamma)$ and (Γ, Γ_1)-homomorphism $(\pi_1, g) : (V, \Gamma) \rightarrow (V_1, \Gamma_1)$ such that V is an H-system.

2. There exists a subalgebra of V_1 such that $V = (\sigma_1, f_1)(V_1, \Gamma_1) \oplus V_1$.

Proof. The proof is straightforward.

Proposition 4.3. Let $0 \rightarrow (V_1, \Gamma_1) \xrightarrow{\pi_1} (V, \Gamma) \xrightarrow{\pi_2} (V_2, \Gamma_2) \rightarrow 0$ be a split exact sequence in ΓAL. Then, $0 \rightarrow \Delta_{V_1} \xrightarrow{T(\pi_1)} \Delta_V \xrightarrow{T(\pi_2)} \Delta_{V_2} \rightarrow 0$ is a split exact sequence in AL.

Proof. The proof is straightforward.

Proposition 4.4. Let for every split exact sequence

$$0 \rightarrow (V_1, \Gamma_1) \rightarrow (V, \Gamma) \rightarrow (V_2, \Gamma_2) \rightarrow 0$$

implies that $0 \rightarrow \Delta_{V_1} \rightarrow \Delta_V \rightarrow \Delta_{V_2} \rightarrow 0$ is a split exact sequence. Then, for every homomorphism φ_1, φ_2, we have $T(\varphi_1 + \varphi_2) = T(\varphi_1) + T(\varphi_2)$.

Proof. Suppose that V is an H-system. This implies that
$$0 \longrightarrow (V_1, \Gamma_1) \xrightarrow{(\sigma_1, f_1)} (V, \Gamma) \xrightarrow{(\pi_2, g_2)} (V_2, \Gamma_2) \longrightarrow 0$$
is a split exact sequence. By hypothesis
$$0 \longrightarrow \Delta V_1 T(\sigma_1, f_1) \Delta V T(\pi_2, g_2) \Delta V_2 \longrightarrow 0$$
is a split exact sequence. In the same way
$$0 \longrightarrow \Delta V_2 T(\sigma_2, f_2) \Delta V T(\pi_1, g_1) \Delta V_1 \longrightarrow 0$$
is a split exact sequence. Hence,
\[T(\pi_2, g_2)T(\sigma_1, f_1) = T((\pi_2, g_2)(\sigma_1, f_1)) = \text{Id}, \]
\[T(\pi_1, g_1)T(\sigma_2, f_2) = T((\pi_1, g_1)(\sigma_2, f_2)) = \text{Id}. \]
By a routine process, $T(V, \Gamma)$ is an H-system. This completes the proof. □

REFERENCES