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A NOTE ON THE CAUCHY PROBLEM FOR A HIGHER-ORDER µ-CAMASSA-HOLM
EQUATION
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In this note, we consider the Cauchy problem for a higher-order µ-Camassa-Holm equation.
By constructing two sequences of peakon solutions whose distance initially goes to zero but later
becomes large, we prove that the Cauchy problem is not locally well-posed in the Sobolev space Hs(S1)

for any s < 7
2 in the sense that its solutions do not depend uniformly continuously on the initial data.
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1. Introduction

In this article we focus on the following Cauchy problem for a higher-order µ-Camassa-Holm
equation [1] {

mt +2mux +mxu = 0, m = (µ−∂ 2
x +∂ 4

x )u,
u(0,x) = u0(x),

(1)

where u(t,x) is a time-dependent spatially periodic function on the unit-circle S1 =R/Z and µ(u) =∫
S1 udx denotes its mean.

The system (1) is deeply related to the well-known µ-version of Camassa-Holm equation
with its form as follows [2]

mt +2mux +mxu = 0, m = (µ−∂
2
x )u. (2)

The µ-Camassa-Holm equation (2) can describe the propagation of weakly nonlinear orientation
waves in a massive nematic liquid crystal with external magnetic filed and self-interaction. It also
arises geometrically as equations for geodesic flow in the context of the diffeomorphism group of the
circle Di f f (S1) endowed with a right-invariant Riemannian metric induced by the µ inner product
< u,v >= µ(u)µ(v)+

∫
S1 uxvxdx. Furthermore, the µ-Camassa-Holm equation (2) can be viewed as

a natural generalization of the famous Camassa-Holm equation

mt +2mux +mxu = 0, m = (1−∂
2
x )u. (3)

The µ-Camassa-Holm equation (2) has recently been intensely studied from mathematical
view. It was proved in [2, 3] that Eq.(2) is bihamiltonian and admits both cusped solitons as well
as smooth traveling-wave solutions. Also, the authors proved that it is locally well-posed and es-
tablished some results on the lifespan of its solutions. In particular, it was shown in [3] that the
µ-Camassa-Holm equation (2) also admits parabola-shaped periodic peakons. Chen, Lenells, and
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Liu [4] showed that the above periodic peakons are orbitally stable. Following closely the ideas
used in [5, 6], Tiǧlay [7] studied the periodic Cauchy problem for Eq.(2) and proved its existence
and uniqueness of conservative weak solutions. By employing a technique of change of variables on
the Lagrangian variable [8, 9], Deng and Chen [10] also constructed the global weak conservative
solutions of the µ-Camassa-Holm equation (2) in much simpler way.

More recently, Wang, Li and Qiao [1] studied the Cauchy problem of the higher-order µ-
Camassa-Holm equation (1). They not only obtained the global existence results for strong solutions
and weak solutions of Eq.(1), but also proved that the solution map is non-uniformly continuous in
Hs(S1),s≥ 4. Moreover, they proved that Eq.(1) still admits single peakon solutions.

Besides, Coclitea and Karlsen [12] studied the Cauchy problem for a generalized Camassa-
Holm equation and also gave a note on it. They established the existence of global weak solutions
for this generalized Camassa-Holm equation in the energy space H1. However, different from their
works, our research is mainly focused on the well-posedness problem of µ-version of the so-called
well-known Camassa-Holm equation in the sense that whether its solutions depend uniformly con-
tinuously on the initial data.

More precisely, in this note we further consider the Cauchy problem of the higher-order µ-
Camassa-Holm equation (1). Our aim is to prove that the data-to-solution map for the solutions
to the Cauchy problem (1) is not uniformly continuous. Our method is motivated by the works of
Himonas and Misiołek [11]. The main result is summarized as follows.

Theorem 1.1. The Cauchy problem (1) is not locally well-posed in the Sobolev space Hs(S1) for
any s < 7

2 in the sense that its solutions do not depend uniformly continuously on the initial data.

2. Proof of Theorem 1.1

Before we begin the proof of Theorem 1.1, we recall that the higher-order µ-Camassa-Holm
equation admits the following periodic peakon solutions [1].

Lemma 2.1. For any c > 0, Eq.(1) admits the peaked periodic-one traveling wave solutions

u(x, t) = u(ξ ) = γc

[
1
2
(ξ − [ξ ]− 1

2
)2−

cosh(ξ − [ξ ]− 1
2 )

2sinh( 1
2 )

+
47
24

]
,

where ξ = x− ct,γ =
12sinh( 1

2 )

25sinh( 1
2 )−6cosh( 1

2 )
.

By using these periodic peakons, we can construct sequences which show that the data-to-
solution map for the Cauchy problem (1) is not uniformly continuous on Hs(S1) when s < 7

2 . Theo-
rem 1.1 is a consequence of the following proposition.

Proposition 2.1. If s < 7
2 , then there exist two sequences of solutions v1

n and v2
n in Hs(S1) of the

Cauchy problem (1) such that for any t > 0 we have

‖v2
n(0)− v1

n(0)‖Hs ≤C1(s)
1
nt
, (4)

and
‖v2

n(t)− v1
n(t)‖Hs ≥C2(s)ns+|s|+ 1

2 , (5)

where C j(s), j = 1,2, are positive constants defined by

C2
1(s)

.
=

γ2

64π6 ∑
m 6=0,m∈Z

(1+4π
2m2)s−2m−4, (6)

and
C2

2(s)
.
= 8s−5

π
2s−12

γ
2(1− cos1). (7)
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Proof. In fact, we must determine positive constants c1 = c1(n) and c2 = c2(n) such that the
sequences of periodic peakon solutions given by

uc j(x, t) =γc j[
1
2
(x− c jt− [x− c jt]−

1
2
)2

−
cosh(x− c jt− [x− c jt]− 1

2 )

2sinh( 1
2 )

+
47
24

], j = 1,2,

satisfy the above conditions (4) and (5). We begin by computing the partial Fourier transform of uc
with respect to x. First, at t = 0, we have

ûc(m,0) = γc
∫ 1

0
e−2πimx

[
1
2
(x− [x]− 1

2
)2−

cosh(x− [x]− 1
2 )

2sinh( 1
2 )

+
47
24

]
dx

= γc(
1

4π2m2 −
1

1+4π2m2 )

=
γc

4π2m2(1+4π2m2)
.

Thus, it follows that for any t ≥ 0, we have

ûc(m, t) =
γc

4π2m2(1+4π2m2)
e−2πimct .

Next, computing the Hs-distance between the two peakon sequences at t = 0, we get

‖uc2(0)−uc1(0)‖
2
Hs = ∑

m 6=0
(1+4π

2m2)s | γ

4π2m2(1+4π2m2)
(c2− c1) |2

=
γ2

16π4 (c2− c1)
2

∑
m 6=0

(1+4π
2m2)s−2m−4.

where ∑m 6=0(1+4π2m2)s−2m−4 < ∞, provided that 2s−8 <−1(namely, s < 7
2 ). On the other hand,

for any t > 0 we get

‖uc2(t)−uc1(t)‖
2
Hs

=
γ2

16π4 ∑
m 6=0

(1+4π
2m2)s−2m−4 | c2e−2πimc2t − c1e−2πimc1t |2

=
γ2

16π4 ∑
m 6=0

(1+4π
2m2)s−2m−4[c2

1 + c2
2−2c1c2 cos2πm(c2− c1)t]

=
γ2

16π4 (c2− c1)
2

∑
m 6=0

(1+4π
2m2)s−2m−4

+
γ2

8π4 ∑
m 6=0

c1c2(1+4π
2m2)s−2m−4[1− cos2π(c2− c1)mt].

Given n ∈ N, choose the constant c2 so that c2 = c1 +
1

2πnt , so we have

‖uc2(t)−uc1(t)‖
2
Hs ≥ ‖uc2(0)−uc1(0)‖

2
Hs +

γ2

8π4 (1− cos1)c2
1(1+4π

2n2)s−4

≥ 8s−5
π

2s−12
γ

2(1− cos1)c2
1n2s−8.

Choosing the constant c1 = n
9
2+|s| yields

‖uc2(t)−uc1(t)‖
2
Hs ≥ 8s−5

π
2s−12

γ
2(1− cos1)n1+2s+2|s|. (8)
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However, at t = 0, we have

‖uc2(0)−uc1(0)‖
2
Hs =

γ2

16π4 (c2− c1)
2

∑
m 6=0

(1+4π
2m2)s−2m−4

≤ γ2

64π6
1

n2t2 ∑
m 6=0

(1+4π
2m2)s−2m−4. (9)

Now we set v1
n(x, t) = uc1(x, t) and v2

n(x, t) = uc2(x, t), and therefore Theorem 1.1 follows immedi-
ately from (8) and (9) with

C2
1(s) =

γ2

64π6 ∑
m 6=0

(1+4π
2m2)s−2m−4,

and
C2

2(s) = 8s−5
π

2s−12
γ

2(1− cos1).
�

Remark 2.1. Proposition 2.1 indicates that the data-to-solution map is not globally uniformly con-
tinuous. However, it should be noted that more desirable result would be that the data-to-solution
map is not uniformly continuous on bounded subsets of Hs(S1),s < 7

2 .

Remark 2.2. In [1], the authors have shown that the Cauchy problem (1) is locally well-posed in
Hs(S1) in the sense of Hadamard for s > 7

2 . Therefore, combining this result with our results stated
in this note suggests that s = 7

2 is the critical Sobolev index for well-posedness.
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