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ON THE LOGARITHM OF θ-CENTRALIZERS WITH SOME RELATED

RESULTS

Amin Hosseini1

Let A be an algebra and let θ be a linear mapping on A. By a left θ-

centralizer we mean a linear mapping Φ : A → A satisfying Φ(ab) = Φ(a)θ(b) (a, b ∈ A).

In this article, we show that if θ : A → A is a continuous automorphism, Φ : A → A is

a left θ-centralizer such that Φ and θ have their spectrum in the right open halfplane of

the complex plane, then ln Φ is a continuous generalized derivation associated with the

continuous derivation ln θ. Also, we prove that if A is a unital C∗-algebra on a Hilbert

space H, θ : A → A is an automorphism and Φ : A → A is a left θ-centralizer such that

Φ and θ have their spectrum in the right open halfplane of the complex plane, then there

exist two invertible elements x̄ and ȳ in the weak closure Ā of A on the Hilbert space H

such that Φ(a) = ȳax̄−1 for all a ∈ A. Some other related results are also discussed.
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1. Introduction and preliminaries

Let us first recall some basic definitions and fix some notations which will be used

in what follows. Throughout this article, all algebras are defined over the field of complex

numbers. If A is an algebra with identity, we denote by 1 and Inv(A), the identity element

and the set of all invertible elements in A, respectively. The spectrum of a ∈ A is the set

σA(a) = {λ ∈ C : λ1 − a 6∈ Inv(A)}. The spectral radius of a is r(a) = sup{|λ| : λ ∈
σA(a)}. A nonzero linear functional ϕ on A is called a character if ϕ(ab) = ϕ(a)ϕ(b) holds

for every a, b ∈ A. By ΦA we denote the set of all characters on A. It is well known that,

kerϕ, the kernel of ϕ, is a maximal ideal of A, where ϕ is an arbitrary element of ΦA. By∏
c(A

]), we denote the set of all primitive ideals P of A] such that the quotient algebra
A]

P
is commutative, where A] is the unitization of A. For more material about characters,

primitive ideals, maximal ideals and the unitization of an algebra, see, e.g. [4].

A linear mapping T : A→ A is called a left (resp. right) centralizer if T (ab) = T (a)b

(resp. T (ab) = aT (b)) for all a, b ∈ A, and T is called a centralizer if it is both a left- and

a right centralizer. For example, for a ∈ A, the left multiplication operator La : A → A

defined by La(b) = ab (b ∈ A) is a left centralizer; similarly, the right multiplication operator

Ra : A → A defined by Ra(b) = ba (b ∈ A) is a right centralizer. It is straightforward to

show that RbLa = LaRb for all a, b ∈ A. Let θ : A → A be a linear mapping. A linear
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mapping Φ : A→ A satisfying

Φ(ab) = Φ(a)θ(b)
(
resp. Φ(ab) = θ(a)Φ(b)

)
(a, b ∈ A)

is called a left θ-centralizer (resp. right θ-centralizer) associated with θ, and Φ is called a

θ-centralizer if it is both a left- and a right θ-centralizer. A linear mapping θ : A → A is

said to be a Jordan homomorphism if θ(a ◦ b) = θ(a) ◦ θ(b) holds for all a, b ∈ A, where

a ◦ b = ab + ba. Also, a linear mapping Φ : A → A is called a Jordan θ-centralizer if there

exists a Jordan homomorphism θ such that Φ(a ◦ b) = Φ(a) ◦ θ(b) holds for all a, b ∈ A.

Recall that a linear mapping d : A → A is called a derivation if d(ab) = d(a)b + ad(b)

for all a, b ∈ A. For c ∈ A, the linear mapping dc : A → A defined by dc(a) = ca − ac
is a derivation. Such a derivation is called an inner derivation. Brešar [3] introduced the

following class of derivation-like mappings on an algebra. Let d : A→ A be a derivation. A

linear mapping δ : A→ A satisfying

δ(ab) = δ(a)b+ ad(b) (a, b ∈ A),

is called a generalized derivation (associated with d) on A. Letting T = δ − d, we have

T (ab) = δ(ab)− d(ab) = δ(a)b+ ad(b)− d(a)b− ad(b) = (δ − d)(a)b = T (a)b, which means

that T is a left centralizer on A. Also, let T be a right centralizer and let d be a derivation

on A. Then δ = T +d satisfies δ(ab) = T (ab)+d(ab) = aT (b)+d(a)b+ad(b) = aδ(b)+d(a)b

for all a, b ∈ A, that is δ is a generalized derivation.

Let A be a Banach algebra and let d : A → A be a continuous derivation. It follows

from [1, Proposition 18.7] that exp(d) :=
∑∞
n=0

dn

n! is a continuous automorphism on A.

Conversely, Zeller-Meier [12] proved that if θ is an automorphism on A, then θ = exp(d)

for some continuous derivation d on A under certain conditions. Indeed, he showed that

the logarithm of a certain continuous automorphism is a continuous derivation. So, the

derivation d will be denoted by ln θ. Also, see [1, Theorem 18.15] in this regard.

Kamowitz and Scheinberg [8] proved that, if θ is an automorphism of a commutative

semisimple complex Banach algebra, then either θn = I, the identity mapping, for some

positive integer n, in which case σ(θ) consists of a finite union of finite subgroups of the

unit circle Γ, or Γ ⊂ σ(θ). Moreover, combining Singer-Wermer Theorem and the above-

mentioned result of Zeller-Meier, they obtain that if the automorphism θ satisfies r(I−θ) < 1,

then θ = I. In this article, we get a generalization of this result as follows. Let A be a

semiprime Banach algebra and let θ be a continuous Jordan automorphisms on A such that

σ(θ) ⊂ {z ∈ C : Re(z) > 0} ⊂ C − R−. If dim(
⋂

P∈Πc(A]) P) ≤ 1, then θ = I. Note

that according to [7, Corollary 2.9], the conditions considered for the Banach algebra A

cause that A is commutative. But as can be seen, we do not need to assume the Banach

algebra A is semisimple. Examples of commutative semiprime Banach algebras which are

not semisimple include certain Banach algebras of formal power series, as discussed in [5].

Motivated by Zeller-Meier’s result [12], it is natural to ask wether there is a general-

ization of this characterization in the setting of generalized derivations. Let A be a unital

Banach algebra, let θ : A → A be a continuous automorphism and let Φ : A → A be a left

θ-centralizer. We show that if both σ(Φ) and σ(θ) are contained in {z ∈ C : Re(z) > 0},
then ln Φ is a continuous generalized derivation associated with the continuous derivation
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ln θ. Moreover, we present a characterization of θ-centralizers on C∗-algebras as follows. Let

A be a unital C∗-algebra on a Hilbert space H. Let θ : A → A be an automorphism and

let Φ : A→ A be a left (or right) θ-centralizer. If σ(Φ), σ(θ) ⊂ {z ∈ C : Re(z) > 0}, then

there exist two invertible elements x̄ and ȳ in the weak closure A of A on the Hilbert space

H such that Φ(a) = ȳax̄−1 for all a ∈ A.

2. Results and Proofs

Throughout this section, we assume that A is a unital Banach algebra and Inv(A)

denotes the group of invertible elements in A. We denote by B(A) the set of all bounded

linear operators from A into A. Suppose that b1, b2 ∈ A. A generalized inner derivation

(corresponding to b1, b2) on A is defined to be a linear mapping δb1,b2 : A → A satisfying

δb1,b2(a) = b1a − ab2 for all a ∈ A. Obviously, δb1,b2 = Lb1 − Rb2 ∈ B(A) (b1, b2 ∈ A).

A straightforward verification shows that δb1,b2 is a generalized derivation associated with

both the inner derivations db1 and db2 . Indeed, we have δb1,b2(ab) = δb1,b2(a)b + adb2(b) =

db1(a)b+ aδb1,b2(b) for all a, b ∈ A. It is evident that, δb1,b2 is a bounded linear operator on

A. Recall that an automorphism α : A → A is inner if there exists an invertible element

c ∈ A such that α(a) = cac−1 (a ∈ A). Let b ∈ A and c ∈ Inv(A). We define αb,c : A → A

by αb,c(a) = bac−1 (a ∈ A). Obviously, αc,c is an inner automorphism which will be simply

denoted by αc. It is easy to see that αb,c is a left αc-centralizer. If b is an invertible element

of A, then αb,c is also a right αb-centralizer.

A left (resp. right) α-centralizer Φ : A → A is called an inner left (resp. right) α-

centralizer whenever α is an inner automorphism. A linear mapping Φ : A→ A is called an

inner (α, β)-centralizer (or simply an inner centralizer) if it is both an inner left α-centralizer

and an inner right β-centralizer, where α and β are inner automorphisms on A. For instance,

if b, c ∈ Inv(A), then αb,c is an inner centralizer on A.

Suppose that c0 ∈ Inv(A) and that Φ : A → A is a left αc0 -centralizer. Then for all

a, b ∈ A, we have

Φ(ba) = Φ(b)αc0(a) = Φ(b)c0ac
−1
0 .

Putting b = 1 in the previous equation, we get

Φ(a) = Φ(1)c0ac
−1
0 (a ∈ A).

Letting b0 = Φ(1)c0, we obtain

Φ(a) = b0ac
−1
0 (a ∈ A). (1)

Also, if Φ : A → A satisfies (1) for some b0 ∈ A and c0 ∈ Inv(A), then it is a left αc0-

centralizer. Indeed, if Φ has the form (1), then it is a left αc0-centralizer, and if Φ is a left

αc0 -centralizer for some c0 ∈ Inv(A), then it has the form (1) for some b0 ∈ A.

To achieve our main results, we need two auxiliary results. The proposition below has been

proved in [6], but in order to make this paper self contained and for the sake of convenience,

we state it with its proof here. Let A be a unital Banach algebra. It is a well-known fact in

the theory of Banach algebras that exp(a) =
∑∞
n=0

an

n! for any a ∈ A.
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Proposition 2.1. If b1, b2 ∈ A, then exp(δb1,b2) = αexp(b1),exp(b2).

Proof. An easy induction shows that

δnb1,b2(a) =

n∑
k=0

(−1)k
(n
k

)
bn−k1 abk2 ,

for each non-negative integer n and all a ∈ A. Let a be an arbitrary element in A. Then,

we have

exp(δb1,b2)(a) =

∞∑
n=0

δnb1,b2(a)

n!

=

∞∑
n=0

n∑
k=0

(
bn−k1

(n− k)!

)
a

(
(−1)kbk2

k!

)

=

( ∞∑
n=0

bn1
n!

)
a

( ∞∑
n=0

(−b2)n

n!

)
= exp(b1)a exp(−b2) = exp(b1)a(exp(b2))−1

= αexp(b1),exp(b2)(a),

which means that exp(δb1,b2) = αexp(b1),exp(b2). �

Let S be a subset of A. We recall that the commutant of S in A is the set

S′ = {a ∈ A : as = sa for all s ∈ S}.

We say that S commutes if S ⊆ S′. The following well-known properties of the commutant

are easily verified.

(i) S′ is a closed subalgebra of A,

(ii) S ⊂ S′′,
(iii) If S commutes, then so does S′′.

For more details in this regard see subsection 11.21 of [9]. In the following proposition

σB(A)(δb1,b2) denotes the spectrum of δb1,b2 in B(A), similarly for αb1,b2 .

Proposition 2.2. Let b1, b2 be two arbitrary elements in A. Then

(i) σB(A)(δb1,b2) ⊆ {z − w : z ∈ σ(b1), w ∈ σ(b2)},
(ii) For b2 ∈ Inv(A), σB(A)(αb1,b2) ⊆ {zw−1 : z ∈ σ(b1), w ∈ σ(b2)}.

Proof. (i) Put S = {Lb1 , Rb2} ⊂ B(A). Then S commutes and it follows from [9, Theorem

11.12] that B = S′′ is a commutative Banach algebra, S ⊂ B and σB(T ) = σB(A)(T ) for

any T ∈ B. In view of [9, Theorem 11.23], we get that σ(Lb1 + Rb2) ⊂ σ(Lb1) + σ(Rb2).

Using [1, Theorem 15.4 and Propositions 16.9, 5.4], we obtain that

σB(A)(δb1,b2) = σB(A)(Lb1 −Rb2)

= σB(Lb1 −Rb2)

⊂ {z − w : z ∈ σB(Lb1), w ∈ σB(Rb2)}

= {z − w : z ∈ σB(A)(Lb1), w ∈ σB(A)(Rb2)}

= {z − w : z ∈ σA(b1), w ∈ σA(b2)}.
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(ii) Let S = {Lb1 , Rb−1
2
} ⊂ B(A) and B = S′′. Upon applying [9, Theorem 11.23], we

get that σ(Lb1Rb−1
2

) ⊂ σ(Lb1)σ(Rb−1
2

). Like above, we have

σB(A)(αb1,b2) = σB(A)(Lb1Rb−1
2

)

= σB(Lb1Rb−1
2

)

⊂ {zw−1 : z ∈ σB(Lb1), w ∈ σB(Rb2)}

= {zw−1 : z ∈ σA(b1), w ∈ σA(b2)}.

�

In the following, we present a lemma which will be used extensively to prove Theorem

2.1.

Lemma 2.1. Let a1, a2 ∈ A with σ(a1), σ(a2) ⊂ {z ∈ C : Re(z) > 0}, and let b1 = ln a1

and b2 = ln a2. Then δb1,b2 = lnαa1,a2 , and δb1,b2 is an operator norm limit of polynomials

in αa1,a2 .

Proof. Since σ(a1), σ(a2) ⊆ D := {z ∈ C : Re(z) > 0}, it follows from holomorphic

functional calculus that that a1 = exp(b1) and a2 = exp(b2) for some b1, b2 ∈ A. So b1 =

ln a1, b2 = ln a2 and by the spectral mapping theorem we get σ(b1), σ(b2) ⊂ {z ∈ C : −π2 <

Im(z) < π
2 }. Now, Proposition 2.2(i) implies that σ(δb1,b2) ⊂ {z ∈ C : −π < Im(z) < π}.

Applying [1, Proposition I.8.3(i)] to the Banach algebra B(A), we get that ln(exp(δb1,b2)) =

δb1,b2 . However, by Proposition 2.1, we observe that exp(δb1,b2) = αexp(b1),exp(b2) = αa1,a2 ,

which means that δb1,b2 = lnαa1,a2 . According to Proposition 2.2 (ii), we have

σ(αa1,a2) ⊂ {zw−1 : z ∈ σ(a1), w ∈ σ(a2)} ⊂ {zw−1 : z, w ∈ D} ⊂ C− R−.

It follows from [1, Proposition I.8.3(i)] that there exists a sequence {Pn} of polynomials such

that

lim
n→∞

Pn(αa1,a2) = ln(αa1,a2) = δb1,b2 .

�

Now, we are ready to prove our first main result. Note that if A is a unital normed

algebra, θ is a continuous linear mapping on A and Φ is a left (or right) θ-centralizer on A,

then for each a ∈ A,

‖Φ(a)‖ = ‖Φ(1a)‖ = ‖Φ(1)θ(a)‖ ≤ ‖Φ(1)‖‖θ‖‖a‖,

which shows that Φ is also continuous.

Theorem 2.1. Let θ : A → A be a continuous automorphism and let Φ : A → A be a left

θ-centralizer. If σ(Φ), σ(θ) ⊂ {z ∈ C : Re(z) > 0}, then ln Φ is a continuous generalized

derivation associated with the continuous derivation ln θ.

Proof. It follows from [1, Theorem II.18.15] that d = ln θ is a continuous derivation on A.

Let δ = ln Φ, d = ln θ and let B = {La : a ∈ A}. We are going to show that B is a closed

subalgebra of B(A). To see that, let T ∈ B. So, there exists a sequence {Lan} ⊆ B such

that Lan → T . Since A is unital, an → T (1). Moreover, for any arbitrary element b ∈ A,
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we have anb = Lan(b) → T (b), and so T (b) = T (1)b. It means that T = LT (1) ∈ B and

consequently, B is a closed subalgebra of B(A). Notice that

ΦLaθ
−1(x) = Φ(a)θ(θ−1(x)) = Φ(a)x = LΦ(a)(x)

for all x ∈ A, which means that ΦLaθ
−1 = LΦ(a). This equation implies that αΦ,θ(La) =

LΦ(a) for all a ∈ A and so αΦ,θ(B) ⊂ B. Now we introduce ∆δ,d : B(A) → B(A)

by ∆δ,d(T ) = δT − Td for any T ∈ B(A). It follows from Lemma 2.1 that ∆δ,d =

limn→+∞Pn(αΦ,θ), and since B is a closed subalgebra of B(A), ∆δ,d(B) ⊂ B. Thus, for

each a ∈ A, there exists a′ ∈ A such that ∆δ,d(La) = La′ , i.e. δLa − Lad = L′a. So, for any

b ∈ A we have

δ(ab)− ad(b) = a′b. (2)

Putting b = 1 in (2), we get that δ(a) − ad(1) = a′ and since d(1) = 0, we have a′ = δ(a).

Hence, we deduce that δ(ab) = ad(b) + a′b = δ(a)b + ad(b) for all a, b ∈ A. It means that

δ = ln Φ is a generalized derivation associated with the derivation d = ln θ. Our next task is

to show that δ is a continuous linear mapping. By use of [1, Proposition I.8.3] there exists

a sequence {Pn} of complex polynomials such that limn→+∞Pn(z) = ln z uniformly on a

neighbourhood of σ(Φ). Applying the functional calculus to the Banach algebra B(A), we

obtain that limn→+∞Pn(Φ) = ln Φ = δ. A direct consequence of the uniform boundedness

principle implies that δ is a continuous linear mapping on A. �

Remark 2.1. Using the argument of Theorem 2.1, we can obtain that if θ : A → A is a

continuous automorphism and Φ : A → A is a right θ-centralizer such that σ(Φ), σ(θ) ⊂
{z ∈ C : Re(z) > 0}, then δ = ln Φ is a continuous generalized derivation associated with

the continuous derivation d = ln θ in the sense that δ(ab) = d(a)b+ aδ(b) for all a, b ∈ A.

Lemma 2.2. Let A be a semiprime Banach algebra with or without identity and let θ be a

continuous Jordan automorphism on A such that σ(θ) ⊂ {z ∈ C : Re(z) > 0} ⊂ C − R−.
Then θ is an automorphism.

Proof. According to what has been mentioned in [11], if A does not have an identity, we

adjoin an identity and extend θ to the algebra with identity by defining θ(1) = 1. Similar to

the proof of [1, Theorem II.18.15], we can see that d = ln θ is a continuous Jordan derivation

on A (see [11]). It follows from [2, Theorem 1] that d is a derivation. Hence, we have

θ(ab) = exp(d)(ab) = exp(d)(a) exp(d)(b) = θ(a)θ(b)

for all a, b ∈ A, which means that θ is an automorphism. �

In the following, we provide some conditions where the only continuous Jordan auto-

morphism satisfying those conditions is the identity mapping.

Theorem 2.2. Let A be a semiprime Banach algebra and let θ be a continuous Jordan auto-

morphism on A such that σ(θ) ⊂ {z ∈ C : Re(z) > 0} ⊂ C−R−. If dim(
⋂

P∈Πc(A]) P) ≤ 1,

then θ = I.
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Proof. According to Lemma 2.2, θ is an automorphism and it follows from [1, Theorem

II.18.15] that d = ln θ is a continuous derivation on A. In view of [7, Theorem 2.3.], d = 0

and it implies that θ = I, as desired. �

In the next theorem, we present a characterization of left θ-centralizers on a C∗-

algebra acting on a Hilbert space.

Theorem 2.3. Let H be a Hilbert space and let A be a unital C∗-algebra in B(H). Let

θ : A → A be an automorphism and let Φ : A → A be a left θ-centralizer. If σ(Φ), σ(θ) ⊂
{z ∈ C : Re(z) > 0}, then there exist two invertible elements x̄ and ȳ in the weak closure

Ā of A on the Hilbert space H such that Φ(a) = ȳax̄−1 for all a ∈ A.

Proof. It follows from [10, Lemma 4.1.12] that θ is continuous. By Theorem 2.1, δ = ln Φ is

a continuous generalized derivation associated with the continuous derivation d = ln θ. By

[10, Corollary 4.1.7], there exists an element b̄ ∈ Ā such that d(a) = [b̄, a] for all a ∈ A. Since

δ is a generalized derivation associated with the derivation d, there exists a left centralizer

T such that δ = d+ T . Thus, we have

δ(a) = d(a) + T (a) = [b̄, a] + T (1)a

= (b̄+ T (1))a− ab̄,

for all a ∈ A. Taking c̄ = b̄+ T (1), we see that δ = δc̄,b̄. Using Proposition 2.1, we have

Φ(a) = exp(δc̄,b̄)(a) = αexp(c̄),exp(b̄)(a) = (exp(c̄))a(exp(−b̄)),

for all a ∈ A. Taking ȳ = exp(c̄) and x̄ = exp(b̄) in the previous equation, we have

Φ(a) = ȳax̄−1 for all a ∈ A. Since x̄ and ȳ are invertible elements of Ā, Φ is both a left

αx̄-centralizer and a right αȳ-centralizer. Meanwhile, note that Φ(1) is an invertible element

of A. �

An immediate corollary is as follows.

Corollary 2.1. Let A be a von-Neumann algebra. Let θ : A→ A be an automorphism and

let Φ : A→ A be a left θ-centralizer. If σ(Φ), σ(θ) ⊂ {z ∈ C : Re(z) > 0}, then there exist

two invertible elements b and c in A such that Φ(a) = cab−1 for all a ∈ A. Indeed, Φ is an

inner centralizer on A.

Remark 2.2. Theorem 2.3 and Corollary 2.1 are also valid for right θ-centralizers and we

leave it to the reader.
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