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WILLMORE TOTALLY REAL SUBMANIFOLDS OF

COMPLEX SPACE FORMS M̃ n+p(4c)

Shichang SHU1, Tao HAN, 2

Let M be an n-dimensional compact Willmore totally real subman-
ifold of complex space forms M̃ n+p(4c), (p > 0). In this paper, we obtain 
some integral inequalities of Simons’ type and characterization theorems 
of n-dimensional compact Willmore totally real submanifolds of M̃ n+p(4c), 
which are connected with the squared norm of the second fundamental form 
and the mean curvature as well as the sectional curvature and Ricci curva-
ture of M .
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tally umbilical, totally geodesic
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1. Introduction

Let M̃n+p be a Kaehler manifold of complex dimension n+ p, p ≥ 0, and
M be a Riemannian manifold of real dimension n. If the Kaehler manifold
M̃n+p has constant holomorphic sectional curvature 4c, we call it the complex
space form, which is denoted by M̃n+p(4c). When c = 0, c > 0 and c <
0, we call M̃n+p(4c) the complex Euclidean space, complex projective space
and complex hyperbolic space, which are denoted by Cn+p, CP n+p(4c) and
CHn+p(4c), respectively. Let J be the almost complex structure of M . We call
M the totally real submanifold of M̃n+p if M admits an isometric immersion
into M̃n+p such that JTx(M) ⊂ Tx(M)⊥, where Tx(M) and Tx(M)⊥ denote
the tangent space and the normal space of M at x respectively. If p = 0, the
totally real submanifold of M̃n is called the Lagrangian submanifold.

Let M be an n-dimensional compact totally real submanifold of complex
space forms M̃n+p(4c). If the mean curvature of M identically vanishing, we
call M a minimal totally real submanifold of M̃n+p(4c). When p = 0 ( i.e., the
minimal Lagrangian submanifold) or p > 0, we know that many interesting
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results of minimal totally real submanifolds had been obtained by different
authors (see [2], [12], [13]).

Let hα
ij, S, ~H and H be the second fundamental form, the squared norm

of the second fundamental form, the mean curvature vector and the mean
curvature of M . We denote by W (x) =

∫
M

ρndv =
∫

M
(S−nH2)

n
2 dv the Will-

more functional on M (see [1], [10]). A totally real submanifold of M̃n+p(4c) is
called a Willmore totally real submanifold if it is an extremal submanifold to
the Willmore functional (see [6]). In [6], Hu and Li obtained that every mini-
mal totally real surface or every minimal and Einstein totally real submanifold
of M̃n+p(4c) is Willmore. We notice, when n = 2, the minimal is equivalent
to Willmore, but, when n > 2, it is not true. In recent years, Willmore sub-
manifolds in a Riemannian manifold have been intensively studied by many
authors (see [8], [9]).

Let M be an n-dimensional compact Willmore totally real submanifold
of complex space forms M̃n+p(4c). When p = 0, in [11], we obtained some
interesting results of such submanifolds; when p > 0, in this paper, we shall
also obtain some interesting results, see Theorem 4.1–Theorem 4.3.

2. Preliminaries

Let x : M 7→ M̃n+p(4c) be an n-dimensional totally real submani-
fold of M̃n+p(4c). We choose a local field of orthonormal frames e1, · · · , en,
en+1, · · · , en+p, e1∗ = Je1, · · · , en∗ = Jen, e(n+1)∗ = Jen+1, · · · , e(n+p)∗ =

Jen+p in M̃n+p(4c), such that, restricted to M , the vectors e1, · · · , en are tan-

gent to M , where J is the complex structure of M̃n+p(4c). Let ω1, · · · , ωn,
ωn+1, · · · , ωn+p, ω1∗ , · · · , ωn∗ , ω(n+1)∗ , · · · , ω(n+p)∗ be the field of dual frames.
We make the following convention on the range of indices: A,B,C, · · · =
1, · · · , n+p, 1∗, · · · , (n + p)∗; i, j, k, · · · = 1, · · · , n; α, β, γ, · · · = n+1, · · · , n+
p, 1∗, · · · , (n + p)∗; λ, µ, · · · = n + 1, · · · , n + p.

From [6], we get for any i, j, k

hk∗
ij = hi∗

jk = hj∗
ik . (2.1)

The Gauss equations are

Rijkl = (δikδjl − δilδjk)c +
∑

α

(hα
ikh

α
jl − hα

ilh
α
jk), (2.2)

R = n(n− 1)c + n2H2 − S, (2.3)

where S =
∑
i,j,α

(hα
ij)

2, ~H =
∑
α

Hαeα, Hα = 1
n

∑
i

hα
ii, H = | ~H| and R is the

scalar curvature of M . The Codazzi equations and the Ricci identities are

hα
ijk = hα

ikj, (2.4)

hα
ijkl − hα

ijlk =
∑
m

hα
mjRmikl +

∑
m

hα
imRmjkl +

∑

β

hβ
ijRβαkl. (2.5)
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The Ricci equations are

Rαβkl = Kαβkl +
∑
m

(hα
kmhβ

lm − hβ
kmhα

lm). (2.6)

We know hk∗
ijl are totally symmetric, that is, for any i, j, k, l

hk∗
ijl = hi∗

jlk = hj∗
lki = hl∗

kij. (2.7)

For the fix index α, we introduce an operator ¤α due to Cheng-Yau [4] by

¤αf =
∑
i,j

(nHαδij − hα
ij)fi,j. (2.8)

When M is compact, the operator ¤α is self-adjoint if and only if (see [4])∫

M

(¤αf)gdv =

∫

M

f(¤αg)dv, (2.9)

where f and g are any smooth functions on M .
By the same method of [9], we may easily prove the following Lemma:

Lemma 2.1. Let x : M 7→ M̃n+p(4c) be an n-dimensional (n ≥ 2)
totally real submanifold of M̃n+p(4c). Then

|∇h|2 ≥ 3n2

n + 2
|∇⊥ ~H|2, (2.10)

where |∇h|2 =
∑

i,j,k,α

(hα
ijk)

2, |∇⊥ ~H|2 =
∑
i,α

(Hα
,i )

2.

3. Willmore equations and basic formulas

Define tensors

h̃α
ij = hα

ij −Hαδij, (3.1)

σ̃αβ =
∑
i,j

h̃α
ijh̃

β
ij, σαβ =

∑
i,j

hα
ijh

β
ij, (3.2)

then the ((n+2p)×(n+2p))-matrix (σ̃αβ) is symmetric and can be assumed to
be diagonized for a suitable choice of en+1, · · · , en+p, e1∗ , · · · , e(n+p)∗ . Setting

σ̃αβ = σ̃αδαβ, (3.3)

by a direct calculation, we have∑

k

h̃α
kk = 0, σ̃αβ = σαβ − nHαHβ, ρ2 =

∑
α

σ̃α = S − nH2, (3.4)

∑

i,j,k,α

hβ
kjh

α
ijh

α
ik =

∑

i,j,k,α

h̃β
kjh̃

α
ijh̃

α
ik + 2

∑
i,j,α

Hαh̃α
ijh̃

β
ij + Hβρ2 + nH2Hβ. (3.5)

From (2.8), (3.1), (3.4) and (3.5), we may rewrite Theorem 6.1 of [6] as
follows:
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Proposition 3.1. A totally real submanifold x : M 7→ M̃n+p(4c) is
Willmore if and only if

(1) for α ∈ {1∗, · · · , n∗},

¤α(ρn−2) =(n− 1)ρn−2∆⊥Hα + 2(n− 1)
∑

i

(ρn−2)iH
α
,i (3.6)

+ (n− 1)Hα∆(ρn−2) + 3(n− 1)cρn−2Hα

+ ρn−2(
∑

β

Hβσ̃αβ +
∑

i,j,k,β

h̃α
ijh̃

β
ikh̃

β
kj),

(2) for α ∈ {n + 1, · · · , n + p, (n + 1)∗, · · · , (n + p)∗},

¤α(ρn−2) =(n− 1)ρn−2∆⊥Hα + 2(n− 1)
∑

i

(ρn−2)iH
α
,i (3.7)

+ (n− 1)Hα∆(ρn−2) + ρn−2(
∑

β

Hβσ̃αβ +
∑

i,j,k,β

h̃α
ijh̃

β
ikh̃

β
kj).

From (2.8), by a direct calculation, we also have

∑
α

¤α(nHα) = |∇h|2 − n2|∇⊥ ~H|2 +
1

2
n(n− 1)∆H2 − 1

2
∆ρ2 (3.8)

+
∑

α

∑

i,j,k,l

hα
ij(h

α
klRlijk + hα

liRlkjk) +
∑

α,β

∑

i,j,k

hα
ijh

β
kiRβαjk.

Multiplying (3.8) by ρn−2 and taking integration, from (2.9),

∑
α

∫

M

(nHα)¤α(ρn−2)dv =

∫

M

ρn−2(|∇h|2 − n2|∇⊥ ~H|2)dv (3.9)

+
1

2
n(n− 1)

∫

M

ρn−2∆H2dv − 1

2

∫

M

ρn−2∆ρ2dv

+

∫

M

ρn−2
∑

α

∑

i,j,k,l

hα
ij(h

α
klRlijk + hα

liRlkjk)dv +

∫

M

ρn−2
∑

α,β

∑

i,j,k

hα
ijh

β
kiRβαjkdv.

Taking the Willmore equations (3.6) and (3.7) into (3.9) and making use of
the same calculation in [11], we get

Proposition 3.2. For any n-dimensional compact Willmore totally real
submanifold in M̃n+p(4c), the following integral equality holds
∫

M

ρn−2(|∇h|2 − n|∇⊥ ~H|2)dv + (n− 2)

∫

M

ρn−2|∇ρ|2dv (3.10)

− 3n(n− 1)c

∫

M

ρn−2

n∗∑
α=1∗

(Hα)2dv −
∫

M

ρn−2
∑

α,β

nHα(Hβσ̃αβ +
∑

i,j,k

h̃α
ijh̃

β
ikh̃

β
kj)dv
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+

∫

M

ρn−2
∑

α

∑

i,j,k,l

hα
ij(h

α
klRlijk + hα

liRlkjk)dv +

∫

M

ρn−2
∑

α,β

∑

i,j,k

hα
ijh

β
kiRβαjkdv = 0.

From (2.6) and (3.1),

∑

α,β

∑

i,j,k

hα
ijh

β
kiRβαjk = c

n∗∑
α=1∗

σ̃α − n(n− 1)c
n∗∑

α=1∗
(Hα)2 − 1

2

∑

α,β

N(ÃαÃβ − ÃβÃα),

(3.11)

where Ãα := (h̃α
ij) = (hα

ij − Hαδij) and N(A) denote the square of the norm
of matrix A = (aij). From (2.2), (3.2), (3.4), (3.5) and (3.11), by a direct
calculation,
∑

α

∑

i,j,k,l

hα
ij(h

α
klRlijk + hα

liRlkjk) = ncρ2 −
∑

α,β

∑

i,j,k,l

hα
ijh

β
ijh

α
lkh

β
lk (3.12)

+ n
∑

α,β

∑

i,j,k

Hβhβ
kjh

α
ijh

α
ik +

∑

α,β

∑

i,j,k,l

hα
ijh

β
ki(h

β
jlh

α
lk − hβ

klh
α
lj)

=ncρ2 −
∑

α,β

σ̃2
αβ + nH2ρ2 + n

∑

α,β

∑

i,j,k

Hβh̃β
kjh̃

α
ijh̃

α
ik −

1

2

∑

α,β

N(ÃαÃβ − ÃβÃα).

Putting (3.11) and (3.12) into (3.10), we obtain

Proposition 3.3. For any n-dimensional compact Willmore totally real
submanifold in M̃n+p(4c), the following integral equality holds
∫

M

ρn−2(|∇h|2 − n|∇⊥ ~H|2)dv + (n− 2)

∫

M

ρn−2|∇ρ|2dv (3.13)

− 4n(n− 1)c

∫

M

ρn−2

n∗∑
α=1∗

(Hα)2dv + n

∫

M

ρn−2(H2ρ2 −
∑

α,β

HαHβσ̃αβ)dv

+ c

∫

M

ρn−2

n∗∑
α=1∗

σ̃αdv + nc

∫

M

ρndv

−
∫

M

ρn−2
∑

α,β

(N(ÃαÃβ − ÃβÃα) + σ̃2
αβ)dv = 0.

Proposition 3.4. Let M be an n-dimensional compact Willmore totally
real submanifold in M̃n+p(4c). Then for any real number a,

∫

M

ρn−2(|∇h|2 − n|∇⊥ ~H|2)dv + (n− 2)

∫

M

ρn−2|∇ρ|2dv (3.14)

− 4n(n− 1)c

∫

M

ρn−2

n∗∑
α=1∗

(Hα)2dv + n

∫

M

ρn−2(H2ρ2 −
∑

α,β

HαHβσ̃αβ)dv
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− (1 + a)n

∫

M

H2ρndv + (1 + a)

∫

M

ρn−2
∑

α

∑

i,j,k,l

hα
ij(h

α
klRlijk + hα

liRlkjk)dv

− (1 + a)n

∫

M

ρn−2
∑

α,β

∑

i,j,k

Hαh̃α
ijh̃

β
ikh̃

β
kjdv − anc

∫

M

ρndv + c

∫

M

ρn−2

n∗∑
α=1∗

σ̃αdv

+ a

∫

M

ρn−2
∑

α,β

σ̃2
αβdv − 1− a

2

∫

M

ρn−2
∑

α,β

N(ÃαÃβ − ÃβÃα)dv = 0.

4. Inequalities of Simons’ type and characterization theorems

We shall prove the following theorems.

Theorem 4.1. Let M be an n-dimensional (n ≥ 2) compact Willmore
totally real submanifold in CP n+p(4c), p > 0. Then∫

M

ρn−2
{3

2
ρ4 − ncρ2 + 4n(n− 1)cH2

}
dv ≥ 0. (4.1)

In particular, if
3

2
ρ4 − ncρ2 + 4n(n− 1)cH2 ≤ 0, (4.2)

then
(i) when c > 0, M is totally geodesic or a minimal totally real submanifold

with parallel second fundamental form and S = 2
3
nc;

(ii) when c ≤ 0, M is totally umbilical.

Proof of Theorem 4.1. When c = 0, our theorem is trivial. From
the well-known algebraic inequality of Li-Li [7] (see Theorem 1 of [7]), we see
that

−
∑

α,β

N(ÃαÃβ − ÃβÃα)−
∑

α,β

σ̃2
αβ ≥ −3

2
ρ4, (4.3)

∑

α,β

HαHβσ̃αβ =
∑

α

(Hα)2σ̃α ≤
∑

α

(Hα)2
∑

β

σ̃β = H2ρ2, (4.4)

n∗∑
α=1∗

(Hα)2 ≤ H2,

n∗∑
α=1∗

σ̃α ≥ 0. (4.5)

By making use of Lemma 2.1, (3.13), (4.3) and (4.4),

0 ≥
∫

M

ρn−2(|∇h|2 − 3n2

n + 2
|∇⊥ ~H|2)dv +

∫

M

ρn−2(
3n2

n + 2
− n)|∇⊥ ~H|2dv (4.6)

− 4n(n− 1)c

∫

M

ρn−2H2dv + nc

∫

M

ρndv −
∫

M

ρn−2 3

2
ρ4dv.

Thus, we get (4.1). If (4.2) holds, we see that either ρn−2 = 0, (n > 2) or
3
2
ρ4 − ncρ2 + 4n(n − 1)cH2 = 0, (n ≥ 2). The first case implies that M is
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totally umbilical. If c > 0, from (4.2), we have 4n(n − 1)cH2 ≤ 0. Thus,
H = 0 and M is totally geodesic.

If the second case holds, we see that the equalities in (4.6), (4.5) and
(4.4) hold. Thus,

n∗∑
α=1∗

(Hα)2 = H2,

n∗∑
α=1∗

σ̃α = 0,
∑

α,β

HαHβσ̃αβ = H2ρ2. (4.7)

From (4.7), Hα = 0, α ∈ {n + 1, · · · , n + p, (n + 1)∗, · · · , (n + p)∗}, σ̃α = 0,
α ∈ {1∗, · · · , n∗}. Combining (3.3) and (4.7), we get H2ρ2 =

∑
α

(Hα)2σ̃α = 0.

Thus, H = 0 or ρ2 = 0.
(i) If H = 0, for c > 0, from 3

2
ρ4 − ncρ2 + 4n(n − 1)cH2 = 0, we get

S = ρ2 = 0 and M is totally geodesic or S = ρ2 = 2
3
nc, in this case, from the

equality of (2.10), |∇h|2 = 0, thus, M is a minimal totally real submanifold
with parallel second fundamental form.

For c < 0, this contradicts the well-known fact that there is no com-
pact minimal submanifolds in a simply connected manifold with nonpositive
sectional curvature.

(ii) If ρ2 = 0, from 3
2
ρ4 − ncρ2 + 4n(n− 1)cH2 = 0, we see that H2 = 0.

Thus, for c > 0, M is totally geodesic. For c < 0, from above assertion, a
contradiction. This completes the proof of Theorem 4.1.

Theorem 4.2. Let M be an n-dimensional (n ≥ 2) compact Willmore
totally real submanifold in M̃n+p(4c), p > 0 and let K be the function which
assigns to each point of M the infimum of the sectional curvature at that point.
Then

(i) when c > 0,

∫

M

ρn−2{[(K − n− 2√
n(n− 1)

Hρ−H2)− (b− 1)c

2b− 1
]ρ2 − 4(n− 1)bc

2b− 1
H2}dv ≤ 0,

(4.8)
where b = n + 2p.

In particular, if

[(K − n− 2√
n(n− 1)

Hρ−H2)− (b− 1)c

2b− 1
]ρ2 − 4(n− 1)bc

2b− 1
H2 ≥ 0, (4.9)

then M is totally geodesic, or a minimal totally real submanifold with parallel

second fundamental form and K = (b−1)c
2b−1

;
(ii) when c = 0,

∫

M

ρn{K − n− 2√
n(n− 1)

Hρ−H2}dv ≤ 0. (4.10)
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In particular, if

K ≥ n− 2√
n(n− 1)

Hρ + H2, (4.11)

then M is totally umbilical;
(iii) when c < 0,

∫

M

ρn{K − n− 2√
n(n− 1)

Hρ−H2 − (n− 1)b− n

n(2b− 1)
c}dv ≤ 0, (4.12)

where b = n + 2p.
In particular, if

K ≥ n− 2√
n(n− 1)

Hρ + H2 +
(n− 1)b− n

n(2b− 1)
c, (4.13)

then M is totally umbilical.

Proof of Theorem 4.2. For a fixed α, we take a local orthonormal
frame field {e1, · · · , en} such that hα

ij = λα
i δij, then h̃α

ij = µα
i δij with µα

i =
λα

i −Hα,
∑
i

µα
i = 0. Thus,

∑

α,i,j,k,l

hα
ij(h

α
klRlijk + hα

liRlkjk) =
1

2

∑
α,i,j

(µα
i − µα

j )2Rijij ≥ nKρ2, (4.14)

and the equality in (4.14) holds if and only if Rijij = K for any i 6= j.

Since
∑
i

h̃β
ii = 0,

∑
i

µα
i = 0,

∑
i

(h̃β
ii)

2 = σ̃β and
∑
i

(µα
i )2 = σ̃α, from the

algebraic Lemmas in [3] (see Lemma 3.3 and Lemma 3.4 in [3]) and (3.3),
∑

α,β

∑

i,j,k

Hαh̃α
ijh̃

β
kjh̃

β
ik =

∑

α,β

Hβ
∑

i

h̃β
ii(µ

α
i )2 ≤ n− 2√

n(n− 1)
Hρ3, (4.15)

∑

α,β

σ̃2
αβ =

∑
α

σ̃2
α ≥

1

n + 2p
(
∑

α

σ̃α)2 =
1

n + 2p
ρ4. (4.16)

From Lemma 1 in [5], (3.2) and (3.3),
∑

α,β

N(ÃαÃβ − ÃβÃα) ≤ 2
∑

α 6=β

σ̃ασ̃β = 2(
∑

α

σ̃α)2 − 2
∑

α

σ̃2
α ≤ 2(1− 1

n + 2p
)ρ4.

(4.17)

(i) When c > 0, from (3.14), (4.4), (4.5), Lemma 2.1, (4.14)–(4.17),

0 ≥
∫

M

ρn−2(|∇h|2 − 3n2

n + 2
|∇⊥ ~H|2)dv +

∫

M

ρn−2(
3n2

n + 2
− n)|∇⊥ ~H|2dv

(4.18)

− 4n(n− 1)c

∫

M

ρn−2H2dv − (1 + a)n

∫

M

H2ρndv + (1 + a)

∫

M

ρn−2nKρ2dv
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− (1 + a)n

∫

M

ρn−2 n− 2√
n(n− 1)

Hρ3dv − anc

∫

M

ρndv

+ [
a

n + 2p
− (1− a)(1− 1

n + 2p
)]

∫

M

ρn−2ρ4dv, (0 < a < 1),

Putting a = n+2p−1
n+2p

, we get (4.8). If (4.9) holds, we see that either

ρn−2 = 0, (n > 2) or [(K − n−2√
n(n−1)

Hρ − H2) − (b−1)c
2b−1

]ρ2 − 4(n−1)bc
2b−1

H2 = 0,

n ≥ 2. The first case implies that M is totally umbilical, since c > 0, from
(4.9), we have H = 0 and M is totally geodesic. If the second case holds, we
see that the equalities in (4.18), (4.5) and (4.4) hold. Thus, we also get (4.7).
By the same proof of Theorem 4.1, we see that H = 0 or ρ2 = 0.

If H = 0, we get S = ρ2 = 0 and M is totally geodesic or K = (b−1)c
2b−1

, in

this case, from the equality of (2.10), we get |∇h|2 = 0, thus, M is a minimal
totally real submanifold with parallel second fundamental form. If ρ2 = 0, we
see that H2 = 0, that is M is totally geodesic.

(ii) When c = 0, from (3.14), (4.4), Lemma 2.1, (4.14)–(4.17),

0 ≥
∫

M

ρn−2(|∇h|2 − 3n2

n + 2
|∇⊥ ~H|2)dv +

∫

M

ρn−2(
3n2

n + 2
− n)|∇⊥ ~H|2dv

(4.19)

+ (1 + a)n

∫

M

ρn(K − n− 2√
n(n− 1)

Hρ−H2)dv

+ [
a

n + 2p
− (1− a)(1− 1

n + 2p
)]

∫

M

ρn+2dv, (0 < a < 1),

Putting a = n+2p−1
n+2p

in (4.19), we get (4.10). If (4.11) holds, we see that either

ρn = 0 and M is totally umbilical or K − n−2√
n(n−1)

Hρ −H2 = 0, in this case,

we see that the equalities in (4.19), (4.4), (4.16) and (4.17) hold. If ρ = 0, we

know that M is totally umbilical. If ρ 6= 0, we see that ∇⊥ ~H = 0, ∇h = 0 and

σ̃n+1 = · · · = σ̃n+2p,
∑

α,β

HαHβσ̃αβ = H2ρ2. (4.20)

From Lemma 1 in [5], at most two of Ãα = (h̃α
ij) are different from zero. If all of

Ãα are zero, which contradicts ρ 6= 0. If only one of them, say, Ãα, is different
from zero, which contradicts (4.20). Thus, we may assume Ãn+1 = λ′Ã, Ãn+2 =
µ′B̃, λ′, µ′ 6= 0, Ãα = 0, α 6= n+1, n+2, where Ã and B̃ are defined by Lemma
1 in [5]. From (4.20), λ′2(Hn+1)2+µ′2(Hn+2)2 = (λ′2+µ′2)[(Hn+1)2+(Hn+2)2].
Since λ′, µ′ 6= 0, we infer that Hα = 0 for all α, that is, H = 0, this contradicts
the well-known fact that there is no compact minimal submanifolds in a simply
connected manifold with nonpositive sectional curvature.
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(iii) When c < 0, from (3.14), (4.4), Lemma 2.1, (4.14)–(4.17),

0 ≥
∫

M

ρn−2(|∇h|2 − 3n2

n + 2
|∇⊥ ~H|2)dv +

∫

M

ρn−2(
3n2

n + 2
− n)|∇⊥ ~H|2dv

(4.21)

+ (1 + a)n

∫

M

ρn(K − n− 2√
n(n− 1)

Hρ−H2)dv − (an− 1)c

∫

M

ρndv

+ [
a

n + 2p
− (1− a)(1− 1

n + 2p
)]

∫

M

ρn+2dv, (0 < a < 1),

where the following inequalities are used

n∗∑
α=1∗

(Hα)2 ≥ 0,
n∗∑

α=1∗
σ̃α ≤ ρ2. (4.22)

Putting a = n+2p−1
n+2p

in (4.21), we get (4.12). If (4.13) holds, either ρn = 0 and

M is totally umbilical or K− n−2√
n(n−1)

Hρ−H2− (n−1)b−n
n(2b−1)

c = 0, in this case, the

equalities in (4.21), (4.4), (4.22) hold. Thus, Hα = 0, α ∈ {1∗, · · · , n∗}, σ̃α = 0,
α ∈ {n + 1, · · · , n + p, (n + 1)∗, · · · , (n + p)∗} and H2ρ2 =

∑
α

(Hα)2σ̃α = 0.

Therefore, H = 0, from above assertion, this is a contradiction, or ρ2 = 0 and
M is totally umbilical. This completes the proof of Theorem 4.2.

Theorem 4.3. Let M be an n-dimensional (n ≥ 4) compact Willmore
totally real submanifold in M̃n+p(4c), p > 0 and let Q be the function which
assigns to each point of M the infimum of the Ricci curvature at that point.
Then

(i) when c > 0,
∫

M

ρn−2{[Q− 4(n− 2)

n
Hρ− n2 − 5n + 8

n
H2−(n−2)c]ρ2−4(n−1)cH2}dv ≤ 0.

(4.23)
In particular, if

[Q− 4(n− 2)

n
Hρ− n2 − 5n + 8

n
H2 − (n− 2)c]ρ2 − 4(n− 1)cH2 ≥ 0, (4.24)

then M is totally geodesic, or a minimal totally real submanifold with parallel
second fundamental form and Q = (n− 2)c;

(ii) when c = 0,
∫

M

ρn{Q− 4(n− 2)

n
Hρ− n2 − 5n + 8

n
H2}dv ≤ 0. (4.25)

In particular, if

Q ≥ 4(n− 2)

n
Hρ +

n2 − 5n + 8

n
H2, (4.26)

then M is totally umbilical;
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(iii) when c < 0,
∫

M

ρn{Q− 4(n− 2)

n
Hρ− n2 − 5n + 8

n
H2 − n2 − 2n− 1

n
c}dv ≤ 0. (4.27)

In particular, if

Q ≥ 4(n− 2)

n
Hρ +

n2 − 5n + 8

n
H2 +

n2 − 2n− 1

n
c, (4.28)

then M is totally umbilical.

Proof of Theorem 4.3. Firstly, by making use of the same method
in [11], we have

∑

α,β

N(ÃαÃβ − ÃβÃα) ≤ 4{(n− 1)c + (n− 2)Hρ + H2 −Q}ρ2 − 4

n
ρ4.

(4.29)

(i) When c > 0, for n ≥ 4, from (2.3), (3.13), Lemma 2.1, (3.3), (4.4),
(4.5), (4.29) and

∑

α,β

σ̃2
αβ =

∑
α

σ̃2
α ≤ (

∑
α

σ̃α)2 = ρ4, (4.30)

we obtain (4.23). If (4.24) holds, we see that either ρn−2 = 0 or [Q− 4(n−2)
n

Hρ−
n2−5n+8

n
H2−(n−2)c]ρ2−4(n−1)cH2 = 0. The first case and (4.24) imply that

M is totally geodesic. If the second case holds, by the same proof of Theorem
4.1, we see that H = 0 or ρ2 = 0.

If H = 0, we get [Q − (n − 2)c]ρ2 = 0. Thus ρ2 = 0 and M is totally
geodesic or Q = (n − 2)c, in this case, from the equality of (2.10), we get
|∇h|2 = 0, thus, M is a minimal totally real submanifold with parallel second
fundamental form. If ρ2 = 0, we see that H2 = 0 and M is totally geodesic.

(ii) When c = 0, for n ≥ 4, from (2.3), (3.13), Lemma 2.1, (3.3), (4.4),
(4.29) and (4.30), we get (4.25).

If (4.26) holds, we obtain ρ = 0, that is M is totally umbilical, or Q −
4(n−2)

n
Hρ− n2−5n+8

n
H2 = 0, in this case, if ρ2 = 0, then M is totally umbilical;

if ρ2 6= 0, we see that the equality in (4.30) holds. From
∑
α

σ̃2
α = (

∑
α

σ̃α)2,
∑
α6=β

σ̃ασ̃β = 0, this implies that (n + 2p − 1) of σ̃α must be zero. Since ρ2 =

∑
α,i,j

(h̃α
ij)

2 6= 0 and σ̃α =
∑
i,j

(h̃α
ij)

2, we infer that (n + 2p− 1) of Ãα = (h̃α
ij) must

be zero so that n+2p = 1, i.e. p = −n−1
2

< 0, this contradicts the assumption
p > 0.

(ii) When c < 0, for n ≥ 4, from (2.3), (3.13), Lemma 2.1, (3.3), (4.4),
(4.22), (4.29) and (4.30), we get (4.27). If (4.28) holds, by the same proof
of (iii) in Theorem 4.2, M is totally umbilical. This completes the proof of
Theorem 4.3.
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5. Conclusions

Let M be an n-dimensional compact Willmore totally real submanifold of
complex space forms M̃n+p(4c), p ≥ 0. When p = 0, i.e., the Lagrangian case,
we obtained some important results in [11]. In this paper, we continue study
the general totally real case, i.e., p > 0, we obtain some important results,
see Theorem 4.1–Theorem 4.3. These theorems, including the theorems in
[11], give a complete integral inequalities of Simons’type and characterization
theorems of such submanifolds.
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