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Abstract In this paper, a complex system of delay differential equations model-

ing malaria evolution under treatment and considering the immune response, is

introduced. The existence of the equilibrium points is investigated and the stability

properties of the steady state representing the most aggravated phase of the dis-

ease are investigated, following a Lyapunov-Malkin approach and the study of a

transcendental equation. The steady states representing the healthy state and an

acute phase of the disease are investigated mostly through numerical simulations.

Partial stability is revealed in all cases for a realistic set of parameters. Numeri-

cal results complete the study, emphasizing that the mathematical model is in line

with medical evidence.
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1. Introduction

Malaria is a mosquito-borne infectious disease caused by parasitic protozoans

belonging to the genus Plasmodium and it causes half a million deaths per year

worldwide. The parasites penetrate liver cells, multiply, then enter the bloodstream

and invade erythrocites or red blood cells (RBCs), where they again replicate. Af-

terwards, they burst the cells, releasing merozoites that invade more RBCs and

continue the cycle. Moreover, other merozoites develop into immature gametocytes,

which are the precursors of male and female gametes. When a mosquito bites an

infected person, gametocytes reach the mosquito gut, where they mature, fuse and

form motile zygotes which develop into new sporozoites that migrate to the insect’s

salivary glands. Later, when the mosquito takes a subsequent blood meal, it inoc-

ulates them into the skin of a new host. During the blood stage infection, as the

parasitemia level increases, the number of RBCs drops, thus causing anemia and

increasing demand for new erythrocytes formation [18].
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The process responsible for the production of new RBCs from hematopoietic

blood cells (HSCs) is called erythropoiesis. Erythropoiesis is part of a more com-

plex process, called hematopoiesis, responsible for the formation of all blood cells

from HSCs, which are multipotent cells with self-renewal capacity and the ability

to generate all blood cell types, following different differentiation pathways. During

normal erythropoiesis, the committed erythroid progenitors give rise to erythroid

burst-forming unit (BFU-E), the most immature haematopoietic cells that are al-

ready committed to the erythroid lineage, and then to erythroid colony-forming unit

(CFU-E) cells. In the late stages of differentiation, cells turn into enucleated reticu-

locytes which eventually mature into erythrocytes. The regulation of erythropoiesis

requires a precise control by means of intracellular proteins and growth factors.

One of the most studied growth factor, playing the most important role in erythro-

poiesis regulation is the hormone erythropoietin (EPO), secreted by the kidneys in

response to hypoxic conditions in bloodstream. While BFU-E cells respond to many

hormones additional to EPO, the first phase of CFU-E erythroid differentiation is

highly EPO dependent (see[14]). EPO stimulates proliferation and differentiation

of red cell precursors, which activates increased erythropoiesis in the hemopoietic

tissues, ultimately producing erythrocytes.

The response of the immune system to the invasion of merozoites is similar

to the response to any other foreign substance that enters the body. Virtually, it

triggers a series of molecular and cellular signals that activate cell-mediated im-

mune responses. These signals (interferons, cytokines and inflammatory mediators)

activate the local Antigen-Presenting Cells (APCs).

APCs are specialized blood cells that help to fight off foreign substances that

enter the body. Resting (immature) APCs express membrane receptors that can

capture and endocytose antigens. Activation converts the APCs into cells that are

able to present antigens and activate naive T cells.

The adaptive immune response is initiated when naive T cells encounter spe-

cific antigens on the surface of an APC. Naive T cells fall under two large classes,

namely Naive T cells that carry the CD8+ co-receptor on their surface and Naive T

cells that bear the CD4+ co-receptor. So, mature APCs do not fight the leukemic

cells directly, but they trigger the naive (CD4+ and CD8+) T cells.

CD4+ T cells differentiate into several subsets of effector T helper cells with

a variety of different roles. The regulatory CD4+ T cells (Treg) are involved in

controlling adaptive immune responses, including the activation and suppression of

B lymphocytes ([23]). According to recent studies (see [13]), in moderate and severe

forms of malaria, their number is considerably reduced.

Within this context, it is clear why a within-host mathematical model of

malaria necessitates a framework able to properly approximate not only the blood

stage of the infection but also the erythropoietic process that is responsible for over-

coming the anemia induced by the disease. Henceforth, in this paper we introduce

and study a complex mathematical model of erythropoiesis during malaria infection.

The paper is organized as follows. In Section 1 the complex DDEs model of malaria
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under treatment and with immune response is introduced and explained. In Section

2, the existence of various types of equilibrium points is discussed and in Section

3 their stability properties are investigated. Some relevant numerical results are

presented in Section 4 and conclusions are drawn in Section 5.

2. The model

One DDE model of malaria can be found in the paper [6]. It contains a sim-

plified equation for erythrocytes’ evolution with respect to the model in [8]. In what

follows, a more physiological model for erythropoiesis will be considered. We will

concentrate only on the evolution of merozoites during malaria, since their number

considerably overcomes that of gametocytes and their influence is responsible for

the damaging effects of the disease.

The state variables of the system are: z1 - the stem-like short-term erythroid

cells, z2 - the uninfected erythrocytes (RBC), z3 - the concentration of erythropoi-

etin, z4 - a fictitious variable to be introduced later, z5 - the number of infected

red blood cells (iRBCs), z6 - the number of free merozoites (extracellular malaria

parazites), z7 - the concentration of immature APCs, z8 - the concentration of mature

APCs, z9 - the concentration of naive T cells of both CD4+ and CD8+ phenotype,

z10 - the concentration of active CD4+ T -helper cells, z11 - the concentration of

active B lymphocytes and CD8+ cytotoxic T-cells and z12 - the concentration of

antibodies produced by the B cells. The following feedback functions are introduced

β(z1, z3) = β0
θm1

θm1 + zm1

z3

1 + z3
, β0 = β0sβ1e

that regulates the rate of self renewal, the coefficient β0 belonging to a feedback loop,

with s standing from stem and e coming from the stimulation by erythropoietin and

k(z3) = k0
z3

1 + z3
,

that is responsible for differentiation of progenitors into mature cells. Moreover, it is

assumed that a fraction η1 of stem-like cells is susceptible to undergo an asymmetric

division, a fraction η2 is susceptible for symmetric differentiation while the rest will

go to self renewal ([20]). The interaction between the parasites and the cells of the

immune system is modeled by the functions

l1(z) =
1

a2 + z
, l2(z) =

z

a3 + z2
,

and the regulations of T-helper cells is given by

ζ(z) =
1

1 + z
.

The loss of stem cells is modeled by the function

h(t) =
γ0

1 + E(t)α
, α > 0
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(see [1], [2]) and, consequently, the loss during the cell cycle is given by

v(t) = e−
∫ t
t−τe h(s)ds

and a new variable is introduced as z4 = v.

Recent studies ([11]) show that Plasmodium falciparum acts on both young

and mature erythrocytes. With p the invasion rate, the law of masses results in the

presence of the term −pz2z6 that is accountable for the infection process.

The following equations describe the evolution of the disease induced by Plas-

modium falciparum (under treatment with Artemisinin).

ż1 = − γ0
1+zα3

z1 − (η1 + η2)k(z3)z1−

−(1− η1 − η2)β(z1, z3)z1+

+2z4(1− η1 − η2)β(z1τ1 , z3τ1)z1τ1 + η1z4k(z3τ1)z1τ1

ż2 = −γ2z2 + Ãk(z3τ2)z1τ2 − pz2z6

ż3 = −kz3 + a1
1+zr2

ż4 = z4

(
− γ0

1+zα3
+ γ0

1+zα3τ1

)
ż5 = pz2z6 − γ3z5 − pz2τ3z6τ3S

ż6 = (1− c)βpz2τ3z6τ3S − pz2z6l1(z12)− µMz6 − b1z6z12

ż7 = d1 − c2z7 − b2z7l2(z6)

ż8 = −c3z8 + b2z7l2(z6)

ż9 = d2 − c4z9 − b3z8z9

ż10 = −c5z10 − e1ζ(z10)z10l2(z6) + 2e−c5τ4e1ζ(z10τ4)z10τ4 l2(z6τ4)+

+2m1b41z8τ6z9τ6 l2(z6τ6)

ż11 = −c6z11 − e2z10z11ζ(z10) + 2e−c6τ5e2z10τ5z11τ5ζ(z10τ5)+

+2m2b42z8τ7z9τ7 l2(z6τ7)

ż12 = −c7z12z6 + e3z11
z6

a4+z6

Here r > 1, β = β1 − βd, β1 being the burst size in absence of treatment and

βd the effect of treatment with Artemisinin. Also, Ã = A(2η2 + η1) , with A the

amplification factor. S accounts for the mortality of infected RBCs, and is influenced

by treatment (see [18]). The interpretation and the values of parameters are given

in Table 1. For more details on the model, please see [6] and [4].

3. Equilibrium points

Denote as f1, . . . , f12 the right-hand members of the equations in the system

above.
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We notice first that, from f3 = 0, f4 = 0, f7 = 0 andf9 = 0 it follows that

ẑ3 =
a1

k

1

1 + zr2

ẑ4 = e
−
(

γ0

1 + ẑα3

)
τ1

< 1

ẑ7 = d1
c2

ẑ9 = d2
c4

For ẑ1 = ẑ2 = ẑ5 = ẑ6 = ẑ8 = ẑ10 = ẑ11 = ẑ12 = 0, we obtain further that

E1 = (0, 0, ẑ3, ẑ4, 0, 0, ẑ7, 0, ẑ9, 0, 0, 0) is an equilibrium point, that can be interpreted

as the equilibrium representing the last stage of the disease (i.e. close to the death

of the patient). For different equilibrium points, we look for (ẑ1, ẑ2) 6= (0, 0), while

z5 = z6 = z8 = z10 = z11 = z12 = 0. The following system must be verified by these

points.

− γ0

1 + z̃α3
− (η1 + η2)k(z̃3)− (1− η1 − η2)β(z̃1, z̃3)+

+2z̃4(1− η1 − η2)β(z̃1, z̃3) + η1z̃4k(z̃3) = 0

−γ2z̃2 + Ãk(z̃3)z̃1 = 0

The first equation becomes:

− γ0

1 + z̃α3
+ k(z̃3)(η1z̃4 − η1 − η2) + (2z̃4 − 1)(1− η1 − η2)β(z̃1, z̃3) = 0

Define
v1(z2) = a1

k(1+zr2)

v2(z2) = e
− γ0τ1

1+v1(z2)
α

v3(z2) = γ2z2
Ãek[v1(z2)]

Then z̃2 can be obtained from the equation

− γ0
1+v1(z2)α + k[v1(z2)](η1v2(z2)− η1 − η2)+

+(2v2(z2)− 1)(1− η1 − η2)β[v3(z2), v1(z2)] = 0

and then z̃3 = v1(z̃2), z̃4 = v2(z̃2), z̃1 = v3(z̃2), z̃7 = ẑ7, z̃9 = ẑ9.

The equilibrium point E2 = (z̃1, z̃2, z̃3, z̃4, 0, 0, z̃7, 0, z̃9, 0, 0, 0) can be inter-

preted as the disease free equilibrium.

We look now for equilibrium points with all components non-zero.

From the third and the fourth equation,

z∗3 =
a1

k

1

1 + z∗2
r := u1(z∗2)

z∗4 = e
−
(

γ0τ1

1 + z∗3
α

)
:= u2(z∗2)
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From the first equation it follows that

z2
1 =

β0(1−η1−η2)(2z∗4−1]z∗3θ
m
1

(1+z∗3 )[
γ0

1+u1(z
∗
2)α

+k(z∗3 )(η2+η1(1−z∗4 )]
− θm1

so, whenever the last expression is positive, one can calculate z∗1 := u3(z∗2). Suppose

this is the case. From the relations described above it follows that

z∗6 =
−γ2z

∗
2 + Ãk(z∗3)z∗1
pz∗2

:= u4(z∗2)

z∗5 =
p(1− S)z∗2z

∗
6

γ3
:= u5(z∗2)

z∗7 =
d1

(c2 + b2l2(z∗6))
:= u6(z∗2)

z∗8 =
b2u6(z∗2)l2(z∗6)

c3
:= u7(z2∗)

z∗9 =
d2

(c4 + b3u7(z2∗))
:= u8(z∗2)

and from the tenth equation one eventually obtains z10 =: u9(z∗2). Then

z∗11 =
2m2b42z

∗
8z
∗
9 l2(z∗6)

c6 + e2(1− 2e−c6τ5)z∗10ζ(z∗10)
:= u10(z∗2)

z∗12 =
e3z
∗
11

c7(a4 + z∗6)
:= u11(z∗2)

Finally z∗2 is obtained from the equation

(1− c)βpz∗2S − pz∗2 l1(u11(z∗2))− µM − b1u11(z∗2) = 0

We conclude that we have the following possible types of equilibrium points:

E1 = (0, 0, ẑ3, ẑ4, 0, 0, ẑ7, 0, ẑ9, 0, 0, 0)

E2 = (ẑ1, ẑ2, ẑ3, ẑ4, 0, 0, ẑ7, 0, ẑ9, 0, 0, 0).

E3 = (z∗1 , z
∗
2 , z
∗
3 , z
∗
4 , z
∗
5 , z
∗
6 , z
∗
7 , z
∗
8 , z
∗
9 , z
∗
10, z

∗
11, z

∗
12)

4. Stability of equilibrium points

When linearizing the system the following matrices are to be used in the study

of the stability of equilibria. For these matrices, only the possible nonzero terms will

be described. The values of the state variables must be replaced by the corresponding

values of the equilibrium point under study.

A =
∂f

∂z
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a11 = − γ0

1 + zα3
− (η1 + η2)k(z3)− (1− η1e − η2e)

[
β(z1, z3) + z1

∂β

∂z1
(z1, z3)

]
a13 =

γ0z1αz
α−1
3

(1 + zα3 )2
− (η1 + η2)z1k

′
e(z3)− (1− η1 − η2)z1

∂β

∂z3
(z1, z3)

a14 = 2(1− η1 − η2)β(z1, z3)z1 + η1k(z3)z1

a22 = −γ2 − pz6,

a26 = −pz2,

a32 = − a1rz
r−1
2

(1 + zr2)2

a33 = −k,

a43 =
γ0z4αz

α−1
3

(1 + zα3 )2

a52 = pz6, a55 = −γ3, a56 = pz2

a62 = −pz6l1(z12), a66 = −µM − pz2l1(z12)− b1z12,

a6,12 = −pz2z6l
′
1(z12)− b1z6

a76 = −b2z7l
′
2(z6), a77 = −c2 − b2l2(z6)

a86 = b2z7l
′
2(z6), a87 = b2l2(z6), a88 = −c3

a98 = −b3z9, a99 = −c4 − b3z8

a10,6 = −e1ζ(z10z10l
′
2(z6), a10,10 = −c5 − e1l2(z6)[ζ(z10) + z10ζ

′(z10)]

a11,10 = −e2z11[ζ(z10 + z10ζ
′(z10)], a11,11 = −c6 − e2z10ζ(z10)

a12,6 = −c7z12 + e3z11
a4

(a4 + z6)2
, a12,11 = e3

z6

a4 + z6
, a12,12 = −c7z6.

B =
∂f

∂zτ1

b11 = 2z4(1− η1 − η2)

[
β(z1, z3) + z1

∂β

∂z1
(z1, z3)

]
+ η1z4k(z3),

b13 = 2(1− η1 − η2)z4z1
∂β

∂z3
+ η1k

′(z3)z1

b43 = −γ0z4αz
α−1
3

(1 + zα3 )2

C =
∂f

∂zτ2
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c21 = Ãk(z3), c23 = Ãz1k
′(z3)

D =
∂f

∂zτ3

d52 = −pz6, d56 = −pz2, d62 = (1− c)βpSz6, d66 = (1− c)βpSz2,

E =
∂f

∂zτ4

e10,6 = 2e−c5τ4e1ζ(z10)z10, e10,10 = 2e−c5τ4 l2(z6)[ζ(z10) + z10ζ
′(z10)]

F =
∂f

∂zτ5

f11,10 = 2e−c6τ5e2[ζ(z10) + z10ζ
′(z10)]z11, f11,11 = 2e−c6τ5e2ζ(z10)z10

G =
∂f

∂zτ6

g10,6 = 2m1b41z8z9l
′
2(z6), g10,8 = 2m1b41z9l2(z6), g10,9 = 2m1b41z8l2(z6)

H =
∂f

∂zτ7

h11,6 = 2m2b42z8z9l
′
2(z6), h11,8 = 2m2b42z9l2(z6), h11,9 = 2m2b42z8l2(z6)

The characteristic equation will be (see [10]:

det(λI −A− e−λτ1B− e−λτ2C− e−λτ3D− e−λτ4E− e−λτ5F − e−λτ6G− e−λτ7H) = 0

For the particular case of the equilibrium point E1, since a44 = 0, a12,12 = 0,

we have the equation:

(λ− a11 − b11e
−λτ1)(λ− a22)(λ− a33)(λ− a55)λ2(λ− a66)(λ− a77)(λ− a88)(λ− a99)

(λ− a10,10)(λ− a11,11) = 0

and one can see that a critical case for stability by the first approximation theory

appears.

The stability of the equation

λ− a11 − b11e
−λτ1 = 0

is completely investigated in [5], [9].
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From [9], and the form that the elements a11, b11 take for E1, the equation has

all the roots in the left half-space of C if and only if

e
− γeτ1k

α

kα+aα1 [(2(1− η1e − η2e)β(0, ẑ3) + η1ek(ẑ3)] <

< γe
1+ẑα3

+ (1− η1e − η2e)β(0, ẑ3) + (η1e + η2e)k(ẑ3).

Since a22 < 0, a33 < 0, a55 < 0, a66 < 0, a77 < 0, a88 < 0, a99 < 0, a10,10 <

0, a11,11 < 0, the study of the stability can be settled using a critical-case theorem of

Lyapunov-Malkin type that is proved in [3]. The result of this theorem is that, for

a particular form of a system of DDE, the equilibrium is stable even in the critical

case of a zero root of the characteristic equation if the other roots have real parts

strictly negative. It is also proved in [3] that the system of DDE considered above

can be brought, in a way similar to that used in [16], to the particular form needed

for the application of the Lyapunov-Malkin type result.

The characteristic equations for E2 and E3 are more involved.

The characteristic equation for E2, for example, has the following form:

d1(λ)d2(λ) = 0

d1(λ) = λ(λ− a22)(λ− a33)(λ− a11 − b11e
−λτ1)− λa32(λ− a11 − b11e

−λτ1)

c23e
−λτ2 − λa32c21e

−λτ2(a13 + b13e
−λτ1)− a32a14c21e

−λτ2(a43 + b43e
−λτ1)

d2(λ) = (λ− a66 − d66e
−λτ3)(λ− a55)(λ− a77)(λ− a88)(λ− a99)

(λ− a10,10)(λ− a11,11)λ

Since a43 = −b43 it follows that λ = 0 is also a root of d1(λ) = 0 , so, once again,

the critical case of a double zero eigenvalue must be discussed as in the case of E1.

As can be seen in figures 1 and 2, the simulations show that the analyzed

equilibrium points exhibit partial stability, i.e. stability with respect to some of the

variables. Consequently, let us recall the basic notions related to the concept of

partial stability (see [22], [17]) relevant for our model. Consider a nonlinear time

delay system

ẋ = f(xt),

where xt : [−τ, 0] → Rn, xt(s) = x(t + s), t ≥ 0 represents the n-dimensional vector

of state variables, with xt = (yt, zt) ∈ C := C([τ, 0],Rn). Here yt represents the

p-dimensional vector of state variables of interest with p ≤ n, while zt represents

the (n− p) - dimensional vector of auxiliary variables. Moreover, let ϕ = (ϕy, ϕz) :

[−τ, 0] → Rn be the initial data. In the following, we assume that the vector field

f : C → Rn, f(0) = 0, is continuous and satisfies the conditions of existence and

uniqueness of solutions on the domain

{x ∈ C| ‖y‖ < M, ‖z‖ <∞} ,

where M is a positive constant, with z defined for all t ≥ 0 when ‖y(t)‖ < M and

that it satisfies the conditions necessary for the solution x to be defined on [0,∞).
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Definition: ([22], [17])

The trivial equilibrium of the delay system

ẋ = f(xt),

is said to be asymptotically y-stable if

- it is y-stable, i.e. for (∀)ε > 0, (∃)δ = δε > 0 such that

‖ϕ‖ < δ =⇒ ‖y(t)‖ < ε, (∀)t > 0,

- (∃)∆ > 0 such that the solutions with ‖ϕ‖ < ∆ satisfy

lim
t→∞
‖y(t)‖ = 0.

The analytical study of partial stability uses specific Lyapunov-Krasovskii function-

als. The construction of such functionals will be the target of future work. The

numerical simulations that follow, considered here for the first time, have the merit

of pointing a new field of investigation related to the models under consideration.

5. Numerical simulations

In this section, the trajectories of the dynamical system starting from a neigh-

borhood of the equilibrium E1, E2 and E3 are plotted. The values and the interpre-

tation of the parameters are given in Table 1.

Table 1. Parameters of the model

Maximal value of the β function [8], [2] β0 1.5

Maximal value of the function k [2] k0 0.1

Parameter for the β function [8] θ1 0.5

Loss of stem cells due to mortality [2] γ0 0.2

Rate of asymmetric division (estimated) η1 0.3

Rate of symmetric division (estimated) η2 0.3

Parameter in the Hill function (estimated) m 2

Standard half-saturation a2 3

in a Michaelis-Menten low (estimated)

Instant mortality of mature erythrocytes [6] γ2 0.025

Amplification factor [8] Ae 563

Coefficient in the negative feedback [2] a1 1

Parameter in the negative feedback [1] r 7

Disappearance rate of EPO [2] k 0.6

Parameter of the death rate [2] α 0.8

Survival of infected red blood cells [6] S 0.9

Maximal invasion rate [21] p 2 ∗ 10−9
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Conversion rate from merozoites c 4 ∗ 10−4

to gametocytes [6]

Burst size [21] [19] β 32

Infected RBCs death rate [6] γ3 0.025

Merozoites death rate [6] µM 48/5000

Rate of distruction [15] b1 10−8

of merozoites by antibodies

Supply daily rate of immature APCs [12] d1 0.3

Death/turnover daily rate of immature APCs [12] c2 0.03

Coefficient of the feedback function [4] a3 2

Coefficient of feedback maturation b2 1

of immature APCs [4]

Death/turnover dayly rate of mature APCs c3 0.01

Supply rate of naive T cells of both fenotypes [12] d2 2

Death/turnover dayly rate c4 0.03

of naive CD4+ and CD8+ T cells [12]

Kinetic coefficient [12] b3 20

Kinetic coefficients [12] b41, b42 10, 10

Death/turnover daily rate c5 0.23

of effector CD4+ T helper cells [12]

Death/turnover rate c6 0.4/day

of effector CD8+ T cytotoxic cells [12]

Number of divisions in m1 2

minimal CD4+ developmental program [12]

Number of divisions in m2 7

minimal CD8+ developmental program [12]

Coefficient of the autocrine loop function [4] e1 0.2

Coefficient of the positive growth signal function [12] e2 40

Maximum reproduction rate [15] e3 0.6

Decay rate of antibodies [15] c7 5 ∗ 10−10

Population when the antibodies grow a4 1500

half of its max growth rate [15]

Duration of stem cells’ cycle of self-renewall [8] τ1 2.8

Duration of stem cells’ cycle of differentiation [8] τ2 3.5

Time to burst on infected red blood cells [6] τ3 2

Duration of one CD4 + T cell division τ4 2.6

Duration of one CD8 + T cell division τ5 1.4

Duration of minimal developmental program, τ6 3.6

1 + (m1 − 1)τ4

Duration of minimal developmental program, τ7 16.6

1 + (m2 − 1)τ4
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In Figure 1, the trajectories starting in a neighborhood of equilibrium E1,

representing the most aggravated phase of the disease, are plotted. In this case,

a11 = −0.49234 and b11 = 0.595412 so, the left hand side of the inequality giving

the stability of E1 is equal with 0.595412, while the right hand side is 0.49234,

hence the inequality is not satisfied. Moreover, one can easily notice that for small

disturbances in initial conditions near E1, the simulations show that one has only

partial stability ([7], [22]) with respect to state variables z5 − z8, z10, z11.

From a medical point of view, this might translate into the recovery of the

patient, as the optimal evolution of the state variables trajectories is towards a

healthy state, mainly involving the vanishing of the merozoites and of the infected

erythrocytes and the recovering of the healthy erythrocyte population.

From a mathematical perspective, this translates into the following dynamical

behavior of trajectories starting near E1: a stable state for the variables z5 (the

infected RBC population) and z6 (free merozoites population) and an unstable state

for the variables z1 and z2 (healthy erythrocyte population and precursors).
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Figure 1. For small disturbances in initial conditions near E1 the system

exhibits partial stability.
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The trajectories starting in a neighborhood of equilibrium E2 are plotted in

Figure 2. One can easily notice that in this case the equilibrium exhibits partial

stability with respect to state variables z1 − z8, z10, z11. As this stationary point

represents the disease-free state of the disease, here the stability of z1 and z2 together

with stability of z5 and z6 is the awaited outcome.
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Figure 2. For small disturbances in initial conditions near E2 the system

exhibits partial stability.

Analogously, in Figure 3, the trajectories starting in a neighborhood of the

steady state E3 are plotted. In this case the equilibrium exhibits partial stability

with respect to state variables z7 − z11.

For all the stationary points, Figures 1, 2 and 3 establish that the dynamics of

the components of the immune system might have different behaviors: the antibodies

cell population might remain high for a long period, while some other components

of the immune response will die out. From an immunological perspective, this is

also the expected evolution.
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Figure 3. For small disturbances in initial conditions near E3 the system

exhibits partial stability.

6. Conclusions

In this paper a complex model of DDEs for the evolution of malaria infection

with treatment and immune response is introduced and its dynamical properties

are investigated. The stability properties of the equilibrium E1, representing the

most aggravated phase of the disease (i.e close to death) are investigated using the

characteristic equation, following a Lyapunov-Malkin approach and the study of a

transcendental equation. The steady states E2 and E3 are studied through numerical

simulations. Partial stability is revealed in all cases for a realistic set of parameters.

The numerical simulations show a dynamical behavior of the system in accordance

with medical reality and so the model is correct to a good extent.
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