LEFT *k*-BI-QUASI HYPERIDEALS IN ORDERED SEMIHYPERRINGS

Yongsheng RAO¹, Peng Xu², Zehui SHAD³ and Saeed KOSARI⁴

Keywords: ordered semihyperring; left bi-quasi hyperideal; *k*-bi-quasi hyperideal; regular.

MSC2020: 16Y99, 20N20, 06F99.

1. Introduction

Hyperstructure theory was born in 1934 when Marty [17] defined hypergroups based on the notion of hyperoperation. Hypergroups has played an essential role as the foundation of hyperstructure theory. There are different types of hyperrings. A special case of this type is the additive hyperring introduced by Krasner [16]. Hypermodules over a Krasner hyperring is a generalization of the classical modules over a ring. The principal notions of hyperstructure theory and its applications can be found in [3, 4, 6, 28]. Hyperstructure theory have been used in diverse branches of mathematics [10], physics [9] and etc. In [10], Farshi et al. presented some connections between graph theory and hyperstructure theory. In [9], Dehghan Nezhad et al. provided a physical example of hyperstructures associated with the elementary particle physics, Leptons.

One of the most important research areas in semihyperring theory is the investigation of k-hyperideals. Generalization of k-hyperideals in (ordered) semihyperrings is necessary for further study of (ordered) semihyperrings. k-Hyperideals play an important role in advance studies of (ordered) semihyperrings. A k-hyperideal of an ordered semihyperring was studied by Omidi and Davvaz in [19]. Using this idea, the concept of k-bi-quasi hyperideals (of type 1) of an ordered semihyperring can be introduced. In 2016, Omidi and Davvaz [20] introduced and studied the notion of pseudoorders in ordered semihyperrings. In the theory of ordered semihyperrings [20]. In 2017, Omidi and Davvaz [19] introduced the notion of 2-prime (2-prime of type 1) hyperideals of ordered semihyperrings using k-hyperideals.

¹Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China, e-mail: rysheng;gdxupeng;zshao;saeedkosari38@gzhu.edu.cn

²School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun 558000, China; Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China, e-mail: rysheng;gdxupeng;zshao;saeedkosari380gzhu.edu.cn

³Corresponding author, e-mail: saeedkosari38@gzhu.edu.cn

⁴Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China, e-mail: rysheng;gdxupeng;zshao;saeedkosari38@gzhu.edu.cn

In continuity of this paper, we study 2-prime (2-prime of type 1) bi-quasi-hyperideals of ordered semihyperrings.

In 2011, Heidari and Davvaz [13] introduced the concept of ordered semihypergroups as a generalization of ordered semigroups. Since then, the study of ordered semihypergroups is one of the most exciting topics in hyperstructure theory, for example, see [8, 12, 24, 25]. In 2016, Gu and Tang [12] provided a partial answer to the open problem given by Davvaz et al. in [8]. Later on, Tang et al. [25] completely solved the open problem given by Davvaz et al. by using weak pseudoorders. According to [13], An ordered semihypergroup (H, \circ, \leq) is a semihypergroup (H, \circ) together with a partial order \leq that is compatible with the hyperoperation \circ , meaning that for any x, y, a in H,

$$x \leq y \Rightarrow a \circ x \leq a \circ y$$
 and $x \circ a \leq y \circ a$.

Here, $a \circ x \leq a \circ y$ means for any $m \in a \circ x$ there exists $n \in a \circ y$ such that $m \leq n$. The case $x \circ a \leq y \circ a$ is defined similarly.

Davvaz [5] and Vougiouklis [27] established the general notion of semihyperring where both the addition and multiplication are hyperoperation. The notion of k-hyperideals in a semihyperring was introduced and studied by Ameri and Hedayati [1]. In 2010, Ameri and Hedayati [2] investigated the behavior of fuzzy k-hyperideals under homomorphisms of semihyperrings. In [14], Huang et al. introduced the concept of $(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta})$ -fuzzy hyperideals of semihyperrings and investigated some of their fundamental properties. Recently, Pibaljommee and Nakkhasen [21] introduced the notion of (m, n)-bi-quasi hyperideals for semihyperrings.

The notion of a semiring was first introduced by Vandiver [26] in 1934 as a generalization of a ring. In 2011, Gan and Jiang [11] proved some results on ordered ideals in ordered semirings. Prime ordered k-bi-ideals in ordered semirings are discussed in [23]. In 2018, Rao [22] studied some properties of left bi-quasi ideals of semirings. The notion of ordered semihyperring, which is a generalization of ordered semiring, was introduced by Davvaz and Omidi in [7] and investigated in [18, 19]. In 2019, Kazanci et al. [15] introduced the concept of fuzzy ordered hyperideals of ordered semihyperrings and studied its related properties.

In this study, we introduce the concept of left (k-)bi-quasi hyperideals on an ordered semihyperring and investigate several related results. When we work with k-bi-quasi hyperideals (of type 1) of ordered semihyperrings, it is natural to talk about fuzzy k-bi-quasi hyperideals. According to the research results, it is suggested to define and investigate some properties of fuzzy k-bi-quasi hyperideals (of type 1) in ordered semihyperrings.

2. Basic Definitions

Definition 2.1. A semihyperring [27] is an algebraic hypersructure $(R, +, \cdot)$ which satisfies the following axioms:

- (1) (R, +) is a commutative semihypergroup;
- (2) (R, \cdot) is a semihypergroup;
- (3) $x \cdot (y+z) = x \cdot y + x \cdot z$ and $(x+y) \cdot z = x \cdot z + y \cdot z$ for all $x, y, z \in \mathbb{R}$.

Let $(R, +, \cdot)$ be a semihyperring. If there exists an element $0 \in R$ such that $x + 0 = \{x\} = 0 + x$ and $x \cdot 0 = \{0\} = 0 \cdot x$ for all $x \in R$; then 0 is called the zero element of R. If there exists an element $1 \in R$ such that $a \cdot 1 = \{a\} = 1 \cdot a$ for all $a \in R$, then 1 is called the identity element of R. Throughout this paper we consider a semihyperring $(R, +, \cdot)$ with zero element 0.

Let $(R, +, \cdot)$ be a semihyperring. A non-empty subset A of R is said to be a *subsemi-hyperring* of R if for all $x, y \in A$, we have $x + y \subseteq A$ and $x \cdot y \subseteq A$.

In the following, we recall the basic concepts of ordered semihyperring that are used in this study. **Definition 2.2.** An algebraic hypersructure $(R, +, \cdot, \leq)$ is called an ordered semihyperring [7, 18] if $(R, +, \cdot)$ is a semihyperring and the (partial) order relation \leq is compatible with the hyperoperations + and \cdot , i.e.,

- (1) If $a \leq b$, then $a + c \leq b + c$ for all $a, b, c \in R$, meaning that for any $x \in a + c$, there exists $y \in b + c$ such that $x \leq y$.
- (2) If $a \leq b$ and $c \in R$, then $a \cdot c \leq b \cdot c$, meaning that for any $x \in a \cdot c$, there exists $y \in b \cdot c$ such that $x \leq y$. The case $c \cdot a \leq c \cdot b$ is defined similarly.

Let *H* be a non-empty subset of an ordered semihyperring $(R, +, \cdot, \leq)$. Then the subset $\{x \in R \mid x \leq h \text{ for some } h \in H\}$ is denoted by (H]. For $H = \{h\}$, we write (h] instead of $(\{h\}]$. If *A* and *B* are non-empty subsets of *R*, then we have

(1) $A \subseteq (A];$ (2) ((A]] = (A];(3) $(A] \cdot (B] \subseteq (A \cdot B];$

- (4) $((A] \cdot (B]] = (A \cdot B];$
- (5) If $A \subseteq B$, then $(A] \subseteq (B]$.

Definition 2.3. Let $(R, +, \cdot, \leq)$ be an ordered semihyperring. A non-empty subset A of R is called a left (resp. right) hyperideal [19] of R if it satisfies the following conditions:

- (1) $x + y \subseteq A$ for all $x, y \in A$;
- (2) $R \cdot A \subseteq A$ (resp. $A \cdot R \subseteq A$);
- (3) A = (A], that is, for any $a \in A$ and $x \in R$, $x \leq a$ implies $x \in A$.

If A is both a left and a right hyperideal of R, then A is called a two-sided hyperideal, or simply a hyperideal of R.

Definition 2.4. A non-empty subset Q of an ordered semihyperring $(R, +, \cdot, \leq)$ is called a quasi-hyperideal of R if the following conditions hold:

(1) $Q + Q \subseteq Q;$

- (2) $(Q \cdot R] \cap (R \cdot Q] \subseteq Q;$
- (3) When $q \in Q$ and $x \in R$ such that $x \leq q$, imply that $x \in Q$.

Obviously, every left and right hyperideal of an ordered semihyperring R is a quasi-hyperideal of R. Moreover, each quasi-hyperideal of R is a subsemihyperring of R. indeed: $Q \cdot Q \subseteq (Q \cdot Q] \subseteq (Q \cdot R] \cap (R \cdot Q] \subseteq Q$.

Definition 2.5. A non-empty subset A of an ordered semihyperring R is called a bihyperideal of R if it satisfies:

- (1) $A + A \subseteq A$ and $A \cdot A \subseteq A$;
- (2) $A \cdot R \cdot A \subseteq A;$
- (3) When $a \in A$ and $x \in R$ such that $x \leq a$, imply that $x \in A$.

Definition 2.6. An element a in an ordered semihyperring $(R, +, \cdot, \leq)$ is called regular [7] if there exists an element $x \in R$ such that $a \leq a \cdot x \cdot a$. An ordered semihyperring R is called regular if each element of R is regular.

Equivalent definitions:

(1)
$$a \in (a \cdot R \cdot a], \forall a \in R.$$

(2) $A \subseteq (A \cdot R \cdot A], \forall A \subseteq R.$

3. Main Results

In this section, we study the notion of left (k-)bi-quasi hyperideals (of type 1) on ordered semihyperrings and then we obtain some related results.

Definition 3.1. Let $(R, +, \cdot, \leq)$ be an ordered semihyperring. A non-empty subset A of R is said to be a left (resp. right) bi-quasi hyperideal of R if it satisfies the following conditions:

- (1) A is a subsemilyperring of R;
- (2) $(R \cdot A] \cap (A \cdot R \cdot A] \subseteq A$ (resp. $(A \cdot R] \cap (A \cdot R \cdot A] \subseteq A$);
- (3) When $a \in A$ and $r \in R$ such that $r \leq a$, imply that $r \in A$.

If A is both a left and a right bi-quasi hyperideal of R, then A is called a bi-quasi hyperideal of R.

Theorem 3.1. Every left hyperideal of an ordered semihyperring $(R, +, \cdot, \leq)$ is a bi-quasi hyperideal of R.

Proof. Let A be a left hyperideal of an ordered semihyperring R. Then $R \cdot A \subseteq A$. So, we have

$$(R \cdot A] \cap (A \cdot R \cdot A] \subseteq (A \cdot R \cdot A]$$
$$\subseteq (A \cdot A]$$
$$\subseteq (A]$$
$$= A$$

and

$$(A \cdot R] \cap (A \cdot R \cdot A] \subseteq (A \cdot R \cdot A] \subseteq (A \cdot A) \subseteq (A] = A.$$

Hence, A is a bi-quasi hyperideal of R.

Example 3.1. Let $R = \{0, a, b, c\}$. Define the hyperoperations \oplus , \odot and (partial) order relation \leq on R as follows:

\oplus	0	a	b	c	\odot	0	a	b	c
0	0	a	b	c	0	0	0	0	0
a	a	$\{a,b\}$	b	c	a	0	a	a	a
b	b	b	$\{0, b\}$	c	b	0	b	b	b
c	c	c	c	$\{0, c\}$	c	0	c	c	c

 $\leq := \{(0,0), (a,a), (b,b), (c,c), (0,a), (0,b), (0,c), (a,b), (a,c), (b,c)\}.$

Then (R, \oplus, \odot, \leq) is an ordered semihyperring [7]. Put $A = \{0, a, b\}$. Clearly, A is a subsemihyperring of R. We have

$$(R \odot A] \cap (A \odot R \odot A] = R \cap \{0, a, b\} \subseteq A,$$

 $(A \odot R] \cap (A \odot R \odot A] = \{0, a, b\} \cap \{0, a, b\} \subseteq A$

and (A] = A. Hence, A is a bi-quasi hyperideal of R, but is not left hyperideal, because $R \odot A = \{0, a, b, c\} \nsubseteq A$.

Example 3.2. Let $R = \{0, a, b\}$. Define the hyperoperations \oplus , \odot and (partial) order relation \leq on R as follows:

\oplus	0	a	b	\odot	0	a	b
0	0	a	b	0	0	0	0
a	a	a	$\{a,b\}$	a	0	$\{0, a\} \\ \{0, b\}$	$\{0, a\}$
b	b	$\{a,b\}$	b	b	0	$\{0,b\}$	$\{0, l\}$

 $\leq := \{(0,0), (a,a), (b,b), (0,a), (0,b), (a,b)\}.$

Then (R, \oplus, \odot, \leq) is an ordered semihyperring [7]. It is not difficult to verify that $A = \{0, a\}$ is a bi-quasi hyperideal of R, but is not a left hyperideal of R.

Theorem 3.2. Every right hyperideal of an ordered semihyperring $(R, +, \cdot, \leq)$ is a bi-quasi hyperideal of R.

 \square

Proof. This proof is straightforward.

The following example shows that the converse of Theorem 3.2 is not true in general.

Example 3.3. Let $R = \{0, a, b, c\}$. Define the hyperoperations \oplus , \odot and (partial) order relation \leq on R as follows:

\oplus	0	a	b	c	1	\odot	0	a	b	
0	0	a	b	c		0	0	0	0	
a	a	a	a	a		a	0	a	$\{0,b\}$	
b	b	a	$\{0,b\}$	$\{0, b, c\}$		b	0	0	0	
c	c	a	$a \ \{0,b\} \ \{0,b,c\}$	$\{0, c\}$		c	0	$\{0, c\}$	0	

 $\leq := \{(0,0), (a,a), (b,b), (c,c), (0,b), (0,c)\}.$

Then (R, \oplus, \odot, \leq) is an ordered semihyperring. Put $A = \{0, a\}$. It is easy to see that A is a bi-quasi hyperideal of R, but is not a left (right) hyperideal of R.

Lemma 3.1. Let $(R, +, \cdot, \leq)$ be an ordered semihyperring. The intersection of a left hyperideal and a right hyperideal of R is a left bi-quasi hyperideal of R.

Proof. Let A be a left hyperideal and B a right hyperideal of R. Then $R \cdot A \subseteq A$ and $B \cdot R \subseteq B$. We have

$$(R \cdot (A \cap B)] \cap ((A \cap B) \cdot R \cdot (A \cap B)] \subseteq (R \cdot A] \cap (B \cdot R \cdot B]$$
$$\subseteq (R \cdot A] \cap (B \cdot B]$$
$$\subseteq (A] \cap (B]$$
$$= A \cap B.$$

Now, let $x \in A \cap B$ and $y \in R$ such that $y \leq x$. By condition (3) of Definition 2.3, we get $y \in A$ and $y \in B$. So, $y \in A \cap B$. Therefore, $A \cap B$ is a left bi-quasi hyperideal of R.

Let a be an element of an ordered semihyperring $(R, +, \cdot, \leq)$. We denote by $l_1(a)$ (resp. $r_2(a)$, $i_R(a)$) the left (resp. right, two-sided) hyperideal of R generated by a. $l_1(a)$ is the intersection of all left hyperideals of R containing a. The right hyperideal $r_2(a)$ and hyperideal $i_R(a)$ generated by a are defined similarly.

Lemma 3.2. Let a be an element of an ordered semihyperring $(R, +, \cdot, \leq)$. Then,

- (1) $l_1(a) = (a \cup R \cdot a];$
- (2) $r_2(a) = (a \cup a \cdot R];$
- (3) $i_R(a) = (a \cup R \cdot a \cup a \cdot R \cup R \cdot a \cdot R].$

Proof. Since $a \in l_1(a)$ and $R \cdot a \subseteq l_1(a)$, it follows that $(a \cup R \cdot a] \subseteq l_1(a)$. Clearly, $(a \cup R \cdot a] \neq \emptyset$. We have

$$\begin{array}{rcl} R \cdot (a \cup R \cdot a] & \subseteq (R] \cdot (a \cup R \cdot a] \\ & \subseteq (R \cdot (a \cup R \cdot a)] \\ & \subseteq (R \cdot a] \\ & \subset (a \cup R \cdot a]. \end{array}$$

On the other hand, we have $(l_1(a)] = l_1(a)$. Thus, $l_1(a) = (a \cup R \cdot a]$ is a left hyperideal of R containing a. Now, we show that $l_1(a)$ is the smallest left hyperideal of R containing a. Suppose that A is a left hyperideal of R containing a. We have

$$l_1(a) = (a \cup R \cdot a] \subseteq (A \cup R \cdot A] \subseteq (A] = A.$$

This proves that (1) holds. The conditions (2) and (3) are proved similarly.

Theorem 3.3. Let $(R, +, \cdot, \leq)$ be a regular ordered semihyperring. Then every left bi-quasi hyperideal of R is a quasi-hyperideal of R.

Proof. Let A be a left bi-quasi hyperideal of a regular ordered semihyperring R. We prove this statement in three steps:

Step 1: $(A \cdot R]$ is a right hyperideal of R.

Since $0 \in A \cdot R \subseteq (A \cdot R]$, it follows that $\emptyset \neq (A \cdot R]$. Let $a, b \in (A \cdot R]$. Then $a \leq u$ and $b \leq v$ for some $u, v \in A \cdot R$. By assumption, R is an ordered semihyperring. So, $a + b \leq u + b$ and $u + b \leq u + v$. Hence, $a + b \leq u + v \subseteq A \cdot R$. Thus, for any $x \in a + b$, there exists $y \in A \cdot R$ such that $x \leq y$. So, $x \in (A \cdot R]$. This means that $a + b \subseteq (A \cdot R]$, and so the first condition of the definition of right hyperideal is verified. We have

$$(A \cdot R] \cdot R = (A \cdot R] \cdot (R]$$
$$\subseteq (A \cdot R \cdot R]$$
$$\subseteq (A \cdot R].$$

Now, let $x \in (A \cdot R]$ and $y \in R$ such that $y \leq x$. Since $x \in (A \cdot R]$, it follows that $x \leq w$ for some $w \in A \cdot R$. Since $y \leq x$ and $x \leq w$, we get $y \leq w$. Since $y \in R$, $y \leq w$ and $w \in A \cdot R$, we have $y \in (A \cdot R]$. Therefore, $(A \cdot R]$ is a right hyperideal of R. Similarly, we can prove that $(R \cdot A]$ is a left hyperideal of R.

Step 2: If R is a regular ordered semihyperring, then $I \cap J = (I \cdot J]$ for any right hyperideal I and left hyperideal J of R.

Assume that R is regular. Let I be a right hyperideal and J a left hyperideal of R. Then $I \cdot R \subseteq I$ and $R \cdot J \subseteq J$. So, we have

$$(I \cdot J] \subseteq (I \cdot R] \subseteq (I] = I$$

and

$$(I \cdot J] \subseteq (R \cdot J] \subseteq (J] = J.$$

Thus, $(I \cdot J] \subseteq I \cap J$. Now, let $a \in I \cap J$. Since R is regular, there exists an element $x \in R$ such that $a \leq a \cdot (x \cdot a) \subseteq I \cdot (R \cdot J) \subseteq I \cdot J$. Thus $a \leq u$ for some $u \in I \cdot J$. This means that $a \in (I \cdot J]$. Hence, $I \cap J \subseteq (I \cdot J]$. Therefore, we have $I \cap J = (I \cdot J]$.

Step 3: A is a quasi-hyperideal of R.

According to Step 2, we conclude that

$$\begin{array}{ll} (A \cdot R] \cap (R \cdot A] &= ((A \cdot R] \cdot (R \cdot A]] \\ &= (A \cdot R \cdot R \cdot A] \\ &= (A \cdot R^2 \cdot A] \\ &\subseteq (A \cdot R \cdot A] \end{array}$$

and

$$(A \cdot R] \cap (R \cdot A] = (A \cdot R \cdot R \cdot A] \subseteq (R \cdot A].$$

By hypothesis, A is a left bi-quasi hyperideal of R. So, we obtain

$$(A \cdot R] \cap (R \cdot A] \subseteq (R \cdot A] \cap (A \cdot R \cdot A] \subseteq A.$$

Hence, A is a quasi-hyperideal of R.

Theorem 3.4. Let $(R, +, \cdot, \leq)$ be an ordered semihyperring. Then, R is regular if and only if $A = (R \cdot A] \cap (A \cdot R \cdot A]$ for every left bi-quasi hyperideal A of R.

Proof. Suppose that R is a regular ordered semihyperring. Let A be a left bi-quasi hyperideal of R. Then $(R \cdot A] \cap (A \cdot R \cdot A] \subseteq A$. Since R is regular, we have

$$A \subseteq (A \cdot R \cdot A]$$

$$\subseteq ((A \cdot R \cdot A] \cdot R \cdot A]$$

$$\subseteq ((A \cdot R)(A \cdot R) \cdot A]$$

$$\subseteq (R^2 \cdot A]$$

$$\subset (R \cdot A]$$

and

$$A \subseteq (A \cdot R \cdot A]$$

$$\subseteq (A \cdot R \cdot (A \cdot R \cdot A)]$$

$$\subseteq (A \cdot (R \cdot A) \cdot R \cdot A]$$

$$\subseteq (A \cdot R^2 \cdot A]$$

$$\subset (A \cdot R \cdot A].$$

Thus $A \subseteq (R \cdot A] \cap (A \cdot R \cdot A]$. Hence, $A = (R \cdot A] \cap (A \cdot R \cdot A]$.

Conversely, suppose that $A = (R \cdot A] \cap (A \cdot R \cdot A]$ for every left bi-quasi hyperideal A of R. Let I be a right hyperideal and J a left hyperideal of R. By Lemma 3.1, $I \cap J$ is a left bi-quasi hyperideal of R. By assumption, we have

$$I \cap J = (R \cdot (I \cap J)] \cap ((I \cap J) \cdot R \cdot (I \cap J)]$$

$$\subseteq ((I \cap J) \cdot R \cdot (I \cap J)]$$

$$\subseteq (I \cdot R \cdot J]$$

$$\subseteq (I \cdot J].$$

On the other hand, $I \cdot J \subseteq I \cdot R \subseteq I$. So, we get $(I \cdot J] \subseteq I$. Similarly, $(I \cdot J] \subseteq J$ and this implies that $(I \cdot J] \subseteq I \cap J$. Thus, $I \cap J = (I \cdot J]$ for any right hyperideal I and left hyperideal J of R. Now, let $a \in R$. By Lemma **3**.2, we have

$$a \in l_1(a) \cap r_2(a) = (l_1(a) \cdot r_2(a)] \subseteq (a \cdot R \cdot a].$$

By Definition 2.6, R is a regular ordered semihyperring.

Theorem 3.5. Let $(R, +, \cdot, \leq)$ be an ordered semihyperring. Then, R is regular if and only if $A = (A \cdot R] \cap (A \cdot R \cdot A]$ for every right bi-quasi hyperideal A of R.

Proof. This proof is straightforward.

Definition 3.2. Let $(R, +, \cdot, \leq)$ be an ordered semihyperring. A non-empty subset A of R is called a left k-bi-quasi hyperideal of R, if A is a left bi-quasi hyperideal of R and for any $a \in A$ and $x \in R$, from $a + x \approx A$ it follows $x \in A$, where we say that $A \approx B$ if $A \cap B \neq \emptyset$. A right k-bi-quasi hyperideal is defined similarly. If a hyperideal A is both left and right k-bi-quasi hyperideal, then A is known as a k-bi-quasi hyperideal of R.

We note that every right k-hyperideal or left k-hyperideal is a k-bi-quasi hyperideal of R.

Example 3.4. In Example 3.1, $A = \{0, a, b\}$ is a k-bi-quasi hyperideal of R.

Clearly, every k-bi-quasi hyperideal of an ordered semihyperring R is a bi-quasi hyperideal of R. The converse is not true, in general, that is, a bi-quasi hyperideal may not be a k-bi-quasi hyperideal as the following example shows.

Example 3.5. In Example **3**.2, $A = \{0, a\}$ is not a k-bi-quasi hyperideal of R. Indeed: $b \oplus a = \{a, b\} \approx \{0, a\}$ and $a \in \{0, a\}$ but $b \notin \{0, a\}$.

Definition 3.3. Let $(R, +, \cdot, \leq)$ be an ordered semihyperring. A non-empty subset A of R is called a left k-bi-quasi hyperideal of type 1 of R, if A is a left bi-quasi hyperideal of R and for any $a \in A$ and $x \in R$, from $a + x \subseteq A$ it follows $x \in A$. A right k-bi-quasi hyperideal of type 1 is defined similarly. If a hyperideal A is both left and right k-bi-quasi hyperideal of type 1, then A is known as a k-bi-quasi hyperideal of type 1 of R.

Clearly, every k-bi-quasi hyperideal of an ordered semihyperring R is a k-bi-quasi hyperideal of type 1 of R. The converse is not true, in general, that is, a k-bi-quasi hyperideal of type 1 may not be a k-bi-quasi hyperideal of R.

Example 3.6. Let (R, \oplus, \odot, \leq) be the ordered semihyperring defined as in Example 3.2. It is easy to see that $A = \{0, a\}$ is a k-bi-quasi hyperideal of type 1 of R, but it is not a k-bi-quasi hyperideal of R.

Lemma 3.3. Let $(R, +, \cdot, \leq)$ be an ordered semihyperring and $\{I_k \mid k \in \Lambda\}$ be a family of left k-bi-quasi hyperideals of R. Then $\bigcap_{k \in \Lambda} I_k$ is a left k-bi-quasi hyperideal of R.

Proof. This proof is straightforward.

The k-closure of a nonempty subset A of an ordered semihyperring R is defined by $\overline{A} = \{x \in R \mid \exists a, b \in A, a + x \leq b\}.$

Theorem 3.6. Let A be a bi-quasi hyperideal of an ordered semihyperring R. Then, the following assertions are equivalent:

(1) A is a k-bi-quasi hyperideal of type 1 of R.

(2) $\overline{A} = A$.

Proof. (1) \Rightarrow (2): Assume that (1) holds. Clearly, $A \subseteq (A] \subseteq \overline{A}$. Let $x \in \overline{A}$. Then $a + x \leq b$ for some $a, b \in A$. Hence, for any $u \in a + x$, we have $u \leq b$. Since A is a bi-quasi hyperideal of R, it follows that $u \in A$. Thus, $a + x \subseteq A$. Since A is a k-bi-quasi hyperideal of type 1 of R, we have $x \in A$. So $\overline{A} \subseteq A$ and thus $\overline{A} = A$.

(2) \Rightarrow (1): Assume that $\overline{A} = A$. Let $x \in R$ such that $a + x \subseteq A$ for some $a \in A$. Then, for any $u \in a + x$, we have $u \in A$. Thus $a + x \leq u$ for some $a, u \in A$. So, $x \in \overline{A}$. By assumption, we have $x \in A$. Therefore, A is a k-bi-quasi hyperideal of type 1 of R.

Theorem 3.7. Let A be a left k-bi-quasi hyperideal of type 1 of an ordered semihyperring $(R, +, \cdot, \leq)$. Then (A] is a left k-bi-quasi hyperideal of type 1 of R generated by A.

Proof. First of all, we show that (A] is closed under hyperaddition +. Let $x, y \in (A]$. Then there exist $a, b \in A$ such that $x \leq a$ and $y \leq b$. Since R is an ordered semihyperring, we have $x + y \leq a + b \subseteq A$. Hence, for any $u \in x + y$, there exists $v \in A$ such that $u \leq v$. Thus $u \in (A]$ and so $x + y \subseteq (A]$. Also, we have

$$[A] \cdot [A] \subseteq (A \cdot A] \subseteq [A] = A.$$

Since A is a bi-quasi hyperideal of R, it follows (A] = A. So, we have

$$(R \cdot (A]] \cap ((A] \cdot R \cdot (A]] = (R \cdot A] \cap (A \cdot R \cdot A] \subseteq A$$

Since A is a left bi-quasi hyperideal of R, we have $(A] \subseteq A$. So, $((A]] \subseteq (A]$ and hence (A] is a left bi-quasi hyperideal of R. If B is a hyperideal of R such that $A \subseteq B$, then $(A] \subseteq (B] \subseteq B$. So, $(A] \subseteq B$. Finally, we prove that $\overline{(A]} = (A]$. It is clear that $A \subseteq (A] \subseteq \overline{A} \subseteq \overline{(A]}$; Now, let $x \in \overline{(A]}$. Then there exist $a, b \in (A]$ such that $a + x \leq b$. So, for any $u \in a + x, u \leq b$ for some $b \in A$. Since A is a left bi-quasi hyperideal of R, we have $b \in A$. This means that $a + x \subseteq A$. Since A is a left k-bi-quasi hyperideal of type 1 of R, it follows that $x \in A$. Theus, $\overline{(A]} \subseteq A = (A]$ and so $\overline{(A]} = (A]$. By Theorem **3**.6, (A] is a left k-bi-quasi hyperideal of type 1 of R.

4. Conclusions

In this study, we extended the concept of a left bi-quasi ideal of a semiring to an ordered semihyperring. Also, we introduced the notion of left k-bi-quasi hyperideal (of type 1) and then we obtained some related basic results. When we deal with k-bi-quasi hyperideals of ordered semihyperrings, it is natural to talk about fuzzy k-bi-quasi hyperideal. According to the research results, it is suggested to define and investigate some properties of fuzzy k-bi-quasi hyperideals in ordered semihyperrings. In continuity of this paper, we study 2-prime (2-prime of type 1) bi-quasi-hyperideals of ordered semihyperrings.

Funding

This work was supported by the National Key R&D Program of China (No. 2018YFB1005100).

REFERENCES

- R. Ameri and H. Hedayati, On k-hyperideals of semihyperrings, J. Discrete Math. Sci. Cryptogr. 10 (2007), No. 1, 41–54.
- [2] R. Ameri and H. Hedayati, Homomorphism and quotient of fuzzy k-hyperideals, Ratio Mathematica, 20 (2010), 148–165.
- [3] P. Corsini, Prolegomena of Hypergroup Theory, Second edition, Aviani editore, Italy, 1993.
- [4] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Advances in Mathematics, Kluwer Academic Publishers, Dordrecht, 2003.
- [5] B. Davvaz, Rings derived from semihyperrings, Algebras Groups Geom. 20 (2003), 245–252.
- B. Davvaz and V. Leoreanu-Fotea, *Hyperring Theory and Applications*, International Academic Press, Palm Harbor, USA, 2007.
- B. Davvaz and S. Omidi, Basic notions and properties of ordered semihyperrings, Categ. General Alg. Structures Appl. 4 (2016), No. 1, 43–62.
- [8] B. Davvaz, P. Corsini and T. Changphas, Relationship between ordered semihypergroups and ordered semigroups by using pseudoorder, European J. Combinatorics, 44 (2015), 208–217.
- [9] A. Dehghan Nezhad, S. M. Moosavi Nejad, M. Nadjafikhah and B. Davvaz, A physical example of algebraic hyperstructures: Leptons, Indian Journal of Physics, 86 (2012), No. 11, 1027–1032.
- [10] M. Farshi, B. Davvaz and S. Mirvakili, Degree hypergroupoids associated with hypergraphs, Filomat. 28 (2014), 119–129.
- [11] A. P. Gan and Y. L. Jiang, On ordered ideals in ordered semirings, J. Math. Res. Exposition, 31 (2011), No. 6, 989–996.
- [12] Z. Gu and X. Tang, Ordered regular equivalence relations on ordered semihypergroups, J. Algebra, 450 (2016), 384–397.
- [13] D. Heidari and B. Davvaz, On ordered hyperstructures, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 73 (2011), No. 2, 85–96.
- [14] X. Huang, Y. Yin and J. Zhan, Characterizations of semihyperrings by their $(\epsilon_{\gamma}, \epsilon_{\gamma} \lor q_{\delta})$ -fuzzy hyperideals, J. Appl. Math. 2013 (2013), 13-pages.
- [15] O. Kazanci, S. Yilmaz and B. Davvaz, On fuzzy ordered hyperideals in ordered semihyperrings, Advances in Fuzzy Systems, 2019 (2019), 7-pages.
- [16] M. Krasner, A class of hyperrings and hyperfields, International J. Math. and Math. Sci. 6 (1983), 307–312.
- [17] F. Marty, Sur une generalization de la notion de groupe, 8^{iem} Congres Math. Scandinaves, Stockholm, Sweden, 1934, 45–49.
- [18] S. Omidi and B. Davvaz, Construction of ordered regular equivalence relations on ordered semihyperrings, Honam Mathematical J. 40 (2018), No. 4, 601–610.

- [19] S. Omidi and B. Davvaz, Contribution to study special kinds of hyperideals in ordered semihyperrings, J. Taibah Univ. Sci. 11 (2017), No. 6, 1083–1094.
- [20] S. Omidi and B. Davvaz, Foundations of ordered (semi)hyperrings, J. Indones. Math. Soc. 22(2) (2016), 131–150.
- B. Pibaljommee and W. Nakkhasen, Connections of (m, n)-bi-quasi hyperideals in semihyperrings, Thai J. Math. Special Issue (2019), 39–48.
- [22] M. M. K. Rao, Left bi-quasi ideals of semirings, Bull. Int. Math. Virtual Inst. 8 (2018), 45-53.
- [23] P. Senarat and B. Pibaljommee, Prime ordered k-bi-ideals in ordered semirings, Quasigroups and Related Systems, 25 (2017), 121–132.
- [24] J. Tang, B. Davvaz and X. Y. Xie, An investigation on hyper S-posets over ordered semihypergroups, Open Mathematics, 15 (2017), 37–56.
- [25] J. Tang, X. Feng, B. Davvaz and X. Y. Xie, A further study on ordered regular equivalence relations in ordered semihypergroups, Open Mathematics, 16 (2018), 168–184.
- [26] H. S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc.(N.S.), 40 (1934), 914–920.
- [27] T. Vougiouklis, On some representation of hypergroups, Ann. Sci. Univ. Clermont-Ferrand II Math. 26 (1990), 21–29.
- [28] T. Vougiouklis, Hyperstructures and Their Representations, Hadronic Press, Florida, 1994.