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LEFT k-BI-QUASI HYPERIDEALS IN ORDERED 
SEMIHYPERRINGS

Yongsheng RAO1, Peng Xu2, Zehui SHAD3 and Saeed KOSARI4

In this paper, we study f undamental properties of left bi-quasi hyperideals on 
ordered semihyperrings and i nvestigate some related results. We show that i n a regular 
ordered semihyperring (R, +, ·, ≤), every left bi-quasi hyperideal of R i s a quasi-hyperideal 
of R. In addition, we characterize regular ordered semihyperrings using left bi-quasi 
hyperideals. After this, we define left k-bi-quasi hyperideals (of type 1) of an ordered 
semihyperring and obtain some results. Finally, we prove that A i s a k-bi-quasi hyperideal of 
type 1 of an ordered semihyperring R i f and only i f A = A.

Keywords: ordered semihyperring; left bi-quasi hyperideal; k-bi-quasi hyperideal; reg-

ular.

MSC2020: 16Y99, 20N20, 06F99.

1. Introduction

Hyperstructure theory was born in 1934 when Marty [17] defined hypergroups based
on the notion of hyperoperation. Hypergroups has played an essential role as the foundation
of hyperstructure theory. There are different types of hyperrings. A special case of this
type is the additive hyperring introduced by Krasner [16]. Hypermodules over a Krasner
hyperring is a generalization of the classical modules over a ring. The principal notions of
hyperstructure theory and its applications can be found in [3, 4, 6, 28]. Hyperstructure
theory have been used in diverse branches of mathematics [10], physics [9] and etc. In [10],
Farshi et al. presented some connections between graph theory and hyperstructure theory.
In [9], Dehghan Nezhad et al. provided a physical example of hyperstructures associated
with the elementary particle physics, Leptons.

One of the most important research areas in semihyperring theory is the investigation
of k-hyperideals. Generalization of k-hyperideals in (ordered) semihyperrings is necessary for
further study of (ordered) semihyperrings. k-Hyperideals play an important role in advance
studies of (ordered) semihyperrings. A k-hyperideal of an ordered semihyperring was studied
by Omidi and Davvaz in [19]. Using this idea, the concept of k-bi-quasi hyperideals (of
type 1) of an ordered semihyperring can be introduced. In 2016, Omidi and Davvaz [20]
introduced and studied the notion of pseudoorders in ordered semihyperrings. In the theory
of ordered semihyperrings, pseudoorders make a connection between ordered semihyperrings
and ordinary ordered semirings [20]. In 2017, Omidi and Davvaz [19] introduced the notion
of 2-prime (2-prime of type 1) hyperideals of ordered semihyperrings using k-hyperideals.

1Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China,
e-mail: rysheng;gdxupeng;zshao;saeedkosari38@gzhu.edu.cn

2School of Computer Science of Information Technology, Qiannan Normal University for Nationalities,
Duyun 558000, China; Institute of Computing Science and Technology, Guangzhou University, Guangzhou

510006, China, e-mail: rysheng;gdxupeng;zshao;saeedkosari38@gzhu.edu.cn
3Corresponding author, e-mail: saeedkosari38@gzhu.edu.cn
4Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China,

e-mail: rysheng;gdxupeng;zshao;saeedkosari38@gzhu.edu.cn

125



126 Yongsheng Rao, Peng Xu, Zehui Shad and Saeed Kosari

In continuity of this paper, we study 2-prime (2-prime of type 1) bi-quasi-hyperideals of
ordered semihyperrings.

In 2011, Heidari and Davvaz [13] introduced the concept of ordered semihypergroups
as a generalization of ordered semigroups. Since then, the study of ordered semihypergroups
is one of the most exciting topics in hyperstructure theory, for example, see [8, 12, 24, 25].
In 2016, Gu and Tang [12] provided a partial answer to the open problem given by Davvaz
et al. in [8]. Later on, Tang et al. [25] completely solved the open problem given by
Davvaz et al. by using weak pseudoorders. According to [13], An ordered semihypergroup
(H, ◦,≤) is a semihypergroup (H, ◦) together with a partial order ≤ that is compatible with
the hyperoperation ◦, meaning that for any x, y, a in H,

x ≤ y ⇒ a ◦ x ≤ a ◦ y and x ◦ a ≤ y ◦ a.

Here, a ◦x ≤ a ◦ y means for any m ∈ a ◦x there exists n ∈ a ◦ y such that m ≤ n. The case
x ◦ a ≤ y ◦ a is defined similarly.

Davvaz [5] and Vougiouklis [27] established the general notion of semihyperring where
both the addition and multiplication are hyperoperation. The notion of k-hyperideals in a
semihyperring was introduced and studied by Ameri and Hedayati [1]. In 2010, Ameri
and Hedayati [2] investigated the behavior of fuzzy k-hyperideals under homomorphisms of
semihyperrings. In [14], Huang et al. introduced the concept of (εγ , εγ ∨ qδ)-fuzzy hyper-
ideals of semihyperrings and investigated some of their fundamental properties. Recently,
Pibaljommee and Nakkhasen [21] introduced the notion of (m,n)-bi-quasi hyperideals for
semihyperrings.

The notion of a semiring was first introduced by Vandiver [26] in 1934 as a generaliza-
tion of a ring. In 2011, Gan and Jiang [11] proved some results on ordered ideals in ordered
semirings. Prime ordered k-bi-ideals in ordered semirings are discussed in [23]. In 2018,
Rao [22] studied some properties of left bi-quasi ideals of semirings. The notion of ordered
semihyperring, which is a generalization of ordered semiring, was introduced by Davvaz and
Omidi in [7] and investigated in [18, 19]. In 2019, Kazanci et al. [15] introduced the concept
of fuzzy ordered hyperideals of ordered semihyperrings and studied its related properties.

In this study, we introduce the concept of left (k-)bi-quasi hyperideals on an ordered
semihyperring and investigate several related results. When we work with k-bi-quasi hy-
perideals (of type 1) of ordered semihyperrings, it is natural to talk about fuzzy k-bi-quasi
hyperideals. According to the research results, it is suggested to define and investigate some
properties of fuzzy k-bi-quasi hyperideals (of type 1) in ordered semihyperrings.

2. Basic Definitions

Definition 2.1. A semihyperring [27] is an algebraic hypersructure (R,+, ·) which satisfies
the following axioms:

(1) (R,+) is a commutative semihypergroup;
(2) (R, ·) is a semihypergroup;
(3) x · (y + z) = x · y + x · z and (x+ y) · z = x · z + y · z for all x, y, z ∈ R.

Let (R,+, ·) be a semihyperring. If there exists an element 0 ∈ R such that x+ 0 =
{x} = 0 + x and x · 0 = {0} = 0 · x for all x ∈ R; then 0 is called the zero element of R. If
there exists an element 1 ∈ R such that a · 1 = {a} = 1 · a for all a ∈ R, then 1 is called the
identity element of R. Throughout this paper we consider a semihyperring (R,+, ·) with
zero element 0.

Let (R,+, ·) be a semihyperring. A non-empty subset A of R is said to be a subsemi-
hyperring of R if for all x, y ∈ A, we have x+ y ⊆ A and x · y ⊆ A.

In the following, we recall the basic concepts of ordered semihyperring that are used
in this study.
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Definition 2.2. An algebraic hypersructure (R,+, ·,≤) is called an ordered semihyperring
[7, 18] if (R,+, ·) is a semihyperring and the (partial) order relation ≤ is compatible with
the hyperoperations + and ·, i.e.,

(1) If a ≤ b, then a + c ≤ b + c for all a, b, c ∈ R, meaning that for any x ∈ a + c, there
exists y ∈ b+ c such that x ≤ y.

(2) If a ≤ b and c ∈ R, then a ·c ≤ b ·c, meaning that for any x ∈ a ·c, there exists y ∈ b ·c
such that x ≤ y. The case c · a ≤ c · b is defined similarly.

Let H be a non-empty subset of an ordered semihyperring (R,+, ·,≤). Then the
subset {x ∈ R | x ≤ h for some h ∈ H} is denoted by (H]. For H = {h}, we write (h]
instead of ({h}]. If A and B are non-empty subsets of R, then we have

(1) A ⊆ (A];
(2) ((A]] = (A];
(3) (A] · (B] ⊆ (A ·B];
(4) ((A] · (B]] = (A ·B];
(5) If A ⊆ B, then (A] ⊆ (B].

Definition 2.3. Let (R,+, ·,≤) be an ordered semihyperring. A non-empty subset A of R
is called a left (resp. right) hyperideal [19] of R if it satisfies the following conditions:

(1) x+ y ⊆ A for all x, y ∈ A;
(2) R ·A ⊆ A (resp. A ·R ⊆ A);
(3) A = (A], that is, for any a ∈ A and x ∈ R, x ≤ a implies x ∈ A.

If A is both a left and a right hyperideal of R, then A is called a two-sided hyperideal, or
simply a hyperideal of R.

Definition 2.4. A non-empty subset Q of an ordered semihyperring (R,+, ·,≤) is called a
quasi-hyperideal of R if the following conditions hold:

(1) Q+Q ⊆ Q;
(2) (Q ·R] ∩ (R ·Q] ⊆ Q;
(3) When q ∈ Q and x ∈ R such that x ≤ q, imply that x ∈ Q.

Obviously, every left and right hyperideal of an ordered semihyperring R is a quasi-
hyperideal of R. Moreover, each quasi-hyperideal of R is a subsemihyperring of R. indeed:
Q ·Q ⊆ (Q ·Q] ⊆ (Q ·R] ∩ (R ·Q] ⊆ Q.

Definition 2.5. A non-empty subset A of an ordered semihyperring R is called a bi-
hyperideal of R if it satisfies:

(1) A+A ⊆ A and A ·A ⊆ A;
(2) A ·R ·A ⊆ A;
(3) When a ∈ A and x ∈ R such that x ≤ a, imply that x ∈ A.

Definition 2.6. An element a in an ordered semihyperring (R,+, ·,≤) is called regular [7]
if there exists an element x ∈ R such that a ≤ a ·x · a. An ordered semihyperring R is called
regular if each element of R is regular.

Equivalent definitions:

(1) a ∈ (a ·R · a], ∀ a ∈ R.
(2) A ⊆ (A ·R ·A], ∀ A ⊆ R.

3. Main Results

In this section, we study the notion of left (k-)bi-quasi hyperideals (of type 1) on
ordered semihyperrings and then we obtain some related results.
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Definition 3.1. Let (R,+, ·,≤) be an ordered semihyperring. A non-empty subset A of R is
said to be a left (resp. right) bi-quasi hyperideal of R if it satisfies the following conditions:

(1) A is a subsemihyperring of R;
(2) (R ·A] ∩ (A ·R ·A] ⊆ A (resp. (A ·R] ∩ (A ·R ·A] ⊆ A);
(3) When a ∈ A and r ∈ R such that r ≤ a, imply that r ∈ A.

If A is both a left and a right bi-quasi hyperideal of R, then A is called a bi-quasi hyperideal
of R.

Theorem 3.1. Every left hyperideal of an ordered semihyperring (R,+, ·,≤) is a bi-quasi
hyperideal of R.

Proof. Let A be a left hyperideal of an ordered semihyperring R. Then R · A ⊆ A. So, we
have

(R ·A] ∩ (A ·R ·A] ⊆ (A ·R ·A]
⊆ (A ·A]
⊆ (A]
= A

and
(A ·R] ∩ (A ·R ·A] ⊆ (A ·R ·A]

⊆ (A ·A]
⊆ (A]
= A.

Hence, A is a bi-quasi hyperideal of R. �

Example 3.1. Let R = {0, a, b, c}. Define the hyperoperations ⊕, � and (partial) order
relation ≤ on R as follows:

⊕ 0 a b c
0 0 a b c
a a {a, b} b c
b b b {0, b} c
c c c c {0, c}

� 0 a b c
0 0 0 0 0
a 0 a a a
b 0 b b b
c 0 c c c

≤:= {(0, 0), (a, a), (b, b), (c, c), (0, a), (0, b), (0, c), (a, b), (a, c), (b, c)}.
Then (R,⊕,�,≤) is an ordered semihyperring [7]. Put A = {0, a, b}. Clearly, A is a
subsemihyperring of R. We have

(R�A] ∩ (A�R�A] = R ∩ {0, a, b} ⊆ A,

(A�R] ∩ (A�R�A] = {0, a, b} ∩ {0, a, b} ⊆ A
and (A] = A. Hence, A is a bi-quasi hyperideal of R, but is not left hyperideal, because
R�A = {0, a, b, c} * A.

Example 3.2. Let R = {0, a, b}. Define the hyperoperations ⊕, � and (partial) order
relation ≤ on R as follows:

⊕ 0 a b
0 0 a b
a a a {a, b}
b b {a, b} b

� 0 a b
0 0 0 0
a 0 {0, a} {0, a}
b 0 {0, b} {0, b}

≤:= {(0, 0), (a, a), (b, b), (0, a), (0, b), (a, b)}.
Then (R,⊕,�,≤) is an ordered semihyperring [7]. It is not difficult to verify that A = {0, a}
is a bi-quasi hyperideal of R, but is not a left hyperideal of R.

Theorem 3.2. Every right hyperideal of an ordered semihyperring (R,+, ·,≤) is a bi-quasi
hyperideal of R.
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Proof. This proof is straightforward. �

The following example shows that the converse of Theorem 3.2 is not true in general.

Example 3.3. Let R = {0, a, b, c}. Define the hyperoperations ⊕, � and (partial) order
relation ≤ on R as follows:

⊕ 0 a b c
0 0 a b c
a a a a a
b b a {0, b} {0, b, c}
c c a {0, b, c} {0, c}

� 0 a b c
0 0 0 0 0
a 0 a {0, b} 0
b 0 0 0 0
c 0 {0, c} 0 0

≤:= {(0, 0), (a, a), (b, b), (c, c), (0, b), (0, c)}.
Then (R,⊕,�,≤) is an ordered semihyperring. Put A = {0, a}. It is easy to see that A is
a bi-quasi hyperideal of R, but is not a left (right) hyperideal of R.

Lemma 3.1. Let (R,+, ·,≤) be an ordered semihyperring. The intersection of a left hyper-
ideal and a right hyperideal of R is a left bi-quasi hyperideal of R.

Proof. Let A be a left hyperideal and B a right hyperideal of R. Then R · A ⊆ A and
B ·R ⊆ B. We have

(R · (A ∩B)] ∩ ((A ∩B) ·R · (A ∩B)] ⊆ (R ·A] ∩ (B ·R ·B]
⊆ (R ·A] ∩ (B ·B]
⊆ (A] ∩ (B]
= A ∩B.

Now, let x ∈ A ∩ B and y ∈ R such that y ≤ x. By condition (3) of Definition 2.3, we get
y ∈ A and y ∈ B. So, y ∈ A ∩B. Therefore, A ∩B is a left bi-quasi hyperideal of R. �

Let a be an element of an ordered semihyperring (R,+, ·,≤). We denote by l1(a)
(resp. r2(a), iR(a)) the left (resp. right, two-sided) hyperideal of R generated by a. l1(a)
is the intersection of all left hyperideals of R containing a. The right hyperideal r2(a) and
hyperideal iR(a) generated by a are defined similarly.

Lemma 3.2. Let a be an element of an ordered semihyperring (R,+, ·,≤). Then,

(1) l1(a) = (a ∪R · a];
(2) r2(a) = (a ∪ a ·R];
(3) iR(a) = (a ∪R · a ∪ a ·R ∪R · a ·R].

Proof. Since a ∈ l1(a) and R · a ⊆ l1(a), it follows that (a ∪ R · a] ⊆ l1(a). Clearly,
(a ∪R · a] 6= ∅. We have

R · (a ∪R · a] ⊆ (R] · (a ∪R · a]
⊆ (R · (a ∪R · a)]
⊆ (R · a]
⊆ (a ∪R · a].

On the other hand, we have (l1(a)] = l1(a). Thus, l1(a) = (a ∪ R · a] is a left hyperideal of
R containing a. Now, we show that l1(a) is the smallest left hyperideal of R containing a.
Suppose that A is a left hyperideal of R containing a. We have

l1(a) = (a ∪R · a] ⊆ (A ∪R ·A] ⊆ (A] = A.

This proves that (1) holds. The conditions (2) and (3) are proved similarly. �

Theorem 3.3. Let (R,+, ·,≤) be a regular ordered semihyperring. Then every left bi-quasi
hyperideal of R is a quasi-hyperideal of R.
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Proof. Let A be a left bi-quasi hyperideal of a regular ordered semihyperring R. We prove
this statement in three steps:

Step 1: (A ·R] is a right hyperideal of R.
Since 0 ∈ A ·R ⊆ (A ·R], it follows that ∅ 6= (A ·R]. Let a, b ∈ (A ·R]. Then a ≤ u and b ≤ v
for some u, v ∈ A ·R. By assumption, R is an ordered semihyperring. So, a+ b ≤ u+ b and
u+ b ≤ u+ v. Hence, a+ b ≤ u+ v ⊆ A ·R. Thus, for any x ∈ a+ b, there exists y ∈ A ·R
such that x ≤ y. So, x ∈ (A ·R]. This means that a+ b ⊆ (A ·R], and so the first condition
of the definition of right hyperideal is verified. We have

(A ·R] ·R = (A ·R] · (R]
⊆ (A ·R ·R]
⊆ (A ·R].

Now, let x ∈ (A ·R] and y ∈ R such that y ≤ x. Since x ∈ (A ·R], it follows that x ≤ w for
some w ∈ A ·R. Since y ≤ x and x ≤ w, we get y ≤ w. Since y ∈ R, y ≤ w and w ∈ A ·R,
we have y ∈ (A · R]. Therefore, (A · R] is a right hyperideal of R. Similarly, we can prove
that (R ·A] is a left hyperideal of R.

Step 2: If R is a regular ordered semihyperring, then I ∩ J = (I · J ] for any right
hyperideal I and left hyperideal J of R.
Assume that R is regular. Let I be a right hyperideal and J a left hyperideal of R. Then
I ·R ⊆ I and R · J ⊆ J . So, we have

(I · J ] ⊆ (I ·R] ⊆ (I] = I

and

(I · J ] ⊆ (R · J ] ⊆ (J ] = J .

Thus, (I · J ] ⊆ I ∩ J . Now, let a ∈ I ∩ J . Since R is regular, there exists an element x ∈ R
such that a ≤ a · (x · a) ⊆ I · (R · J) ⊆ I · J . Thus a ≤ u for some u ∈ I · J . This means that
a ∈ (I · J ]. Hence, I ∩ J ⊆ (I · J ]. Therefore, we have I ∩ J = (I · J ].

Step 3: A is a quasi-hyperideal of R.
According to Step 2, we conclude that

(A ·R] ∩ (R ·A] = ((A ·R] · (R ·A]]
= (A ·R ·R ·A]
= (A ·R2 ·A]
⊆ (A ·R ·A]

and

(A ·R] ∩ (R ·A] = (A ·R ·R ·A]
⊆ (R ·A].

By hypothesis, A is a left bi-quasi hyperideal of R. So, we obtain

(A ·R] ∩ (R ·A] ⊆ (R ·A] ∩ (A ·R ·A] ⊆ A.

Hence, A is a quasi-hyperideal of R. �

Theorem 3.4. Let (R,+, ·,≤) be an ordered semihyperring. Then, R is regular if and only
if A = (R ·A] ∩ (A ·R ·A] for every left bi-quasi hyperideal A of R.
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Proof. Suppose that R is a regular ordered semihyperring. Let A be a left bi-quasi hyperideal
of R. Then (R ·A] ∩ (A ·R ·A] ⊆ A. Since R is regular, we have

A ⊆ (A ·R ·A]
⊆ ((A ·R ·A] ·R ·A]
⊆ ((A ·R)(A ·R) ·A]
⊆ (R2 ·A]
⊆ (R ·A]

and
A ⊆ (A ·R ·A]
⊆ (A ·R · (A ·R ·A]]
⊆ (A · (R ·A) ·R ·A]
⊆ (A ·R2 ·A]
⊆ (A ·R ·A].

Thus A ⊆ (R ·A] ∩ (A ·R ·A]. Hence, A = (R ·A] ∩ (A ·R ·A].
Conversely, suppose that A = (R ·A]∩ (A ·R ·A] for every left bi-quasi hyperideal A

of R. Let I be a right hyperideal and J a left hyperideal of R. By Lemma 3.1, I ∩ J is a
left bi-quasi hyperideal of R. By assumption, we have

I ∩ J = (R · (I ∩ J)] ∩ ((I ∩ J) ·R · (I ∩ J)]
⊆ ((I ∩ J) ·R · (I ∩ J)]
⊆ (I ·R · J ]
⊆ (I · J ].

On the other hand, I · J ⊆ I · R ⊆ I. So, we get (I · J ] ⊆ I. Similarly, (I · J ] ⊆ J and
this implies that (I · J ] ⊆ I ∩ J . Thus, I ∩ J = (I · J ] for any right hyperideal I and left
hyperideal J of R. Now, let a ∈ R. By Lemma 3.2, we have

a ∈ l1(a) ∩ r2(a) = (l1(a) · r2(a)] ⊆ (a ·R · a].

By Definition 2.6, R is a regular ordered semihyperring. �

Theorem 3.5. Let (R,+, ·,≤) be an ordered semihyperring. Then, R is regular if and only
if A = (A ·R] ∩ (A ·R ·A] for every right bi-quasi hyperideal A of R.

Proof. This proof is straightforward. �

Definition 3.2. Let (R,+, ·,≤) be an ordered semihyperring. A non-empty subset A of R
is called a left k-bi-quasi hyperideal of R, if A is a left bi-quasi hyperideal of R and for any
a ∈ A and x ∈ R, from a+ x ≈ A it follows x ∈ A, where we say that A ≈ B if A ∩B 6= ∅.
A right k-bi-quasi hyperideal is defined similarly. If a hyperideal A is both left and right
k-bi-quasi hyperideal, then A is known as a k-bi-quasi hyperideal of R.

We note that every right k-hyperideal or left k-hyperideal is a k-bi-quasi hyperideal
of R.

Example 3.4. In Example 3.1, A = {0, a, b} is a k-bi-quasi hyperideal of R.

Clearly, every k-bi-quasi hyperideal of an ordered semihyperring R is a bi-quasi hy-
perideal of R. The converse is not true, in general, that is, a bi-quasi hyperideal may not
be a k-bi-quasi hyperideal as the following example shows.

Example 3.5. In Example 3.2, A = {0, a} is not a k-bi-quasi hyperideal of R. Indeed:

b⊕ a = {a, b} ≈ {0, a} and a ∈ {0, a} but b /∈ {0, a}.
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Definition 3.3. Let (R,+, ·,≤) be an ordered semihyperring. A non-empty subset A of R
is called a left k-bi-quasi hyperideal of type 1 of R, if A is a left bi-quasi hyperideal of R and
for any a ∈ A and x ∈ R, from a + x ⊆ A it follows x ∈ A. A right k-bi-quasi hyperideal
of type 1 is defined similarly. If a hyperideal A is both left and right k-bi-quasi hyperideal of
type 1, then A is known as a k-bi-quasi hyperideal of type 1 of R.

Clearly, every k-bi-quasi hyperideal of an ordered semihyperring R is a k-bi-quasi
hyperideal of type 1 of R. The converse is not true, in general, that is, a k-bi-quasi hyperideal
of type 1 may not be a k-bi-quasi hyperideal of R.

Example 3.6. Let (R,⊕,�,≤) be the ordered semihyperring defined as in Example 3.2.
It is easy to see that A = {0, a} is a k-bi-quasi hyperideal of type 1 of R, but it is not a
k-bi-quasi hyperideal of R.

Lemma 3.3. Let (R,+, ·,≤) be an ordered semihyperring and {Ik | k ∈ Λ} be a family of
left k-bi-quasi hyperideals of R. Then

⋂
k∈Λ

Ik is a left k-bi-quasi hyperideal of R.

Proof. This proof is straightforward. �

The k-closure of a nonempty subset A of an ordered semihyperring R is defined by
A = {x ∈ R | ∃ a, b ∈ A, a+ x ≤ b}.

Theorem 3.6. Let A be a bi-quasi hyperideal of an ordered semihyperring R. Then, the
following assertions are equivalent:

(1) A is a k-bi-quasi hyperideal of type 1 of R.
(2) A = A.

Proof. (1)⇒ (2): Assume that (1) holds. Clearly, A ⊆ (A] ⊆ A. Let x ∈ A. Then a+x ≤ b
for some a, b ∈ A. Hence, for any u ∈ a+ x, we have u ≤ b. Since A is a bi-quasi hyperideal
of R, it follows that u ∈ A. Thus, a + x ⊆ A. Since A is a k-bi-quasi hyperideal of type 1
of R, we have x ∈ A. So A ⊆ A and thus A = A.

(2) ⇒ (1): Assume that A = A. Let x ∈ R such that a + x ⊆ A for some a ∈ A.
Then, for any u ∈ a+ x, we have u ∈ A. Thus a+ x ≤ u for some a, u ∈ A. So, x ∈ A. By
assumption, we have x ∈ A. Therefore, A is a k-bi-quasi hyperideal of type 1 of R. �

Theorem 3.7. Let A be a left k-bi-quasi hyperideal of type 1 of an ordered semihyperring
(R,+, ·,≤). Then (A] is a left k-bi-quasi hyperideal of type 1 of R generated by A.

Proof. First of all, we show that (A] is closed under hyperaddition +. Let x, y ∈ (A]. Then
there exist a, b ∈ A such that x ≤ a and y ≤ b. Since R is an ordered semihyperring, we
have x+ y ≤ a+ b ⊆ A. Hence, for any u ∈ x+ y, there exists v ∈ A such that u ≤ v. Thus
u ∈ (A] and so x+ y ⊆ (A]. Also, we have

(A] · (A] ⊆ (A ·A] ⊆ (A] = A.

Since A is a bi-quasi hyperideal of R, it follows (A] = A. So, we have

(R · (A]] ∩ ((A] ·R · (A]] = (R ·A] ∩ (A ·R ·A] ⊆ A.

Since A is a left bi-quasi hyperideal of R, we have (A] ⊆ A. So, ((A]] ⊆ (A] and hence (A] is a
left bi-quasi hyperideal of R. If B is a hyperideal of R such that A ⊆ B, then (A] ⊆ (B] ⊆ B.

So, (A] ⊆ B. Finally, we prove that (A] = (A]. It is clear that A ⊆ (A] ⊆ A ⊆ (A]; Now,

let x ∈ (A]. Then there exist a, b ∈ (A] such that a + x ≤ b. So, for any u ∈ a + x, u ≤ b
for some b ∈ A. Since A is a left bi-quasi hyperideal of R, we have b ∈ A. This means that
a + x ⊆ A. Since A is a left k-bi-quasi hyperideal of type 1 of R, it follows that x ∈ A.
Theus, (A] ⊆ A = (A] and so (A] = (A]. By Theorem 3.6, (A] is a left k-bi-quasi hyperideal
of type 1 of R. �
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4. Conclusions

In this study, we extended the concept of a left bi-quasi ideal of a semiring to an
ordered semihyperring. Also, we introduced the notion of left k-bi-quasi hyperideal (of type
1) and then we obtained some related basic results. When we deal with k-bi-quasi hyperideals
of ordered semihyperrings, it is natural to talk about fuzzy k-bi-quasi hyperideal. According
to the research results, it is suggested to define and investigate some properties of fuzzy k-bi-
quasi hyperideals in ordered semihyperrings. In continuity of this paper, we study 2-prime
(2-prime of type 1) bi-quasi-hyperideals of ordered semihyperrings.
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