MATHEMATICAL MODELS USED IN QUALITY MANAGEMENT OF THE ELECTRICAL ENERGY

Petruta MIHAI1, Mihai O. POPESCU2

As part of this paper, the main purpose is to present the elaboration methodology of some forecasts in the energy consumptions area, using few mathematical models.

The forecast for energy consumptions I realised for a short period of time with a mathematical model, probabilist type, because the analysis is taken place from past to future and the independent variable is the time, and we consider that the prognosis is direct.

The dates estimation and the forecast in a time series is made using the modeling methods will be discussed in this paper. We have elaborate using Matlab, the mathematical model for the forecast of the electrical energy consumption.

Keywords: Mathematical model, forecast, electrical energy, consumption, additive model.

1. Introduction

The importance of the forecast in management is very important. The initiatory of the private process of the electricity distribution, the generalization of the dealing on the market, the substantion of a new mechanisms and instruments for the market risk management and the bigger decentralization of the dealing with electric energy are some of the most important aspects in which the forecast

1 Eng. Dept. of Measurements Electrical, Apparatus and Static Converters, University “Politehnica” of Bucharest, ROMANIA,
2 Prof. Dept. of Measurements, Electrical Apparatus and Static Converters, University “Politehnica” of Bucharest, ROMANIA
studies on short term, are very important. [1] In this context, the paper shows a
lots of aspects connected with the forecast on short term of the electric energy
consumption.[2] The powerful industrial development have brought important
changes in all areas, and this were reflected in the environment, and also also at
the society level. The only possibility for maintain the control on the fast and
important changes is the adaptive behavior against this changes. This means
firstly to establish by forecast the future development and the correct appreciation
of the factors impact and the decisions on the future, and secondly, the decisions
phase, are introduced the castigations needed for the purposes.[3]

Is self-understood that because of the forecast and taking decisions, are
processes which are developed in time, in conditions of aleatory perturbation, the
adaptation process must be continuous, showed in forecasts and rehearses
castigations which will maintain the evolution on the target. More, once we are
close to the specific targets, in the future are new targets, who presumes new
forecast horizons and new decisions.[4]

As part of this paper, the main purpose is to present the elaboration
methodology of some forecasts in the energy consumptions area, using few
mathematical models.

Following this idea, the next definition for the forecast of the energy
consumption and power also, comes like:

The forecast for the electrical energy consumption and power also is the
scientific activity with the main purpose: the forecast for the energy consumption
and power based on calculations analysis and based on the interpretation of a
different dates, so we will obtain a more precise concordance between the
estimated consumptions and the one effectively realised.[5]

We can see that a batch of parameters (reasons) with aleatory character
leads to the energy consumption: climatic factors, demographical factors,
economical factors and another factors.

The methodology of elaboration of a forecast study for the energy
consumption has few main steps:
- collecting, selection and analyze the initial dates;
- establishing the mathematical model for the consumption;
- the analyze for the variance which has been obtained for the forecast and
establishing the final decision. [6]
2. Components of the mathematical model for the energy consumption

Consumption curve, represents the energy fluctuation in time (or taking into consideration another parameter) and it can be split in more components. The forecast experience of the energy consumption shows four main components which determine the consumption curve \((W)\) (See example Fig. 1)[7]:

![Components of the mathematical model for the energy consumption curve](image)

Fig. 1. The components for the mathematical model of the energy consumption curve

1. the trend \((T)\) represents the consumption's main compound, establishing the modification essential form of energy consumption.
2. the cyclic component \((C)\) it's due to existence to some fluctuant causes with slowly effect like the request-supply correlation with a period over a year.
3. the seasonal component \((S)\) it is caused by certain parameters which presents seasonal fluctuations (especially climatic elements). This component has a few months variation period and a similar shape for all years.[8]
4. the aleatory component \((\varepsilon)\) it due to perchance causes, that has been previously specified.

As a conclusion, the energy consumption results, totaling the elements that have been specified above:

\[
W(t) = T(t) + C(t) + S(t) + \varepsilon(t)
\]

(1)

3. The extrapolative methods principle

The direct forecast methods are supposing the assumption that the causes, the factors and the trends which established the energy consumption in the past are also maintaining in the future, without appearing any dramatic and sudden changes during the forecast which to affect the consumption evolution.[9]
This assumption justifies the energy consumptions evolution trend extrapolation from the past for the future period and brings the forecast problem to the analysis of the energy consumption variation law from the past to the future.[10]

The mooted forecast methods are supposing the establishment of a mathematical model likeness a one or more variables function (generally a single variable, time) who fairly estimates the trend on the last period. The estimation of the functions coefficients is making by solving an equations system where the coefficients are calculating means the energy consumptions from the last period.[11]

3.1 The estimation for the model components

It is considered a value set \(y_t \) observed, of a chronological serie. Mathematical shaping can be made using an additive model:

\[
y_t = T_t + C_t + S_t + R_t
\]

We consider the additive model: \(y_t = T_t \cdot C_t \cdot S_t \cdot R_t \) where: \(T_t \) represents the trend (continuous component), \(C_t \) represents the cyclical component, \(S_t \) represents seasonal components, \(R_t \) represents the component due to aleatory variations.

The additive model is merged in additive model by logarithmic way.[12]

a) The trend \(T_t \) is determined by using linear model:

\[
y_t = b_0 + b_1 \cdot t + \epsilon_t
\]

where finding the parameters \(b_0, b_1 \) is made with matrix method.

Are noted the following matrices:

\[
X = \begin{bmatrix}
1 & x_1 \\
1 & x_2 \\
... & ... \\
1 & x_n
\end{bmatrix},
Y = \begin{bmatrix}
y_1 \\
y_2 \\
... \\
y_n
\end{bmatrix},
B = \begin{bmatrix}
b_0 \\
b_1
\end{bmatrix}
\Rightarrow B = (X’X)^{-1}(X’Y)
\]

\[\Rightarrow b_0 \text{ and } b_1 \] parameters which determine the regressive right line:

\[
y_t = \hat{b}_0 + \hat{b}_1 \cdot x_t . \quad [13]
\]

The advantage for this method is that it can be applied successfully in case of multiple regressive and non right line regressive. [14]

b) The cyclical component \(C_t \) is acquired using the additive model

\[
y_t = T_t \cdot C_t \cdot S_t \cdot R_t
\]

Graphical method

1. is established the trend (regressive right line)
2. for each period of time is evaluated by calculations the trend value \(\hat{y}_t \)
3. The percent of the trend is \(\frac{y_t}{\hat{y}_t} \times 100 \). Is graphically represented, the points \(\left(t, \frac{y_t}{\hat{y}_t} \times 100\right) \), \(t=1,\ldots,n \) and the line 100%. If we see a cyclic phenomenon, we can consider the cycle with the length T.[15]

The methods for development in Fourier series

We have the following steps: In the simple cases, \(y_t \) can be represented using the mathematical formula:

\[
y_t = \alpha + \beta \cdot \sin \frac{2\pi t}{T} + \gamma \cdot \cos \frac{2\pi t}{T} + \varepsilon_t, \quad T=\text{cycle period},
\]

\(\varepsilon_t \) is the aleathory component.[16]

If \(T \) is known and \(n \) (number of observations) is a \(T \) multiple: \(n = m \cdot T \), than \(m \) is the complete cycle number involved in our analysis. The unknown parameters \(\alpha, \beta, \gamma \) are calculated using the method of the smallest squares. So we can obtain the calculations:

\[
\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} y_t = \frac{1}{T} \sum_{u=1}^{T} z_u, \quad \hat{\beta} = \frac{1}{T} \sum_{u=1}^{T} z_u \cdot \sin \left(\frac{2\pi u}{T} \right),
\]

\[
\hat{\gamma} = \frac{1}{T} \sum_{u=1}^{T} z_u \cdot \cos \left(\frac{2\pi u}{T} \right),
\]

where \(z_u = \frac{1}{m} \sum_{v=0}^{m-1} y_{u+vT}, \quad u = 1,2,\ldots,T \). With \(T \) estimated in this way, are graphically represented the points \((t, \hat{y}_t), t=1,2,\ldots,n \)

\[
\hat{y}_t = \hat{\alpha} + \hat{\beta} \cdot \sin \frac{2\pi t}{T} + \hat{\gamma} \cdot \cos \frac{2\pi t}{T}. \quad [17]
\]

c) The seasonal component \(S_t \)

The seasonal parameter is used to compare with periodical fluctuations on short term between seasons (in our paper: months). The method showed below is applied for the additive model: \(y_t = T_t \cdot C_t \cdot S_t \cdot R_t \) and assuming that doesn’t exists a cyclic effect:

We calculate \(MA(T) \); is determined the parameter of the time serie \(y/MA \); we calculate the means on each month; we calculate the sum of this means and we will obtain in this way the seasonal parameters.[18]
d) The forecast

The forecast can be obtained by smoothing. We will consider the exponential smoothing using the formula: $s_1 = y_1; s_t = \alpha \cdot y_t + (1 - \alpha) \cdot s_{t-1}, t \geq 2, \alpha \in (0,1) \alpha$ is picked up like we want it.

$$s_2 = \alpha \cdot y_2 + (1 - \alpha) \cdot y_1$$
$$s_3 = \alpha \cdot y_3 + (1 - \alpha) \cdot y_2 = \alpha \cdot y_3 + \alpha(1 - \alpha) \cdot y_2 + (1 - \alpha)^2 \cdot y_1 =$$
$$\alpha(y_3 + (1 - \alpha) \cdot y_2 + (1 - \alpha)^2 \cdot y_1)$$
$$s_t = \alpha(y_t + (1 - \alpha) \cdot y_{t-1} + (1 - \alpha)^2 \cdot y_{t-2} + ...), t \geq 2 \ [19], \ [20]. \quad (8)$$

4. Case study

It is considered a data base (60 dates) which represents the electrical energy consumption from University Politehnica of Bucharest, during January and February 2007. The registrations from the data base represents a real data base concerning the energy consumptions which allows to locate, with a certain trust level, the consumptions on intervals obtained by proportional division principle. The safety of the forecasts is directly proportional with the number of the available registrations and with their precision, and the dates are renewed daily.

The dates estimation and the forecast in a time series is made using the modeling methods which have been discussed earlier. We have elaborate using Matlab, the mathematical model for the forecast of the electrical energy consumption.

Realising a forecast for the energy consumption on short term is made with Matlab, reaching the following steps:
a). It is realised a data base;
b). We will make the calculations for the geometrical trend and we will see that concordant with the graphical method;
c). We’ve made the calculations for determining the cyclical component and this is shown like below;

d). We’ve made the calculations for the seasonal effect and we have obtained the graphic:
e). It is realised the forecast for the next year using the exponential straightening and we will obtain the graphic.

Fig. 4 The produced energy evolution in time, after the dismission of the seasonal effect

Fig. 5 Estimative forecast of the energy consumption for March and April 2007
5. Conclusions

The forecasts for consumption represents the main elements for analysis in the elaboration/ modification of some decisions in different stages of the supply electric energy service management. In this case, is need to make some consume forecasts on short and medium term, very precise, in this way we want to obtain the contract on the competitive market of a eighth quantities and implicit the cost reduction connected to the electrical energy acquisition.

Using a procedure of recursive approximation gave us some good results, and so in the conditions of large variations, to develop a model which takes into considerations the previous dates in reduced number. In conformity with the graphics, the forecast shows that the energy consumption in March and April 2007, at University Politehnica of Bucharest is almost the same with the one realised in January and February 2007.

REFERENCES

[15] Malaman Quality of electricity supply initial benchmarking on levels, standards and regulatory strategies-aprilie 2001 Council of European Energy Regulators (Working Group on Quality of Electricity Supply)

[17] Horia Măăresi Implementarea sistemelor integrate de management a distribuției, condiție indispensabilă în perspectiva privatizării filialelor de rețele electrice, Buletin informativ SDFEE Baia Mare, nr. 12/nov. 1999.

