
U.P.B. Sci. Bull., Series A, Vol. 81, Iss. 3, 2019 ISSN 1223-7027

A CLASS OF DIFFERENTIAL SYSTEMS OF DEGREE 4k + 1 WITH

ALGEBRAIC AND NON ALGEBRAIC LIMIT CYCLES

A. Bendjeddou1, A. Berbache2, A. Kina3

For a given family of planar differential equations it is a very difficult
problem to determine an upper bound for the number of its limit cycles. In this paper

we give a family of planar polynomial differential systems of degree 4k + 1 whose limit

cycles can be explicitly described using polar coordinates. The given family of planar
polynomial differential systems can have at most two explicit limit cycles, one of them

algebraic and the other one non–algebraic.
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1. Introduction

We consider here two-dimensional polynomial differential systems of the form
ẋ =

dx

dt
= P (x, y),

ẏ =
dy

dt
= Q (x, y) ,

(1)

where P and Q are two polynomials of R[x, y] (R [x, y] denotes the ring of polynomials in
the variables x and y with real coefficients). By definition, the degree of the system (1) is
n = max(deg(P ),deg(Q)). A limit cycle of system (1) is an isolated periodic orbit and it is
said to be algebraic if it is contained in the zero set of an algebraic curve, otherwise it is
called non-algebraic.

An important problem of the qualitative theory of differential equations is to deter-
mine the limit cycles of a system of the form (1). We usually only ask for the number of
such limit cycles, but their location as orbits of the system is also an interesting problem,
and an even more difficult problem is to give an explicit expression of them. We are able to
solve this last problem for a given family of systems of the form (1).

Let us recall some useful notions (for more details see [8]). For U ∈ R [x, y], the
algebraic curve U = 0 is called an invariant curve of (1) if for some polynomial K ∈ R [x, y]
called the cofactor of the algebraic curve, we have

P (x, y)
∂U

∂x
+Q(x, y)

∂U

∂y
= K (x, y)U (x, y) .
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The curve Γ = {(x, y) ∈ R [x, y] : U(x, y) = 0} is non-singular of system (1) if the equilibrium
points of the system that satisfy {

P (x, y) = 0
Q(x, y) = 0

,

are not contained on the curve Γ.
Until recently, the only limit cycles known in an explicit way where algebraic (see

for instance [1], [3], [4], [7], [12], [14] and references therein ). On the other hand, it seems
intuitively clear that “most” limit cycles of planar polynomial vector fields have to be non
algebraic. Nevertheless, until 1995 it was not proved that the limit cycle of the van der Pol
equation is not algebraic ( see K. Odani [13] ) . In the chronological order the first explicit
non-algebraic limit cycle due to Gasull, Giacomini and Torregrosa [9], was for a polynomial
differential system of degree 5, after this first paper appeared the paper of Al-Dosary [2]
inspired by [9], providing a similar polynomial differential system of degree 5 exhibiting an
explicit non-algebraic limit cycle. In [6], an example of an explicit limit cycle which is not
algebraic is given for n = 3.

The first result for the coexistence of algebraic and non-algebraic limit cycles goes
back to J. Giné and M. Grau [10] for n = 9. These last authors transform their system
into a Ricatti equation which is itself transformed into a variable coefficients second order
linear differential equation using the classic linearization method. From the principal result
of an earlier work (see details from page 5 of their paper) they obtain a first integral and
also the explicit equations of the possible limit cycles. Bendjeddou and al [5] provide a
polynomial differential system of degree 5 exhibiting simultaneously two explicit limit cycles
one algebraic and another non-algebraic.

The aim of this paper is to show that there exist a class polynomial differential
systems of degree 5, 9, ..., 4k + 1, k ∈ N∗ exhibiting two explicit limit cycles, one of them
algebraic and the other one non–algebraic.

2. Main result

As a main result, we shall prove the following theorem.

Theorem 2.1. The differential polynomial system of degree n = 4k + 1, k ∈ N∗

ẋ =
(
γx− x

(
x2 + y2

)k − 2kγy
)(

a
(
x2 + y2

)k
+ bP2k(x, y)

)
− x

((
x2 + y2

)k − γ)2

ẏ =
(
γy − y

(
x2 + y2

)k
+ 2kγx

)(
a
(
x2 + y2

)k
+ bP2k(x, y)

)
− y

((
x2 + y2

)k − γ)2 (2)

where a, b, γ ∈ R∗
+ and P2k a polynomial of degree 2k such that:

P2k(x, y) =

k−1∑
s=0

(−1)
s

(
2k

2s+ 1

)
x2k−2s−1y2s+1, where

(
2k

2s+ 1

)
=

2k!

(2s+ 1)! (2k − 2s− 1)!
,

possesses exactly two limit cycles: the circle (Γ1) :
(
x2 + y2

)k − γ = 0 surrounding a tran-
scendental and unstable limit cycle (Γ2) explicitly given in polar coordinates (r, θ) by the
equation

r (θ, r∗) =

γ + γ
e−θ

r2k∗
r2k∗ −γ − e−θ + f (θ)

 1
2k

,

with f(θ) =
∫ θ

0

e−s

a+ b sin 2ks
ds and r∗ =

(
γ f(2π)

1−e−2π+f(2π)

) 1
2k

, when the following condition

is assumed :

b2 − a2 < 0.
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Proof. Firstly, we have

yẋ− xẏ = −2kγ
(
bP2k (x, y) + a

(
x2 + y2

)k) (
x2 + y2

)
,

thus, the equilibrium points of system (2) are present in the curve(
bP2k (x, y) + a

(
x2 + y2

)k) (
x2 + y2

)
= 0. (3)

In polar coordinates (r, θ), defined by x = r cos θ and y = r sin θ, (2.1) reads as

P2k(r cos θ, r sin θ) =

k−1∑
s=0

C2s+1
2k (−1)

s
(r cos θ)

2k−2s−1
(r sin θ)

2s+1
(4)

= r2k
k−1∑
s=0

C2s+1
2k (−1)

s
(cos θ)

2k−2s−1
(sin θ)

2s+1

= r2k sin (2kθ) ,

then, the curve’s equation (3) can be written as

r2k+2 (b sin (2kθ) + a) = 0.

Since b2 − a2 < 0 and a ∈ R∗
+, b ∈ R+, it follows that 0 < a− b and

a− b < b sin (2kθ) + a < a+ b, for all θ ∈ R, (5)

according to this equation, we deduce that 0 < b sin (2kθ) + a, then r = 0, thus the origin is
the unique critical point at finite distance.

We prove that (Γ1) :
(
x2 + y2

)k − γ = 0 is an invariant algebraic curve of the differential
system (2). Indeed, if we put

P (x, y) =
(
γx− x

(
x2 + y2

)k − 2kγy
)(

a
(
x2 + y2

)k
+ bP2k(x, y)

)
− x

((
x2 + y2

)k − γ)2

,

Q (x, y) =
(
γy − y

(
x2 + y2

)k
+ 2kγx

)(
a
(
x2 + y2

)k
+ bP2k(x, y)

)
− y

((
x2 + y2

)k − γ)2

,

U (x, y) =
(
x2 + y2

)k − γ.
Immediately we have

P (x, y)
∂U(x, y)

∂x
+Q(x, y)

∂U(x, y)

∂y
= K (x, y)U (x, y) ,

where
K (x, y) = −2k

(
x2 + y2

)k
Q2k (x, y) ,

and
Q2k (x, y) = bP2k (x, y) + (a+ 1)

(
x2 + y2

)k − γ,
therefore, the circle (Γ1) :

(
x2 + y2

)k − γ = 0 is an invariant curve of system (2).
The curve (Γ1) is a periodic orbit of system (2) if and only if there does not exist any singular
point on (Γ1), since the origin is the unique equilibrium point of the system of system (2)

and (Γ1) :
(
x2 + y2

)k − γ = 0 do not pass through the origin, then (Γ1) is a periodic orbits
of system (2).
To see that Γ1 is in fact a limit cycle, we use a classic result characterizing limit cycles
among other periodic orbits (see for instance [14] for more details), which means that Γ1 =

{(x(t), y(t)), t ∈ [0, T ]} is a limit cycle when
∫ T

0
div(Γ1)dt 6= 0, stable if

∫ T
0
div(Γ1)dt < 0,

and instable if
∫ T

0
div(Γ1)dt > 0, where T be the priod of Γ1. We use also a practical result

of J. Giné and al [11], which asserts that
∫ T

0
div(Γ1)dt =

∫ T
0
K (x, y) dt.

Note that if a periodic curve (Γ1) is invariant for a differential system with a cofactor
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K(x, y) of constant sign for (x, y) ∈ Int(Γ1) where Int(Γ1) denotes the interior of (Γ1), then∫ T
0
K(x, y)dt, is automatically different from zero.

Now we shall prove that K (x, y) does not intersect the orbit Γ1, to show this, we prove that
the system  −2k

(
x2 + y2

)k (
bP2k + a

(
x2 + y2

)k
+
(
x2 + y2

)k − γ) = 0,(
x2 + y2

)k − γ = 0,
(6)

has no solutions.
In polar coordinates (r, θ), system (6) reads as{

−2kr2k
(
br2k sin (2kθ) + ar2k + r2k − γ

)
= 0,

r2k − γ = 0,

this system can be written as

−2kγ2 (b sin (2kθ) + a) = 0.

Since b2 − a2 < 0, then b sin (2kθ) + a > 0 for all θ ∈ R, thus,

−2kγ2 (b sin (2kθ) + a) < 0,∀θ ∈ R, (7)

then, the curve K(x, y) = 0 do not cross (Γ1).

ButQ2k(0, 0) = −γ < 0, henceQ2k(x, y) < 0 inside (Γ1) andK(x, y) = −2k
(
x2 + y2

)k
Q2k (x, y) >

0 inside (Γ1)� {(0, 0)}, so
∫ T

0
K (x, y) dt > 0, where T be the period of the periodic solution

(Γ1). Consequently (Γ1) defines a unstable algebraic limit cycle for system (2).

The search for the non-algebraic limit cycle, requires the integration of our system. Taking
into account (3), then in polar coordinates (r, θ), defined by x = r cos θ and y = r sin θ, the
system (2) can be written as the system

ṙ = r
(
r2k − γ

) (
r2k + ar2k + br2k sin 2kθ − γ

)
,

θ̇ = −2kγ (a+ b sin 2kθ) r2k.
(8)

Taking as θ independent variable, we obtain the equation

2kr2k−1 dr

dθ
= −

(
r2k − γ

) (
r2k + ar2k + br2k sin 2kθ − γ

)
γ (a+ b sin 2kθ)

. (9)

Note that since we have γ > 0 and b sin (2kθ) + a > 0 for all θ ∈ R, then

θ̇ = −2kγ (a+ b sin 2kθ) r2k < 0, (10)

so, the orbits r(θ) of the differential equation (9) has reversed their orientation with respect
to the orbits (r(t), θ(t)) or (x(t), y(t)) of the differential systems (8) and (2), respectively.
Via the change of variables ρ = r2k, the equation (9) is transformed into the Riccati equation

dρ

dθ
= − (ρ− γ) ((1 + a+ b sin 2kθ) ρ− γ)

γ (a+ b sin 2kθ)
(11)

= − (ρ− γ)

(
1 + a+ b sin 2kθ

γ (a+ b sin 2kθ)
ρ− 1

(a+ b sin 2kθ)

)
.

Fortunately, this equation is integrable, since it possesses the particular solution ρ = γ
corresponding of course to the limit cycle (Γ1), the general solution of equation (11) is given
by

ρ =

(
γ +

1

R

)
, (12)
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where R is a function of the variable θ. Indeed, substituting the solution ρ =
(
γ + 1

R

)
into

Riccatti equation, we obtain the linear equation .

− 1

R2

dR

dθ
= − 1

R

(
1 + a+ b sin 2kθ

γ (a+ b sin 2kθ)

(
γ +

1

R

)
− 1

(a+ b sin 2kθ)

)
, (13)

thus
dR

dθ
=

1

γ
+

1

γ (a+ b sin 2kθ)
+R. (14)

The general solution of linear equation (14) is

R (θ, k) = eθ

(
k − 1

γ

(
e−θ − 1

)
+

1

γ

∫ θ

0

e−s

a+ b sin 2ks
ds

)
,

where k ∈ R. Going back through the changes of variables (12) we obtain

ρ (θ, k) =

(
γ + γ

e−θ

γk + 1− e−θ +
∫ θ

0
e−s

a+b sin 2ksds

)
,

if we take h = γk + 1, then the general solution of Riccatti equation (11) is

ρ (θ, h) = γ + γ
e−θ

h− e−θ +
∫ θ

0
e−s

a+b sin 2ks ds
.

Consequently, the general solution of (9) is

r (θ, h) =

(
γ + γ

e−θ

h− e−θ +
∫ θ

0
e−s

a+b sin 2ks ds

) 1
2k

.

By passing to Cartesian coordinates, we deduce the first integral

F (x, y) =
γe− arctan y

x

(x2 + y2)
k − γ

+ e− arctan y
x −

∫ arctan y
x

0

e−s

a+ b sin 2ks
ds.

The trajectories of system (2) are the level curves F (x, y) = h, h ∈ R and since these curves
are obviously all non-algebraic (if we exclude of course the curve (Γ1) corresponding to
k → +∞), thus any other limit cycle, if exists, should also be non-algebraic.
To go a steep further, we remark that the solution such as r(0, r0) = r0 > 0, corresponds to

the value h =
r2k0

r2k0 −γ provided a rewriting of the general solution of (8) as

r (θ, r0) =

γ + γ
e−θ

r2k0
r2k0 −γ − e

−θ + f (θ)

 1
2k

, (15)

where r0 = r(0) and f(θ) =
∫ θ

0

e−s

a+ b sin 2ks
ds.

A periodic solution of system (2) must satisfy the condition:

r(2π, r0) = r(0, r0). (16)

The equation (16) equivalent to

(
r2k
0 − γ

)( γe−θ

r2k
0 +

(
r2k
0 − γ

)
(−e−θ + f (θ))

− 1

)
= 0. (17)
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It is easy to check that the equation (17) admits exactly two distinct solution, the first is

r0 = γ
1
2k corresponding obviously to the algebraic limit cycle (Γ1), and the second value is

r0 = r∗ =

(
γ

f (2π)

1− e−2π + f (2π)

) 1
2k

, (18)

providing the value r∗ > 0. Indeed, since b2 − a2, then, a + b sin 2kθ > 0 for all θ ∈ R, so
f (θ) > 0 and 1− e−θ + f (θ) > 0 for all θ ∈ R therefore, r∗ > 0.
Injecting this value of r∗ in (15), we get the candidate solution

r (θ, r∗) =

γ + γ
e−θ

r2k∗
r2k∗ −γ − e−θ + f (θ)

 1
2k

. (19)

To show that (19) is a periodic solution of the system (8), we have to show that : To show
that it is a periodic solution, we have to show that :
i) the function x 7→ g(θ), where in this case

g (θ) = γ + γ
e−θ

f(2π)
e−2π−1 − e−θ + f (θ)

,

is 2π−periodic.
ii) g(θ) > 0 for all θ ∈ [0, 2π[. The last condition ensures that r(θ, r∗) is well defined for all
θ ∈ [0; 2π[ and the periodic solution do not pass through the unique equilibrium point (0, 0)
of system (2).

Periodicity. Let θ ∈ [0, 2π[, then

g (θ + 2π) = γ + γ
e−θ−2π

f(2π)
e−2π−1 − e−θ−2π + f (θ + 2π)

, (20)

but

f (θ + 2π) =

∫ θ+2π

0

e−s

a+ b sin 2ks
ds

=

∫ 2π

0

e−s

a+ b sin 2ks
ds+

∫ θ+2π

2π

e−s

a+ b sin 2ks
ds

= f (2π) +

∫ θ+2π

2π

e−s

a+ b sin 2ks
ds,

we make the change of variable u = s− 2π in the integral
∫ θ+2π

2π

e−s

a+ b sin 2ks
ds, we get

f (θ + 2π) = f (2π) +

∫ θ

0

e−(u+2π)

a+ b sin 2k (u+ 2π)
du

= f (2π) + e−2πf (θ) ,
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we replace f (θ + 2π) by f (2π) + e−2πf (θ) in (20), we obtain

g (θ + 2π) = γ + γ
e−θ−2π

f(2π)
e−2π−1 − e−θ−2π + f (θ + 2π)

= γ + γ
e−(θ+2π)

f(2π)
e−2π−1 − e−(θ+2π) + (f (2π) + e−2γπf (θ))

= γ + γ
e−(θ+2π)

e−2π

e−2π−1f (2π)− e−(θ+2π) + e−2γπf (θ)

= γ + γ
e−(θ+2π)

e−2π
(

f(2π)
e−2πγ−1 − e−θ + f (θ)

)
= g(θ), (21)

hence g is 2π-periodic.

Strict positivity of g(θ) for all θ ∈ [0, 2π[. Since b2 − a2 < 0 and a ∈ R∗
+, b ∈ R+,

then b < a, therefore, 0 < a − b < a + b sin 2kθ < a + b , so f (θ) > 0 for all θ ∈ [0, 2π[,
moreover we have

f(2π) =

∫ 2π

0

e−s

a+ b sin 2ks
ds

= f (θ) +

∫ 2π

θ

e−s

a+ b sin 2ks
ds,

since
e−s

a+ b sin 2ks
> 0 then,

∫ 2π

θ

e−s

a+ b sin 2ks
ds > 0, so

f(2π) ≥ f (θ) > 0 pour tout θ ∈ [0, 2π[,

and

g(θ) = γ + γ
e−θ

f(2π)
e−2π−1 − e−θ + f (θ)

≥ γ + γ
e−θ

f(2π)
e−2π−1 − e−θ + f (2π)

= γ
f (2π)

f (2π) + e−θ (e2π − 1)
> 0,

hence g(θ) > 0 for all θ ∈ [0, 2π[.

Finally r(θ, r∗) defines through (19) a periodic solution. To show that it is a limit
cycle, we consider (19), and introduce the Poincaré return map r∗ 7→ P (r∗) = r(2π, r∗). to
prove that the periodic solution is an isolated periodic orbit, see [8], it is sufficient for the
function of Poincaré first return

dr(2π, r∗)

dr∗

∣∣∣∣
r∗=

(
γ

f(2π)

1−e−2π+f(2π)

) 1
2k

6= 1,

which is already the case because we have

dr(2π, r∗)

dr∗

∣∣∣∣
r∗=

(
γ

f(2π)

1−e−2π+f(2π)

) 1
2k

= e2π > 1.

Consequently the limit cycle of the differential equation (9) is unstable and hyperbolic (see
[[8]], section 1.6 for more details). Consequently, this is a stable and hyperbolic limit cycle
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for the differential system (2). Since the Poincaré return map do not possess other fixed
points, the system (2) admit exactly two limit cycles. �
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