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APPLICATION OF MELLIN TRANSFORMS IN DETERMINATION THE PROBABILITY
DISTRIBUTION OF THE STOCHASTIC VOLATILITY MODELS

Vladica Stojanović1, Tijana Kevkić1, Jelena Vujaković1, Gordana Jelić2, Brankica Pažun3

In this paper, an application of the Stochastic Mellin Transforms (SMTs) in determination of the
probability distribution functions (PDFs) of the Stochastic Volatility (SV) models is proposed. In that aim,
three basic SV time series with Gaussian innovations have been considered, and their PDFs were obtained
by using the inverse SMT formula.
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1. Introduction

Stochastic Volatility (SV) models belong to the very important class of non-linear time series mod-
els, which are primarily using in econometrics. The first SV model introduced by Taylor [1] undergone
the number of modifications and generalizations until nowadays [2]-[8]. Thanks to these modifications
and generalizations, the commonly used models in the analysis of the financial time series dynamics are
obtained [9]-[12]. However, the main problem in SV modelling consists in finding the probability distri-
bution of some particular time series, which would completely describe their behaviour and dynamics in
time [13]-[15]. Further, the basic stochastic characteristic of the SV models is the presence of two sources
of indeterminacy. As a consequence, their probability distribution functions (PDFs) have no closed form.
In order to overcome these difficulties, the Stochastic Mellin Transforms (SMTs) are proposed here.

According to their basic definition, the Mellin transforms represent the integral transforms which
can be interpreted as the multiplicative, two-sided Laplace transforms. They are closely connected to the
theory of Dirichlet series, and found the applications in the number theory [16], the asymptotic expansions
of harmonic sums [17], the approximation of some class of convolution operators [18], theory of gamma
function and other related special functions [19], wavelet analysis [20], etc. The first application of Mellin
transforms in stochastic theory is related to the pioneer work of Epstein [21]. Recently, they have been
mostly used for studying of the products of various kind random variables (RVs) [22], some continuous
moment estimation procedures [23], as well as in the stochastic analysis of the options pricing [24]-[26].

Here, the Mellin transforms are applied in determination of the probability distribution functions
(PDFs) of the Gaussian type SV models. For this purpose, the Stochastic Mellin Transform (SMT), as
well as the inverse SMT formula, are introduced in following Section 2. Also, some basic properties of the

1aFull Professor, Faculty of Sciences and Mathematics, University of Priština, Kosovska Mitrovica, & University of Criminal
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SMTs are listed and considered, especially the SMTs of the RVs with the standard Gaussian probability
distribution. Section 3 and 4 contain the main results, i.e. the effective procedures for computation the
SMTs of the SV models’ time series. Moreover, the application of inverse SMT formula in determination
the PDFs of three basic SV time series is described and analyzed. Finally, some concluding remarks are
given in Section 5.

2. Stochastic Mellin Transforms

Let (Ω,F ,P) be some probability space and let X : Ω → R be the RV with continuous PDF
fX (x). Denote as X+ = max{X ,0} and X− = max{−X ,0} the positive and negative part of the RV X ,
respectively. Then, the Stochastic Mellin Transform of the RV X is

f̃X (s) =
∫ +∞

0
xsdFX+(x)+ γ

∫ +∞

0
xsdFX−(x), (1)

where γ ∈ C is a constant such that γ2 = 1. In the special case, which be hereafter most often considered,
when X ≥ 0 almost surely (a.s.), the Eq. (1) becomes:

f̃X (s) = E(X s) =
∫ +∞

0
xs fX (x)dx. (2)

According to this, immediately follows:

Lemma 2.1. For arbitrary, mutually independent RVs X ,Y ≥ 0 (a.s.) with the continuous PDFs fX (x),
fY (y), respectively, and each α ∈ R, the following equalities hold:

(i). f̃αX (s) = E(αsX s) = α
s f̃X (s),

(ii). f̃Xα (s) = E(Xαs) = f̃X (αs),

(iii). f̃XY (s) = f̃X (s) f̃Y (s).

Also, it is well-known that the transform given by Eq. (2) exists on the fundamental strip: DX =
〈a,b〉= {s ∈ C |a < Re(s)< b}, where

fX (x) =

 O
(

x−(a+1)
)
, x→ 0+,

O
(

x−(b+1)
)
, x→+∞.

(3)

As the function fX (x) is continuous and
∫ +∞

0 fX (x)dx= 1, integral in Eq. (2) obviously exists for any s∈C
which satisfies inequality Re(s)>−1. Thus, the fundamental strip DX of arbitrary RV X ≥ 0 contains the
set D = 〈−1,+∞〉. On the other hand, according to Eq. (2) the so-called inverse SMT formula follows:

fX (x) =
1

2πi

∫ c+i∞

c−i∞
x−(s+1) f̃X (s)ds, (4)

where x≥ 0 and c∈ 〈a,b〉 is an arbitrary point on which the integral above does not depend. Furthermore,
the SMT f̃X (s) is holomorphic on 〈a,b〉 and by Cauchy’s theorem, the path of integration of integral in
Eq. (4) can be translated inside, without affecting the result of the integration.

Example 2.1. Consider the RV Z with the Gaussian distribution N (0,1). Using Eq. (1) with γ = 1, as
well as the symmetry properties of this distribution, its SMT can be obtained as:

f̃Z(s) = E
(
|Z|s

)
=

√
2
π

∫ +∞

0
zse−z2/2dz =

2s/2
√

π
Γ

(
s+1

2

)
. (5)

Beside to this, the following formula is valid:
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fZ(z) =
1√
2π

e−z2/2 =

{
O
(
z0
)
, z→ 0+,

O(z−∞) , z→+∞,

and according to Eq. (3) it follows that the Eq. (5) holds for arbitrary s ∈ C which satisfies the condition
Re(s)>−1. Thus, the fundamental strip for the SMT f̃Z(z) is DZ = 〈−1,+∞〉. Finally, notice that when
s = 2n, n ∈ N, Eq. (5) implies the even moments of the RV Z (the odd moments are equal zero):

f̃Z(2n) = E(Z2n) =
2n
√

π
Γ

(
2n+1

2

)
=

2n
√

π

n

∏
k=1

2k−1
2

Γ

(
1
2

)
= (2n−1)!!.

These facts will be useful below, where the procedure for determining the SMTs of the stochastic volatility
models will be described in detail.

3. SMTs of the Stochastic Volatility Models

In general, the series (Xt), when t ∈Z, represents the Stochastic Volatility (SV) model if it is defined
by the following equations: 

Xt = V 1/2
t εt

Vt = σ2 exp(∆t)

∆t = α ∆t−1 +δηt .

(6)

Here, α is the autoregressive parameter which satisfies the nontriviality and stationarity condition 0 <
|α| < 1, while σ , δ > 0 are dispersion parameters. Further, (εt) and (ηt) are series of independent
identically distributed (i.i.d.) RVs with, an usually, Gaussian distribution N (0,1). In that way, they
represent two different sources of the uncertainty (popularly named “noise-series”) in the SV model.
On the other hand, (Xt) is the basic SV series, i.e., it represents the realized values of some real-based
time series. The second series (Vt) is usually named the volatility, and it is a well-known measure of
uncertainty in the fluctuations of the series (Xt). Finally, the series (∆t) defined by the third, recurrence
relation in Eq. (6), is an autoregressive (AR) sequence of RVs and it represents the linear component of
SV model. Realizations of these series of length T = 10000, along with their empirical PDFs (shown
with histograms), where the parameters values are α = 0.5 and σ = δ = 1, are plotted in Fig. 1. Now, in
order to determine theoretical PDFs of the SV model’s time series, using the aforementioned facts, firstly
we will determine their SMTs in the following way.

Theorem 3.1. For the SV model defined by the Eqs. (6), i.e. for the series (∆t), (Vt) and (Xt), the
appropriate SMTs are, respectively:

(i). f̃∆(s) =
1√
π

(
2δ 2

1−α2

)s/2

Γ

(
s+1

2

)
;

(ii). f̃V (s) = σ
2s exp

(
δ 2s2

2(1−α2)

)
;

(iii). f̃X (s) =

(√
2σ
)s

√
π

Γ

(
s+1

2

)
exp
(

δ 2s2

8(1−α2)

)
.

In addition, the fundamental strip for all of these SMTs is D = 〈−1,+∞〉.

Proof. (i) Notice that (∆t) is ergodic and stationary series of the RVs, with E(∆t) = 0. Moreover, for
arbitrary t,k ∈ Z the RVs (∆t) can be expressed on ∆t− j, j = 1, . . . ,k as

∆t = α
k
∆t−k +δ

k−1

∑
j=0

α
j
ηt− j. (7)
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FIGURE 1. Diagrams left: Realizations of length T = 10000 of the series (∆t), (Vt)
and (Xt), respectively. Diagrams right: Empirical PDFs of the realized SV-series.

From Eq. (7), when |α|< 1, it follows:

lim
k→+∞

E

[
∆t −δ

k−1

∑
j=0

α
j
ηt− j

]2

= lim
k→+∞

α
2k Var(∆t−k) = 0,

i.e. the sum in Eq. (7) converges in mean-square, when k→+∞, to the RV ∆t . Similarly, Kolmogorov’s
large number low implies the almost surely convergence of this sum. Thus, for any t ∈ Z the following
equality holds:



Application of Mellin Transforms in Determination the Probability Distribution of the SV Models 173

∆t
d
= δ

∞

∑
j=0

α
j
ηt− j,

i.e. the RVs (∆t) have the Gaussian distribution N (0,ν2), with the variance:

ν
2 := Var(∆t) = δ

2
∞

∑
j=0

α
2 jVar(η j) =

δ 2

1−α2 . (8)

According to this, for arbitrary RV Z with the Gaussian distribution N (0,1), the equality ∆t
d
= ν Z holds.

From this, using the property (i) from Lemma 2.1, we obtain the SMT of RVs (∆t) as f̃∆(s) = νs f̃Z(s).
Then, by substituting Eqs. (5) and (8) in the last equality, the statement of this part of theorem follows.

(ii) Using Eq. (2), as well as the definition of the volatility given by the second equality in Eqs. (6),
we obtain the appropriate SMT of the RVs (Vt) as:

f̃V (s) = E
[(

σ
2e∆t

)s]
= σ

2sE
(

es∆t
)
=

σ2s
√

2π

∫ +∞

−∞

eν sz−z2/2dz =
σ2s eν2 s2/2
√

2π

∫ +∞

−∞

e−u2/2du

= σ
2s exp

(
ν2 s2

2

)
,

where u := z− sν . Substitution of ν2 (8) in the last expression ends the proof of this part of the theorem.
(iii) According to the first equality in Eqs. (6), the previously obtained expression for SMT of

the series (Vt), and the properties (ii) and (iii) from Lemma 2.1, the SMT of the series (Xt) immediately
follows from equalities:

f̃X (s) = E
(
V s/2

t
)

f̃ε(s) = f̃V
( s

2

) 2s/2
√

π
Γ

(
s+1

2

)
,

where the SMT f̃ε(s) of the series (εt) is the same as one in Eq. (5). �

Remark 3.1. Similarly to the Gaussian RVs, according to the SMT of the basic SV series (Xt), the
moments of even order of these RVs can be easily obtained (the moments of odd order are equal zero):

E
(
X2n

t
)
= f̃X (2n) =

2nσ2n
√

π
Γ

(
2n+1

2

)
exp
(

n2δ 2

2(1−α2)

)
= (2n−1)!!σ

2n exp
(

n2δ 2

2(1−α2)

)
.

Moreover, when s >−1, the SMT f̃X (s) represents the s-th moments of the RVs (Xt).

4. Determination the PDFs of the Stochastic Volatility Models

In this section, application of the inverse Mellin formula, given by Eq. (4), in the determination of
the PDFs of the SV model’s time series is presented. The following statement gives the main results, i.e.
explicit expressions for the PDFs of the AR series (∆t), the volatility (Vt), as well as the basic series (Xt).

Theorem 4.1. The PDFs of the series (∆t), (Vt) and (Xt), defined by the Eqs. (6) are, respectively:

(i). f∆(x) =

√
1−α2

2πδ 2 exp
(
− (1−α2)x2

2δ 2

)
, x ∈ R;

(ii). fV (x) =

√
1−α2

2πδ 2x2 exp

(
−
(1−α2) ln2 (x/σ2

)
2δ 2

)
, x > 0;

(iii). fX (x) =
1√

2πσ2

∞

∑
k=0

1
k!

(
− x2

2σ2

)k

exp
(

δ 2(2k+1)2

8(1−α2)

)
, x ∈ R.
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Proof. (i) The first equality directly follows from the fact that RVs (∆t) have a Gaussian distribution
N (0,ν2), with ν2 = δ 2/(1−α2).

(ii) By applying the inverse Mellin formula, i.e. Eq. (4) on the SMT f̃V (s), we obtain:

fV (x) =
1

2πi

∫ +i∞

−i∞
x−s−1 f̃V (s)ds =

1
2πix

∫ +i∞

−i∞

(
σ2

x

)s

exp
(

ν2s2

2

)
ds

=
1

2πix

∫ +i∞

−i∞
exp
(

ν2s2

2
− s ln

( x
σ2

))
ds

=
exp
(
−ln2 (x/σ2

)
/2ν2

)
2πνx

∫ +∞

−∞

exp
(
−u2

2

)
du

=
x−1
√

2πν2
exp

(
−

ln2 (x/σ2
)

2ν2

)
, x > 0.

(9)

Here, we have taken c = 0∈D = 〈−1,+∞〉, as well as u = i
(
νs−ν−1 ln(x/σ2)

)
and ν = δ/(1−α2)1/2.

Obviously, the last expression in Eqs. (9) gives the statement of this part of theorem.
(iii) According to the symmetry properties of the PDF fX (x) = fX (−x), it is sufficient to consider

the case when x > 0. Thus, fX (x) can be written as the inverse Mellin transform of its appropriate SMT
f̃X (s) in following way:

fX (x) =
1
2

(
1

2πi

∫ +i∞

−i∞
x−(s+1) f̃X (s)ds

)

=
1

4πi

∫ +i∞

−i∞
x−(s+1)

(√
2σ
)s

√
π

Γ

(
s+1

2

)
exp
(

ν2s2

8

)
ds

=
1

4π3/2

∫ +∞

−∞

x−(iξ+1)(√2σ
)iξ

Γ

(
iξ +1

2

)
exp
(
−ν2ξ 2

8

)
dξ

=
1

4π3/2x

∫ +∞

−∞

exp
(

iξ ln
(√

2σ/x
))

g(ξ )dξ , (10)

where ξ = is and g(ξ ) := Γ((iξ +1)/2) exp
(
−ν2ξ 2/8

)
. According to the well-known properties of

Gamma function Γ(z), z ∈ C, it follows that function g(ξ ) has the simple poles in the upper complex
half-plane G =

{
ξ ∈ C

∣∣ Im(ξ )> 0
}

, when (iξ + 1)/2 = −k, i.e. at the points ξk = (2k + 1)i, where
k = 0,1,2, . . . (see Fig. 2). Then, the residues of g(ξ ) in these points are:

Res
[
g(ξ ) , ξk

]
:= lim

ξ→ξk

[
(ξ −ξk)g(ξ )

]
= lim

ξ→ξk

[
(ξ −ξk)Γ

(
iξ +1

2

)
exp
(
−ν2ξ 2

8

)]

=−2iRes
[
Γ(z) , −k

]
exp
(
−

ν2ξ 2
k

8

)
=−2i

(−1)k

k!
exp
(

ν2(2k+1)2

8

)
.

(11)

On the other hand, g(ξ ) is a holomorphic function on the set G′ = G \ {ξk |k = 0,1,2, . . .} and
it has an analytic continuation to the whole half-plane G. Furthermore, for any ξ ∈ G′ there exist N ∈
{0,1,2 . . .} such that Re(ξ ), 0 and 2N−1≤ Im(ξ )< 2N+1, or Re(ξ )= 0 and 2N−1< Im(ξ )< 2N+1
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FIGURE 2. Contour of integration of the function exp
(

iξ ln(
√

2σ/x)
)

g(ξ ).

hold. Thus, on the set G′ the following equality is valid:

Γ

(
iξ +1

2

)
=

Γ

(
iξ +1

2
+N

)
iξ +1

2

(
iξ +1

2
+1
)
· · ·
(

iξ +1
2

+N−1
) ,

where Re((iξ +1)/2+N) = (2N+1− Im(ξ ))/2> 0 and Re((iξ +1)/2+ k) = (2k+1− Im(ξ ))/2≤ 0,
k = 0,1, . . . ,N−1. In that way, when N −→+∞ (i.e. |ξ | →+∞), the function g(ξ ) satisfies:

|g(ξ )|=

∣∣∣∣∫ +∞

0
z(iξ−1)/2+N e−z dz

∣∣∣∣∣∣∣∣ iξ +1
2

∣∣∣∣ ∣∣∣∣ iξ +1
2

+1
∣∣∣∣ · · · ∣∣∣∣ iξ +1

2
+N−1

∣∣∣∣exp
(
ν

2
ξ

2/8
)

≤

∫ +∞

0
zN−1/2

∣∣∣e iξ
2 lnz

∣∣∣e−z dz∣∣∣∣ iξ +1
2

∣∣∣∣ ∣∣∣∣ iξ +1
2

+1
∣∣∣∣ · · · ∣∣∣∣ iξ +1

2
+N−1

∣∣∣∣exp
(
ν

2
ξ

2/8
)

≤

∫ +∞

0
zN−1/2 exp

(
−1

2
(2N−1) lnz− z

)
dz∣∣∣∣ iξ +1

2

∣∣∣∣ ∣∣∣∣ iξ +1
2

+1
∣∣∣∣ · · · ∣∣∣∣ iξ +1

2
+N−1

∣∣∣∣exp
(
ν

2
ξ

2/8
)

≤ 1∣∣∣∣ iξ +1
2

∣∣∣∣ ∣∣∣∣ iξ +1
2

+1
∣∣∣∣ · · · ∣∣∣∣ iξ +1

2
+N−1

∣∣∣∣exp
(
ν

2
ξ

2/8
) −→ 0.
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By applying Jordan’s lemma (see, for instance [27]), as well as Eqs. (11), the last integral in
Eqs. (10) becomes:

fX (x) =
1

4π3/2x
lim

N→+∞

∫ N

−N
exp
(

iξ ln(
√

2σ/x)
)

g(ξ )dξ

=
1

4π3/2x
lim

N→+∞

[
2πi

N

∑
k=0

exp
(

iξk ln
(√

2σ/x
))

Res
[
g(ξ ), ξk

]]

=
i

2
√

π x
lim

N→+∞

N

∑
k=0
−2i

(−1)k

k!
exp

(
−(2k+1) ln

( √
2σ

x

))
exp
(

ν2(2k+1)2

8

)

=
1√
π

lim
N→+∞

N

∑
k=0

(−1)k

k!
x2k
(√

2σ

)−(2k+1)
exp
(

ν2(2k+1)2

8

)

=
1√

2πσ2

∞

∑
k=0

1
k!

(
− x2

2σ2

)k

exp
(

ν2(2k+1)2

8

)
. (12)

Finally, substitution ν2 = δ 2/(1−α2) in the last of Eqs. (12) ends the proof of theorem. �

Remark 4.1. The PDF fX (x) of the basic SV time series (Xt), given by the last of Eqs. (12), represents
the so-called alternating series. If we denote the absolute value of the k-th term as

ak(x) :=
1
k!

(
x2

2σ2

)k

exp
(

δ 2(2k+1)2

8(1−α2)

)
, k = 0,1,2, . . .

then, according to Leibniz criterion, the sufficient condition of (conditional) convergence of this series
is that the sequence (ak) converges to zero monotonically. After some computation, it can be easily
obtained:

ak−1(x)−ak(x) =
1
k!

(
x2

2σ2

)k−1

exp
(

δ 2(2k−1)2

8(1−α2)

)[
k− x2

2σ2 exp
(

k δ 2

1−α2

)]
, (13)

so that ak−1(x)−ak(x)> 0 holds if and only if is |x|< Rk, where

Rk := σ
√

2k exp
(
− k δ 2

2(1−α2)

)
, k = 1,2, . . . (14)

Thus, for a given k = k0 ∈ N, the PDF fX (x) can be approximated on x ∈
(
−Rk0 ,Rk0

)
with the partial

sum:

fk0(x) :=
1√

2πσ2

k0

∑
j=0

1
j!

(
− x2

2σ2

) j

exp
(

ν2(2 j+1)2

8

)
. � (15)

In Fig. 3 are shown 3-dimensional plots of the modulus of the SMTs of the autoregressive Gaussian
series (∆t), the volatility (Vt) and the series (Xt), as well as plots of the appropriate PDFs of these series.
Notice that, according to Eqs. (13)-(14), the ’small’ parameter δ > 0 enables that the approximation given
by Eq. (15) is valid for ’large’ k0 ∈ N. Moreover, when δ → 0+, the last of Eqs. (12) gives:

fX (x) =
1√

2πσ2

∞

∑
k=0

1
k!

(
− x2

2σ2

)k

=
1√

2πσ2
exp
(
− x2

2σ2

)
,

and, in this case, the series (Xt) has the standard Gaussian distribution N (0,σ2).
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FIGURE 3. Diagrams left: 3D plots of the modulus of the SMTs of the series (∆t),
(Vt) and (Xt). Diagrams right: Plots of the PDFs of the series (∆t), (Vt) and (Xt). (The
parameters values are: α = 0.5 and σ = δ = 1.)
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5. Conclusion

The procedure of determining the probability distribution functions (PDFs) of the time series in
stochastic volatility (SV) model is described. For the purpose of the PDFs determination, the stochastic
Mellin transformations (SMTs) are proposed. The PDFs of the SV models time series with Gaussian
distributed innovations were obtained in accordance to inverse SMT formula. Additionally, the described
treatment can be also applied in a similar way to determination of the probability distribution of the SV
models with some different, non-Gaussian innovations (such as, for example, Student t-distribution).
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[4] G. Milovanović, B. Popović, V. Stojanović, An application of the ECF method and numerical integration in estimation of the

stochastic volatility models, Facta Universit. Math. & Inf., 29:3(2014), 295–311.
[5] J.H. Venter, P.J. de Jongh, Extended stochastic volatility model incorporating realized measures. Comput. Statist. Data Anal.,

76(2014), 687–707.
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[15] M. Randjelović, V. Stojanović, T. Kevkić, Noise-Indicator autoregressive conditional heteroskedastic process with application

in modeling actual time series, U.P.B. Sci. Bull., Series A, 81:3(2019), 77–84.
[16] R.B. Paris, D. Kaminski, Asymptotics and Mellin-Barnes integrals, Cambridge University Press, 2001.
[17] P. Flajolet, X. Gourdon, P. Dumas, Mellin transforms and asymptotics: Harmonic sums, Theor. Comp. Sci., 144(1995), 3–58.
[18] C. Bardaro, I. Mantellini, A note on the Voronovskaja theorem for Mellin-Fejer convolution operators, Appl. Math. Lett.,

24(2011) 2064–2067.
[19] S. Yakubovich, A class of index transforms generated by the Mellin and Laplace operators, J. Math. Anal. Appl., 403(2013)

333-–343.
[20] G. Alotta, M. Paola, G. Failla, A Mellin transform approach to wavelet analysis, Commun. Nonlin. Sci., 28:1(2015), 175–193.
[21] B. Epstein, Some applications of the Mellin transform in statistics, Ann. Math. Stat., 19:3(1948) 370–379.
[22] J. Galambos, I. Simonelli, Products of random variables: Applications to problems of physics and to arithmetical functions,

New York: Marcel Dekker, Inc., 2004.
[23] L. Venkataramanan, T.M. Habashy, D.E. Freed, F.K. Gruber, Continuous moment estimation of CPMG data using Mellin

transform, J. Magn. Reson., 216(2012), 43–52.
[24] R. Panini, R. P. Srivastav, Pricing perpetual options using Mellin transforms, Appl. Math. Lett. 18(2005), 471–474.
[25] J.-H. Yoon, J.-H. Kim, The pricing of vulnerable options with double Mellin transforms, J. Math. Anal. Appl. 422:2(2015),

838–857.
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