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ON GENERALIZED ALMOST θ- CONTRACTIONS WITH AN

APPLICATION TO FRACTIONAL DIFFERENTIAL EQUATIONS

Saadia Mahideb1, Ahmed Ali2, Said Beloul3

In this study, combining the concept of α-admissibility with θ-contraction and
almost contraction concepts in the setting of complete metric spaces, we present some

existence theorems of fixed point for new contractions type. An example is furnished

to demonstrate the usability of our outcomes; moreover, we apply our main results to
prove the existence of the solutions for a boundary value problem of fractional differential

equations with integral boundary conditions.
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1. Introduction and preliminaries

In recent years, the fixed point theory has become one of the most important tools to
solve some problems in diverse fields as non linear analysis, physics, biology and game the-
ory. Banach provided the first fixed point theorem in metric spaces, which was generalized
in different directions, and one of these generalizations was given by Berinde [7], where he
introduced the concept of almost contraction as a generalization to the weak contraction, in
sense of Berinde. Afterward, many results have been obtained for example, see [5, 6, 26, 27].
Recently, Babu et al. [3] introduced a new type of contractive condition called ”condition
(B)”, and they proved the existence of a fixed point for this class of mappings, in the same

way, Ćirić et al.[13] introduced the concept of almost generalized contractive condition and
established some fixed point results in ordered metric spaces.
Samet et al. [25] introduced a new concept called α-admissible and they obtained some
fixed point results for α − ψ-contractive mappings, later some results have been given by
using such concept; see, for instance [4, 20, 24]. Recently, Jleli and Samet [17] introduced
a new contractions type called θ-contraction to prove the existence of fixed points for such
contractions. It is worth mentioning here that a contraction in the sense of Banach is a
particular of θ contraction, while there are some θ-contractions that are not Banach contrac-
tion. After that, several authors studied different variations of θ-contraction; for example,
see [1, 14, 15, 22, 28].
In this work, we combine the notion of α admissible mappings with θ- contraction and
Berinde type contraction concepts to introduce a new type of contractions and related fixed
point results in complete metric spaces. We also deduce the existence of fixed points in par-
tially ordered metric spaces and in complete metric spaces endowed with a graph by using
our main results. Finally, we provide an example and an application to the existence of the
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solutions for a boundary value problem of fractional differential equations to illustrate the
importance of the obtained results.

Definition 1.1. [7] Let (X, d) be a metric space. A mapping T : X → X is called an almost
((δ-L) weak) contraction if there exist δ ∈ [0, 1) and L ≥ 0 such that

d(Tx, Ty) ≤ δd(x, y) + Ld(y, Tx),

for all x, y ∈ X.

Definition 1.2. [3] A self mapping T on a metric space (X, d) is said satisfies the condition
(B), if there exist δ ≥ 0 and L ≥ 0 such that for all x, y ∈ X we have

d(Tx, Ty) ≤ δd(x, y) + Lmin(d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)).

Definition 1.3. [10] A self-mapping T on metric space (X, d) is said a strong almost con-

traction of Ćiric type, if there exist δ ≥ 0 and L ≥ 0 such that for all x, y ∈ X we have

d(Tx, Ty) ≤ δM(x, y) + Ld(y, Tx),

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), 1
2 (d(x, Ty) + d(y, Tx))}.

Definition 1.4. [25] Let X be a nonempty set and T : X → X,
α : X ×X → [0,∞) be two mappings. T is α-admissible if for x, y ∈ X with α(x, y) ≥ 1,
then α(Tx, Ty) ≥ 1.

Definition 1.5. [17]Let Θ be the set of all functions θ : (0,+∞)→ (1,+∞) such that:

(θ1) : θ is non decreasing,
(θ2) : for each sequence {tn} in (0,+∞), lim

n→∞
tn = 1 if and only if lim

n→∞
tn = 0,

(θ3) : there exists r ∈ (0, 1) and l ∈ (0,∞] such that lim
t→0+

θ(t)− 1

tr
= l.

Example 1.1.
(1) θ1(t) = et.

(2) θ2(t) = ete
t

.

(3) θ3(t) = e
√
x.

(4) θ4(t) = e
√
tet .

Throughout this paper, we will denote by Φ the set of all continuous functions ψ :
[0,+∞)→ [0,+∞) satisfying :

(1) : ψ is nondecreasing ,

(2) :

∞∑
i=1

ψn(t) <∞, for all t ∈ [0,+∞).

Clearly, if ψ ∈ Ψ, then ψ(t) < t, for all t ∈ [0,+∞).

Definition 1.6. [7] Let (X, d) be a metric space. A map T : X → X is said to be a weak
ψ-contraction if there exist L ≥ 0 and ψ ∈ Ψ such that

d(Tx, Ty) ≤ ψ(d(x, y)) + Ld(y, Tx),

for all x, y ∈ X.
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2. Main results

Definition 2.1. Let (X, d) be a metric space and α : X ×X → R. A mapping T : X → X
is called a generalized almost (α,ψ, θ) contraction, if there exist a function θ ∈ Θ, ψ ∈ Ψ,
L ≥ 0 and k : (0,∞)→ [0, 1) satisfies lim

t→s+
sup k(t) < 1 for all s ∈ (0,∞) such that

α(x, y)θ(d(Tx, Ty)) ≤ [θ(ψ(M(x, y)) + LN(x, y)]k(M(x,y)), (1)

for all x, y ∈ X with d(Tx, Ty) > 0, where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2

and N(x, y) = min{d(x, Ty), d(y, Tx)}.

If α(x, y) = 1 for all x, y ∈ X, then T is called a generalized almost (ψ, θ) contraction.

Example 2.1. Let X = {1, 2, 3} and d(x, y) = |x−y|. Define T : X → X and α : X×X →
[0,∞) by

Tx =

{
2, x ∈ {1, 2}
1, x = 3

and α(x, y) == e|x−y|.

Taking θ(t) = et, ψ(t) = 2
3 t, L = 4 and k(t) = e−

1
2 t. Now, we show that the

contractive condition is verified.

(1) For x = 1 and y = 3, we have

3 ≤ e− 1
2 (

4

3
+ 4),

which implies

e3 ≤ ee
− 1

2 ( 4
3 +4).

(2) For x = 2 and y = 3, we have

3

2
≤ e− 1

2 (
4

3
+ 4),

which implies

e
3
2 ≤ ee

− 1
2 ( 4

3 +4).

Then T is a generalized almost (α,ψ, θ)- contraction.

Theorem 2.1. Let (X, d) be a complete metric space and T : X → X be a generalized
almost (α,ψ, θ) contraction, with θ ∈ Θ. Assume that the following conditions are satisfied:

(1) T is α-admissible.
(2) There exist x0 ∈ X such that α(x0, Tx0) ≥ 1.
(3) X is α-regular, that is, for every sequence {xn} in X such that xn → x ∈ X and

α (xn, xn+1) ≥ 1 for all n ∈ N, then α (xn, x) ≥ 1 for all n ∈ N.
Then T has a fixed point.

Proof. From (2) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, let x1 = Tx0. If x0 = x1,
then x0 is a fixed point. Suppose the contrary, since T is α-admissible, and by using (1) we
get

α(x0, x1)θ(d(Tx0, Tx1)) ≤ [θ(ψ(M(x0, x1)) + LN(x0, x1)]k(M(x0,x1))

= [θ(ψ(M(x0, x1))]k(M(x0,x1)),
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but

M(x0, x1) = max

{
d(x0, x1), d(x0, Tx0), d(x1, Tx1),

d(x0, Tx1) + d(x1, Tx0)

2

}
= max

{
d(x0, x1), d(x0, x1), d(x1, x2),

d(x0, x2)

2

}
≤ max {d(x0, x1), d(x1, x2)}

If d(x0, x1) ≤ d(x1, Tx1), we get

d(x1, Tx1)) ≤ α(x0, x1)θ(d(Tx0, Tx1))

≤ [θ(ψ(d(x1, Tx1))]k(d(x1,Tx1)) < d(x1, Tx1)),

which is a contradiction, then we get M(x0, x1) ≤ d(x0, x1). On other hand

N(x0, x11) = min {d(x0, Tx1), d(x1, Tx0)} = min {d(x0, x2), d(x1, x1)} = 0.

Hence by (1) and from the inequality α(x0, x1) ≥ 1 we get

θ(d(x1, Tx1)) ≤ α(x0, x1)θ(d(Tx0, Tx1))

≤ [θ(ψ(d(x0, x1))]k(d(x0,x1)).

Putting x2 = Tx1, we get

d(x1, x2)) ≤ α(x0, x1)θ(d(Tx0, Tx1))

≤ [θ(ψ(d(x0, x1))]k(d(x0,x1)).

Since T is α-admissible, we get α(x1, x2) ≥ 1, so (1) gives

θ(d(x2, x3)) ≤ α(x0, x1)θ(d(Tx1, Tx2))

≤ [θ(ψ(M(x1, x2)) +N(x1, x2)]k(M(x1,x2)).

≤ [θ(M(x0, x1))]k(d(x0,x1)).k(M(x1,x2)).

As is the first step we can check easily that M(x1, x2) ≤ d(x1, x2) and N(x1, x2) = 0. Then
we obtain

θ(d(x2, x3)) ≤ α(x1, x2)θ(d(Tx1, Tx2))

≤ [θ(d(x0, x1))]k(d(x0,x1)).k(d(x1,x2)).

Continuing in this manner, we construct a sequence (xn) satisfying xn+1 = Txn. If there
exists n0 such that xn0 = xn0+1, then xn0 is a fixed point. Suppose the contrary, so
d(xn, Txn) > 0 and α(xn, xn+1) ≥ 1 since α-admissibility of T ) for all n ∈ N and by using
(1) we get

α(xn, xn+1)θ(d(Txn−1, Txn)) ≤ [θ(ψ(d(xn−1, xn))]k(d(xn−1,xn)).

≤ [θ(d(x0, x1)]P ,

where P =
∏n
i=1 k(d(xi−1, xi)).

The sequence (d(xn, xn+1))n is a decreasing sequence and bounded at below, then it is
convergent. Since lim

t→s+
sup k(t) < 1, then there exist δ ∈ (0, 1) and n0 ∈ N such that

k(d(xn, xn+1)) < δ, for all n ≥ n0. Thus P ≤ δn−n0 , and so we have

1 < θ(d(xn, xn+1)) ≤ [θ(d(x0, x1))]δ
n−n0

, (2)

for all n ≥ n0.
On taking the limit as n → ∞, we get lim

n→∞
θ(d(xn, xn+1)) = 1, from (θ2) we obtain

lim
n→∞

d(xn, xn+1) = 0.

Now, we prove {xn} is a Cauchy sequence, from (θ3) there exist r ∈ [0, 1) and l ∈ (0,∞]
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such that lim
n→∞

θ(d(xn, xn+1)− 1

(d(xn, xn+1)r
= l. If l < ∞, let 2ε = l, so from the definition of limit

there exists n1 ∈ N such that for all n ≥ n1, we have

ε = l − ε ≤ θ(d(xn, xn+1)− 1

(d(xn, xn+1)r
= l

n(d(xn, xn+1))r ≤
n[
(
θ(d(x0, x1))

]δn−n0

− 1)

ε
. (3)

If l =∞, let A be an arbitrary positive real number, so from the definition of the limit there
exists n1 ∈ N such that for all n ≥ n1 we have

θ(d(xn, xn+1))− 1

(d(xn, xn+1))r
> A,

which implies that

n(d(xn, xn+1))r <
n(θ(d(x0, x1))δ

n−n0 − 1)

A
. (4)

Letting n→∞ in (3)(resp in (4) ), we obtain

lim
n→∞

n(d(xn, xn+1))r = 0.

From the definition of the limit, there exists n2 ≥ max{n0, n1} such that for all n ≥ n2, we
have

d(xn, xn+1) ≤ 1

n
1
r

.

Then the series

∞∑
n1

d(xn, xn+1) is convergent, hence {xn} is a Cauchy sequence. Since (X, d)

is complete, so {xn} converges to some x ∈ X.
Now, we prove that x is a fixed point for T , in fact since X is regular so for the sequence
{xn} which satisfying α(xn, xn+1) ≥ 1 and xn → x, by using (1) we get

θ(d(xn+1, Tx)) = θ(d(Txn, Tx)) ≤ [θ(d(xn, x)]k(d(xn,x)) < θ(d(xn, x)),

since θ is non decreasing function, we get

0 ≤ d(xn+1, Tx) < d(xn, x).

Passing to the limit we obtain d(x, Tx) = 0 which implies that x = Tx. �

Remark 2.1. (1) If for all x, y ∈ X, we have α(x, y) ≥ 1, then the fixed point is unique.
(2) If for each x, y ∈ Fix(T )( set of fixed point of T ), we have α(x, y) ≥ 1. Then the fixed

point is unique.
(3) If for all x, y ∈ X, there exists z ∈ X such α(x, z) ≥ 1 and α(y, z) ≥ 1, then the fixed

point is unique.

If α(x, y) = 1, for all x, y ∈ X, we get the following corollary.

Corollary 2.1. Let (X, d) be a complete metric space, T : X → X be a self mapping if there
exist θ ∈ Θ,ψ ∈ Ψ, L ≥ 0 and k : (0,∞) → [0, 1) with lim

t→s+
sup k(t) < 1 for all s ∈ (0,∞)

such that d(Tx, Ty) > 0 implies

θ(d(Tx, Ty)) ≤ [θ(ψ(M(x, y)) + LN(x, y)]k(M(x,y)), (5)

for all x, y ∈ X with d(Tx, Ty) > 0. Then T has a fixed point.

If we take θ(t) = et and the logarithm of two sides in corollary 2.2 we obtain the
following corollary:
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Corollary 2.2. Let (X, d) be a complete metric space, T : X → X be a self mapping if there
exist θ ∈ Θ,ψ ∈ Ψ, L ≥ 0 and k : (0,∞) → [0, 1) with lim

t→s+
sup k(t) < 1 for all s ∈ (0,∞)

such that d(Tx, Ty) > 0 implies

d(Tx, Ty)) ≤ k(M(x, y))[ψ(M(x, y)) + LN(x, y)], (6)

for all x, y ∈ X with d(Tx, Ty) > 0. Then T has a fixed point.

Example 2.2. Let X = R and d(x, y) = |x−y|. Define T : X → X and α : X×X → [0,∞)
by

Tx =


x+1

2 , x, y ∈ [0, 1]
x
3 + 1, x < 0
x
5 , x > 1

and

α(x, y) =

{
1, x, y ∈ [0,+∞)
1
5 , otherwise

Taking θ(t) = ete
t

, ψ(t) = 4
5 t and k(t) = e−

1
4 t.

For x = 0 we get T (0) = 1
2 and α(0, 1

2 ) = 1.
For all x, y ∈ [0,+∞), we have α(x, y) = 1 and T ([0,+∞)) = (0,+∞), which implies T
is α-admissible. Now, we show that the contractive condition is verified. For x, y ∈ X, we
have T ([0, 1]) = [1

2 , 1] ⊂ [0, 1]. Then T is α-admissible.
We discuss the following cases:

(1) For for all x, y ∈ (−∞, 0) with x 6= y, we have d(Tx, Ty) > 0 and

ln(α(x, y)) +
d(Tx, Ty)

d(x, y)
ed(Tx,Ty)− 4

5d(x,y) = − ln(5) +
5

12
e−

7
15 |x−y|

≤ e− 1
4 |x−y| = k(d(x, y).

(2) For for all x, y ∈ [0, 1] with x 6= y, we have d(Tx, Ty) > 0 and

d(Tx, Ty)

d(x, y)
ed(Tx,Ty)− 4

5d(x,y) =
1

4
e−

3
10 |x−y|

≤ e− 1
4 |x−y| = k(d(x, y).

(3) For for all x, y ∈ (1,+∞) with x 6= y, we have d(Tx, Ty) > 0 and

d(Tx, Ty)

d(x, y)
ed(Tx,Ty)− 4

5d(x,y) =
5

8
e−

3
5 |x−y|

≤ e− 1
4 |x−y| = k(d(x, y).

If {xn} a sequence in [0,∞) converges to x, it is clear x ∈ [0,∞). Then all hypotheses
of Theorem 2.1 hold, so T has a fixed point. Here T has two fixed point 1 and 2, since
α(1, 2) = 0 < 1 and for x > 1, or y < 0 we have α(x, y) = 0.

3. Some sequences

In this section, as consequences we give an existence theorem of a fixed point in
complete metric space endowed with a partially order relationship and in complete metric
spaces endowed with graph.

Theorem 3.1. Let (X,�, d) be a complete ordered metric space and T : X → X be a self
mapping. Assume that the following assertions hold:

(i) For each x, y ∈ X such that x � y we have Tx � Ty.
(ii) There exists x0 ∈ X such that x0 � Tx0;
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(iii) There exist θ ∈ Θ,ψ ∈ Ψ, L ≥ 0 and k : (0,∞)→ [0, 1) satisfies lim
t→s+

sup k(t) < 1 for

all s ∈ (0,∞) such that

θ(d(Tx, Ty)) ≤ [θ(M(x, y))]k(M(x,y)),

for all x, y ∈ X with x � y and d(Tx, Ty) > 0. Then T has a fixed point.

Proof. Define α : X ×X → R+ by

α : X ×X → [0,+∞), α (x, y) =

{
1, if x � y,
0, otherwise.

From (iii), we have x � y so α(x, y) = 1 ≥ 1, which implies T is a generalized almost
(α,ψ, θ)-contraction.
Also from (i) for x ∈ X and y ∈ Tx such that x � y, i.e., α(x, y) = 1 ≥ 1 we have tx � Ty,
then T is α-admissible.
From (ii) there exist x0 ∈ X such that x0 � Tx0 = x1, which implies α(x0, x1) ≥ 1.
From [21] every ordering space is regular. Hence all hypotheses of Theorem 2.1 are satisfied,
then T has a fixed point. �

Now, we present the existence of a fixed point for self mapping from a complete metric
space X, endowed with a graph. Consider a graph G such that the set V (G) of its vertices
coincides with X and the set E (G) of its edges contains all loops; that is, E (G) ⊇ ∆, where
∆ = {(x, x) : x ∈ X}. We assume G has no parallel edges, so we can identify G with the
pair (V (G) , E (G)).

Theorem 3.2. Let (X, d) be a complete metric space endowed with a graph G, that is
G = (V (G), E(G)), where V (G) is its vertices and E(G) its edges, moreover suppose the
G ha no parallels edges and T : X → X be a self mapping. Assume that the following
assertions hold:

(i) For each x, y ∈ X such that (x, y) ∈ E(G) we have (Tx, Ty) ∈ E(G).
(ii) There exist x0 ∈ X such that (x0, Tx0) ∈ E(G);

(iii) There exist θ ∈ Θ,ψ ∈ Ψ, L ≥ 0 and k : (0,∞) → [0, 1) such that lim
t→s+

sup k(t) < 1

for all s ∈ (0,∞) satisfies

θ(d(Tx, Ty)) ≤ [θ(ψ(M(x, y)) + LN(x, y)]k(M(x,y)),

for all x, y ∈ X with (x, y) ∈ E(G) and d(Tx, Ty) > 0. Then T has a fixed point.

Proof. Define α : X ×X → R+ by

α : X ×X → [0,+∞), α (x, y) =

{
1, if x � y,
0, otherwise.

From (iii), we have (x, y) ∈ E(G) so α(x, y) = 1 ≥ 1, which implies T is a generalized
almost (α,ψ, θ)-contraction.
Also from (i) for x ∈ X and y ∈ Tx such that (x, y) ∈ E(G), i.e., α(x, y) = 1 ≥ 1 we have
(Tx, Ty) ∈ E(G), then T is α-admissible.
From (ii) there exist x0 ∈ X such that (x0, Tx0) ∈ E(G), which implies α(x0, Tx0) ≥ 1.
From [16] every metric space endowed with graph is regular. Then all hypotheses of Theorem
2.1 are satisfied, then T has a fixed point. �
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4. Application to fractional differential equations

Consider the following boundary value problem:
cDqx(t) = f(t, x(t)), t ∈ J = [0, 1],
x(0) = 0,

x(1) = λ
∫ 1

0
g(s, x(s))ds,

(7)

where cDq with 1 < q ≤ 2 is the Caputo fractional derivative, λ > 0
and f : J × R→ R.
Let X = C(J,R) be the Banach space of all continuous functions from [0, 1] into R with the
uniform convergence norm ‖x‖∞ = sup{|x(t)|, t ∈ J}.

Lemma 4.1. A function x is a solution of the problem (7) if and only if, x is a solution of
the following integral equation:

x(t) = λt

∫ 1

0

g(s, x(s))ds,+

∫ 1

0

G(t, s)f(s, x(s))ds,

for all t ∈ J , where

G(t, s) =
1

Γ(q)

{
(t− s)q−1 − t(1− s)q−1, 0 ≤ s ≤ t ≤ 1
−t(1− s)q−1, 0 ≤ t ≤ s ≤ 1.

(8)

Proof. We have

Iq(cDqx(t)) = x(t)− c0 − c1t =
1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s))ds

by the boundary values we get

x(0) = c0 = 0

x(1) = c1 +
1

Γ(q)

∫ 1

0

(1− s)q−1f(s, x(s)ds = λ

∫ 1

0

g(s, x(s))ds.

Then

c1 = − 1

Γ(q)

∫ 1

0

((1− s)q−1f(s, x(s))ds+ λ

∫ 1

0

g(s, x(s))ds,

which gives

x(t) = − t

Γ(q)

∫ 1

0

(1− s)q−1f(s, x(s))ds+λt

∫ 1

0

g(s, x(s))ds+
1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s))ds

which implies that

x(t) =

∫ 1

0

G(t, s)f(s, x(s))ds+ λt

∫ 1

0

g(s, x(s))ds,

where

G(t, s) =
1

Γ(q)

{
(t− s)q−1 − t(1− s)q−1, 0 ≤ s ≤ t ≤ 1
−t(1− s)q−1 0 ≤ t ≤ s ≤ 1.

�

∫ 1

0

G(t, s)ds =
1

Γ(q)
[

∫ 1

0

(t− s)q−1 − t(1− s)q−1ds−
∫ 1

t

t(1− s)q−1ds

=
1

Γ(q)
[tq + 1] ≤ 2

Γ(q)
.
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Let G0 = 2
Γ(q) .

Assume that the following assumptions hold:

(A1) : For x, y ∈ X with (x, y) ∈ E(G) implies (Tx, Ty) ∈ E(G).
(A2) : There exists x0 ∈ X such that (x0, Tx0) ∈ E(G).
(A3) : There exist ψ,ϕ ∈ L1(J) such that for all x1, x2 ∈ R, we have

|f(t, x1(t))− f(t, x2(t))| ≤ ϕ(t)‖x1 − x2‖),

|g(t, x1(t))− g(t, x2(t)| ≤ ψ(t)‖x1 − x2‖),

where c0 = G0‖ϕ‖L1 + λ‖ψ‖L1 < 1
2 .

Theorem 4.1. Under the assumptions (A1)− (A3), the problem (7) has a solution in X.

Proof. For (x, y) ∈ E(G) and for all t ∈ J we have

|Tx(t)− Ty(t)| = |
∫ 1

0

G(t, s)(f(s, x(s))− f(s, y(s)))ds+ λt

∫ 1

0

(g(s, x(s))− g(s, y(s))ds)|

≤ (G0‖ϕ‖L1 + λ‖φ‖L1)|x− y|,

which implies that

‖Tx(t)− Ty(t)‖∞≤G0(‖ϕ‖L1 + ‖φ‖L1)‖x− y‖∞,

so

d(Tx, Ty) ≤ (G0‖ϕ‖L1 + ‖φ‖L1)d(x, y) = c0M(x, y),

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), 1
2 (d(x, Ty) + d(y, Tx))}. Hence we have

e
√
d(Tx,Ty) ≤ (e

√
2c0M(x,y))

√
2

2 .

Then all the hypotheses of Theorem 2.1 are satisfied with ψ(t) = 1
2 t, k =

√
2

2 , L = 0 and

θ(t) = e
√
t, so T has a fixed point which is a solution of problem (7). �

Remark 4.1. In the previous application, we didn’t need the fourth hypothesis of Theorem
2.1, since in [16] the author mentioned that every metric space endowed with a graph is a
regular space.

Conclusion

In this work, we have presented a fixe point theorem by using a combination of some
concepts to obtain a new type of θ-contractions in which our study improves and generalizes
some results. An example has been given to illustrate our outcomes and as a consequences,
we have gave some fixed point results on a metric space endowed with a partial ordering or
with a graph. Finally, we have applied our new theorem to ensure the existence of solutions
for a boundary value problem of fractional differential equations with integral boundary
conditions under weaker conditions.
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