
U.P.B. Sci. Bull., Series C, Vol. 83, Iss. 1, 2021 ISSN 2286-3540

BRING-UP BHYVE ON ESPRESSOBIN BOARD

Andrei-Costin Martin1, Darius Mihai2, Maria-Elena Mihailescu3,
Mihai Carabas4, Sergiu Weisz5

In order to be sustainable, the cloud architectures must have good
scalability and throughput. On the processors market, ARM started to show in-
terest for servers and desktop processors. x86 and x86 64 CPU market have a
strong opponent, with a lower power consumption and comparable performances.
A solution to the scalability and throughput requirements could be a virtualized
environment. One example is the FreeBSD’s hypervisor, bhyve, mainly because
FreeBSD is often used in server environments, has a strong TCP/IP stack imple-
mentation. bhyve’s implementation for ARM was not accepted in the mainline,
due the lack of testing on real hardware. This paper presents the steps taken in
order to bring-up the hypervisor on a development board, called ESPRESSObin.

Keywords: virtualization, ARMv8, bhyve, FreeBSD, EspressoBin, bring-up

1. Introduction

Nowadays, there is a great inclination towards Internet, cloud and streaming.
These topics raise the issue of scalability in order to obtain a high network traffic
from all over the world. One solution can be virtualization. Using virtual machines,
all the servers can be duplicated and deployed everywhere, in a safe environment
to accept connections. To manage these virtual machines, a hypervisor is needed.
The hypervisor has the role of starting, running and managing the execution of vir-
tual machines. These cloud and streaming markets saw continuous growth over
the last decade, alongside the virtualization solutions in order to increase the ex-
change speed of information. Besides that, virtualization aims to the best hardware
resources usage and to increase the throughput. At the same time, ARM started to
take an interest for the server and desktop processors market. That means that x86
and x86 64 CPUs will have a strong rival, one with a better energy efficiency and

1Master Student, Faculty of Automatic Control and Computer Science, University Politehnica of
Bucharest, Romania, e-mail: andrei.martin@stud.acs.upb.ro

2Teaching Assistant, Faculty of Automatic Control and Computer Science, University Po-
litehnica of Bucharest, Romania, email: darius.mihai@ubp.ro

3Teaching Assistant, Faculty of Automatic Control and Computer Science, University Po-
litehnica of Bucharest, Romania, email: maria.mihailescu@ubp.ro

4Associate Professor, Faculty of Automatic Control and Computer Science, University Po-
litehnica of Bucharest, Romania, email: mihai.carabas@ubp.ro

5PhD Candidate, Faculty of Automatic Control and Computer Science, University Politehnica of
Bucharest, Romania, email: sergiu.weisz@ubp.ro

65

66 Andrei-Costin Martin, Darius Mihai, Maria-Elena Mihailescu, Mihai Carabas, Sergiu Weisz

comparable performances.
This paper presents the steps taken in the ARMv8 bring-up process in order to run
a virtual machine using FreeBSD’s bhyve, both in the ARMs Foundation Platform
emulator[3] and ESPRESSObin[4], an off-the-shelf board developed by Marvell.
The reason for choosing FreeBSD’s hypervisor is because FreeBSD is very often
used as operating system on serves, due to its TCP/IP stack implementation and
its stability and, with virtualization, would solve the scalability issue. Regarding
the virtualization, an ARM implementation for bhyve [2] is not yet available in the
FreeBSD’s mainline. There are implementations for ARMv7 and ARMv8 but not
yet accepted by the maintainers.
The main goal is to have a fully operational hypervisor, that can run virtual ma-
chines in the emulator and on the board. After being able to run the hypervisor, it
need to be tested, using FreeBSD, Linux and Windows as guests operating systems.
The last step is the hypervisor code redesign, both in user-space and kernel-space,
requested by the maintainers, in order to accept the code in the FreeBSD’s mainline.

2. State of the art

In this section, we will present information regarding the virtualization, FreeBSD
and its hypervisor, bhyve, we present a comparison between ARMv7 and ARMv8
and the components used for deploying FreeBSD on a board.

2.1. FreeBSD and bhyve

FreeBSD [1] is an operating system designed to run on desktops, servers and
embedded platforms. Despite the wide range of compatibility, FreeBSD’s main tar-
get is the server market (e.g. web servers or email servers). BSD operating systems
have the advantage of stability, offered by a small number of updates that can dam-
age the system. Besides that, their implementation of the TCP/IP [7] stack makes
this operation system the best for servers that have a huge number of concurrent
connections.

bhyve is a type-two hypervisor, FreeBSD’s solution regarding the virtualiza-
tion problem. It supports a wide range of guest operating systems, such as FreeBSD,
Linux or Windows and is available only for FreeBSD on x86 [8] CPU architec-
ture. Its implementation contains three user space utilities, bhyveload, bhyve and
bhyvectl, which communicate with the kernel driver, vmm, through libvmmapi li-
brary. These three utilities have the following roles: bhyveload that has the role
of loading a new guest virtual machine, bhyve that runs a virtual machine with a
guest operating system, and bhyvectl that has the role of controlling bhyve virtual
machines, by creating, destroying or getting and changing statistics/preferences.

2.2. ARMv7 vs ARMv8

A brief comparison between ARMv8 and ARMv7 can be found in Table 1.
We can see that one of the improvements is the increased address space, from 32
bits to 64 bits. There is only one exception, the instruction set is 32 bits in both

Bring-up bhyve on ESPRESSObin board 67

ARMv7 and ARMv8. That means that the encoding of instructions is not changed.
Based on the registers size, ARMv7 and ARMv8 are also called arm32 (or arm) and
arm64.

TABLE 1. Comparison between ARMv7 and ARMv8

ARMv7 ARMv8
General-purpose registers 13 x 32bit 31 x 64bit

Program Counter 32bit 64bit

Stack Pointer 32bit 64bit

Exception Link Register 32bit 64bit

Virtual addressing Support for 32bit Support for 64bit

Instruction Set 16/32bit 32bit

This new version of the ARM processor, ARMv8 [5], defines two ’Execu-
tion States’ [6]: AArch64 and AArch32. AArch64 state uses all registers as 64bit
registers, compared to AArch32, which uses them as 32bit registers, to provide
backwards compatibility. This is the reason why an ARMv7 application can also
work well on ARMv8 CPUs.

Besides Execution States, presented in Subsection 2.2, ARMv8 [5] has a total
of 4 Execution levels [6]. While the first two levels, EL0 and EL1, represent where
the user program and kernel are usually running on any system, the third level, EL2,
will be the place where the virtual machine is running. As a requirement, Kernel and
Virtualization spaces must communicate with each other. The last level is divided
in Secure State where the processor can access the entire memory address space
and can access all system control resources, and Non-Secure State that specifies
that the CPU can access only the Non-Secure address space and cannot access the
system control resources.

2.3. ESPRESSObin, Device Trees and U-Boot

In the bring-up phase, this project used an off-the-shelf board, called ESPRES-
SObin v5. We chose this board because it has an ARMv8 Cortex-A53 CPU, the
same CPU as one version of the ARMs Foundation Platform emulator. The follow-
ing lists presents the board components SATA HDD data cable – the data transfer
port for a SATA peripheral; SATA HDD power – the power supply for a SATA
connected peripheral; textbfMicro USB port (J5) – is a serial (UART) connection;
10-pin ARM JTAG – 10 JTAG pins, dedicated to debugging; 12V DC Jack – is
the power supply port; GPIO – General Purpose Input/Output pins, USB 2.0 and
3.0 ports – Two USB ports for peripherals; GbE LAN ports – Two LAN Ethernet
ports; WAN port – A WAN port; J3 connector – Three jumpers representing the
ESPRESSObin boot mode; Reset switch – A button which resets the board.

68 Andrei-Costin Martin, Darius Mihai, Maria-Elena Mihailescu, Mihai Carabas, Sergiu Weisz

Device Trees[9], in the embedded systems, are one of the most important
things, describing the hardware specification of a board. Due to the fact that the
components (e.g. memory, CPU) are glued to the motherboard, a board specifica-
tion is static. It is represented by a human-readable file, containing all the spec-
ifications of a board, that will go through a compilation process. The compiled
binary, called Device Tree Blob (DTB), will be loaded by the associated board, via
a bootloader.

U-Boot1 is an open source bootloader, designed for embedded systems. It is
versatile, being able to accept FAT32, ext4, even UFS (in newer versions) filesystem
formats for different types of storage, such as usb or mmc for MicroSD cards. It also
lets the user configure environment variables and command, for example, a variable
that contains the path to the Device Tree Blob.

For this project, we used a MicroSD card, formatted as FAT32, to store the
operating system. This MicroSD card contained the FreeBSD operating system,
alongside the DTB. In the compile process, the Marvell’s U-Boot repository was
used, found on the wiki page [4], in the Build from source - Bootloader section.
When the U-Boot binary has to be made as a valid payload for ARM’s Trusted
Firmware (ATF), some values are used, presented in Table 2 . The values are used
to set three important variables at the make command, describing the board specifi-
cation (CPU and memory frequencies, memory topology and the boot device).

TABLE 2. CPU and DDR presets

Value CPU frequency (MHz) DDR frequency (MHz)
CPU 600 DDR 600 600 600
CPU 800 DDR 800 800 800
CPU 1000 DDR 800 1000 800

3. Related work

bhyve for ARM started as a Summer of Code [10] project, for the ARMv7
architecture. The final goal was to run a FreeBSD guest operating system, on a
development board, called CubieBoard2. The kernel-space virtualization driver was
ported from x86 64 to arm64, and the context switch between the host and the
hypervisor mode, the page-tables and the virtual generic interrupt controller (vGIC)
were also implemented. Regarding the guest operating system, this implementation
was able to start a virtual machine on the ARM Foundation Platform emulator, but
not on the development board. When the virtual machine booted, but ended up with
”Spurious interrupts”, as described on the project page [10].

After the summer, the project moved in the University POLITEHNICA of
Bucharest with the implementation of VirtIO [11]. The implementation relied on
the one for amd64, but with two major differences: ARM does not have support

1https://www.denx.de/wiki/U-Boot

Bring-up bhyve on ESPRESSObin board 69

for the PCI bus, so the memory mapped I/O (MMIO) support had to be added, and
that for arm64, the interrupt mechanism was Generic Interrupt Controller (GIC),
not Local Advanced Programmable Interrupt Controller (LAPIC).

bhyve for ARMv8 project also started and implemented the kernel-space and
user-space virtualization model, having the x86 and ARMv7 implementations as
starting points and models. When the project stopped, a guest operating system was
able to boot in an emulated environment, using the ARM Foundation Platform, and
was tested on CubieBoard2, but did not work.

4. ARMv8 bring-up Infrastructure

A full description of the hardware modules is presented in Figure 1. In the left
side is the computer, which contains all the source code and the utilities needed and
in the right side is the ESPRESSObin board with its most relevant ports, J5 serial
port, the LAN port and the MicroSD slot.

Computer
ESPRESSObin

Minicom

FreeBSD
VM

J5USBLAN LAN

microSD
adapter

microSD

Ubuntu

Serial connection

Ethernet connection

USB

FIG. 1. Hardware modules

The communication between the computer and the port is done in three ways:
through a Serial connection to send commands to the board, such as setting vari-
ables in the bootloader or run instructions, through an Ethernet connection (a TFTP
server is used so that the board can fetch certain files), and though a microSD card
used for the FreeBSD root filesystem that is copied into the card from the computer
and used to start the operating system on the board.

To cross-compile the ARM implementation, we need a FreeBSD environ-
ment, mainly because of the Makefile system, which differs from the Linux Make-
file. A Linux envirnoment is needed as well to start the ARM Foundation Platform
emulator [3] with the FreeBSD disk image, generated in the FreeBSD environment.

A configuration file must be present when compiling the hypervisor’s ker-
nel to specify various parameters. One of the most important setting is kernconf,

70 Andrei-Costin Martin, Darius Mihai, Maria-Elena Mihailescu, Mihai Carabas, Sergiu Weisz

which dictates what kernel to compile. FOUNDATION means that is used to com-
pile a custom kernel, especially designed for the host operating system in the ARM
Foundation Platform emulator. For the guest operating system on the emulator
the kernconf variable should be set as FOUNDATION GUEST and for an ARM
board it should be GENERIC. In particular for FOUNDATION and FOUNDA-
TION GUEST kernels, the device tree is not loaded by the bootloader but is com-
piled inside the kernel. The FDT and FDT DTB STATIC options enable the De-
vice Tree and set it as static and the FDT DTS FILE command tells the compiler
which Device Tree to choose. The FOUNDATION, FOUNDATION GUEST and
GENERIC kernel configuration can be found in the FreeBSD repository, projects-
bhyvearm64 branch, in the sys/arm64/conf directory.

5. FreeBSD hypervisor bring-up on real hardware

5.1. FOUNDATION and GENERIC build

The FOUNDATION build was used to build the FreeBSD operating system
with the ARM Foundation Platform emulator. There are four steps needed to build
the operating system and generate the disk image for the emulator. The first step is
to compile the host user-space binaries - build almost everything, except the kernel,
which will be built in the next two steps. It is necessary to build all the tools before
the kernel because this step also generates the arm64 obj directory. The second
step uses a different configuration file, dedicated for the guest kernel. The kernconf
variable must be set to FOUNDATION GUEST. The third step is similar with the
second, but uses another kernconf. Because it builds the host operating system ker-
nel, the custom kernel must be FOUDNATION. The fourth step is to generate the
disk image, based on the object directory and on the FOUNDATION and FOUN-
DATION GUEST kernels.

The GENERIC build dedicated for the ESPRESSObin board. To build the
operating system, the first and third steps are the same as the ones used to configure
the FOUNDATION build, with the mention that the kernconf variable for the host
kernel must be set to GENERIC. To build the root filesystem two more steps are
required: the first one is to generate the root filesystem, filled with all the files
needed by the operating system, except the kernel, and the second one is to copy
the specified kernel from the object directory into the root filesystem.

5.2. FreeBSD started in ARM Foundation Platform

Once the FOUNDATION build was made and the disk image was generated,
the next steps must be done on the local computer. All the scripts used for these
steps can be found in the ARMv8 utils repository [12]. After creating the disk
images, the ARM Foundation Platform should be started using the following pa-
rameters:cores – to specify the number of cores to emulate, use-real-time – to
make the emulator to take the real time from the host, armv8.0 and gicv3 – to tell
the emulator the processor version and the GIC version, textttblock-device – for the

Bring-up bhyve on ESPRESSObin board 71

FreeBSD disk image, data – to send the BL1 and FIP files for UEFI boot. A Foun-
dation Platform window opens and the host operating system starts to boot. To start
a virtual machine, the following commands must be given: kldload to load the vir-
tualization driver in the kernel, bhyveload to load a virtual machine, textttmount
to make the filesystem writeable, bhyve to start the virtual machine using VirtIo
Block, Network, Console and Entropy drivers.

5.3. Compiling and flashing U-Boot for ESPRESSObin

The guides used in the compiling, flashing and recovering the U-Boot boot-
loader can be found on the official guide [4], Guides/Software HowTo section. From
this section, we used Update the Bootloader, Bootloader recovery via UART and
Build from source - Bootloader guides.

There are multiple steps needed to be taken to compile u-boot and generate
a bootloader image. The first step is to clone the Marvell’s version U-Boot. To
add DDR4-support for ESPRESSObin, one need to jump at a commit dedicated for
ESPRESSObin and apply a set of patches in the repository. The following step is to
set the CROSS COMPILER environment variable with the cross-compiler dedicated
for ARMv8, aarch64-linux-gnu. Then, we need to generate the .config file, based
on the make parameter. Finally, we need to generate the u-boot.bin binary based on
the ESPRESSObin Device Tree.

The u-boot.bin file was not ready to be flashed on ESPRESSObin, it had to
be made a valid payload for the ARM Trusted Firmware (ATF). The first thing step
was to set a variable, called BL33, with the path to the u-boot.bin file. Also, two
repositories had to be cloned: the first repository represents the Marvell ATF source
code and the second one is an utils repository, containing additional sources for the
generation of the U-Boot image. These repositories had to been patched as well to
work for the ARM Emulation Platform. Then, we must build all the files needed, to
flash the bootloader.

Then, on the computer a TFTP server must be started by installing the tftp-
hpa package. The next steps should be setting tftp as a shared director, over TFTP,
and to copy there the flash-image.bin. A private IPv4 address must be set on the
local computer interface to be used by the TFTP client. On the ESPRESSObin, we
need to set the serverip environment variable with the same IPv4 address set in the
previous step, set an IP address for the local interface, using the ipaddr variable and
test the connection between the computer and the board. The bubt command can be
used to download the bootloader image and flash it.

The lack of board specifications, especially for the values for CLOCKPRESET
and DDR TOPOLOGY variables, produced errors in the U-Boot build that put the
board in an undefined state and we needed to recover the bootloader on ESPRES-
SObin using the steps form the board wiki page [4], the Bootloader recovery via
UART guide. The first steps were to change to a stable branch on the Marvell utils
repository. Secondly, on ESPRESSObin, the wtp command must be used to signal
the board that the computer is starting an UART transfer. Finally, on the computer,

72 Andrei-Costin Martin, Darius Mihai, Maria-Elena Mihailescu, Mihai Carabas, Sergiu Weisz

the WtpDownload linux command is used to transfer three files to ESPRESSObin
and recover the bootloader.

5.4. FreeBSD on ESPRESSObin

To assure that the ESPRESSObin was suitable for the project, we compiled
and then run successfully the OpenWrt operating system on board using U-boot.
This shows that the bootloader works and an operating system can boot. The steps
presented can be found on the board wiki page [4], in the Booting initramfs image
via TFTP guide. OpenWrt was chosen, instead of Ubuntu, Yocto, because the DTB
and root filesystem were separated from the root filesystem, making the booting
process more intuitive. To boot FreeBSD on the ESPRESSObin board, we had to
face and solve different kind of issues that will be described further.

1 s e t e n v f d t n a m e ” boo t / f d t / m a r v e l l / armada−3720− e s p r e s s o b i n . d t b ”
2 s e t e n v image name ” boo t / l o a d e r . e f i ”
3 s e t e n v bootcmd ’mmc dev 0 ; f a t l o a d mmc 0 : 1 $ k e r n e l a d d r

$image name ; f a t l o a d mmc 0 : 1 $ f d t a d d r $ f d t n a m e ; b o o t e f i
$ k e r n e l a d d r $ f d t a d d r ’

4 [. . .]
5 run bootcmd
6 s e t c u r r d e v = d i s k 0 p 1
7 boo t

LISTING 1. U-Boot variables for FreeBSD

Listing 1 presents the variables set to make U-Boot understand the DTB path,
fdt name, know the FreeBSD image path, image name, and load them and boot the
operating system, bootcmd. The bootcmd variable contains a set of individual com-
mands: mmc dev 0, which accesses the microSD slot, fatload ...$image name,
which loads the FreeBSD’s loader at the kernel address, fatload ... $fdt name,
which loads the DTB at its address, bootefi, which starts a UEFI application, us-
ing the kernel and DTB addresses. These variables were chosen to automate the
boot task. Running the run bootcmd, the loader started and wanted to boot the
kernel, but did not find the needed devices. Furthermore, the kernel was not able to
find the root filesystem.

The issues mentioned above are related to the fact that the MicroSD card
support was missing from our project[12], but it was implemented in the mainline.
However, even with the mainline FreeBSD implementation for ARM platforms, the
loader could not mount the filesystem as a FAT32 partition. To solve the latter, we
used two partitions, both containing the entire root filesystem, the FAT32 partition
for U-Boot and a UFS partition for FreeBSD, because the compiled U-Boot version
had no support for UFS. Having two partitions, the currdev variable seemed logical
to be set in the UFS partition (the second one). This time, the GEOM database could
be interogated and the UFS partition could be selected, using ufs:mmcsd0s2. The
FreeBSD host was able to start, proving that the master branch had the MicroSD
support.

Bring-up bhyve on ESPRESSObin board 73

After inspecting the differences between our project and the mainline FreeBSD
project, our project was before main project with over 400 commits behind on the
ARMv8 system directory. In these commits we could find the MicroSD support
patch. Since the bhyve implementation has to be tested using the latest FreeBSD
to be committed in the upstream, we decided that the best approach is to rebase the
entire code. However, due to the the large amount of changes, the rebase process
introduced issues that we had to solve. In kernel-space, some function names were
changed. The changes needed to be made by hand to compile the operating system.
To call the correct functions, the code from the ARMv8 bhyve branch needed to
be compared with the one on the master branch. In user-space, in usr.sbin/bhyve
the amd64 and pci code was moved in the bhyve root directory. Also, the devemu
generic name was removed, the variables and source code files being renamed in
pci (for amd64) or mmio (for arm64). The separation of amd64/arm64 dependent
code and devemu architecture independent code was done in an older version and
had to be removed and is preffered to let the amd64 code as it is in the mainline
(in the root of the bhyve directory). The FOUNDATION, FOUNDATION GUEST
and GENERIC kernel configs had to be changed, due to the change of drivers or
driver names. The iflib and virtio-rnd devices needed to be added, the random
device removed and the if tap device name was changed into if tuntap. The de-
vice name modification had to be updated also in the host.json config file, found
in the ARMv8 utils repository. In the kernel-space, a register was misspelled,
ICH ELSR EL2. The actual name of the register, found in the ARMv8 documenta-
tion [5], is ICH ELRSR EL2. Another change in kernel-space is the use of macros
that describe the ID AA64MMFR0 EL1 register. The operating system found in the
mainline has changed some macro definitions and these updates needed to be also
made in the ARMv8 bhyve source code.

After the build could complete successfully, the emulation process started
again, but the host operating system blocked at the kldload vmm command, which
inserts the virtualization module into the kernel. The origin of the problem is in the
vmm call hyp ENTRY, where is used the hypervisor call (hvc assembly instruc-
tion).

The reason for choosing emulation first, over the ESPRESSObin board, is the
fact that before the rebase it was possible to start a virtual machine with less effort.
Copying the root filesystem from the FreeBSD virtual machine on the MicroSD
card is time consuming (15 minutes) and a small change in the operating system
kernel would have to be tested. It takes about 1 minute to build the disk image,
copy it on the local computer and start the emulator.

This is the current state of the project. Knowing that there over 12000 com-
mits added in the rebase process, a lot of operating system changes could appear,
separate from virtualization, which could affect the bhyve functionality.

74 Andrei-Costin Martin, Darius Mihai, Maria-Elena Mihailescu, Mihai Carabas, Sergiu Weisz

6. Emulation and bring-up results

For testing the virtualization implementation using the ARM Foundation Plat-
form emulator, we need to build the kernel for the emulated host using the FOUN-
DATION configuration settings and to build the kernel for the emulated guest using
the FOUDNATION GUEST configuration settings. To run the emulator, we need
to generate the disk image on the FreeBSD virtual machine and download it on the
computer, then to run the ARM Foundation Platform (with GIC version, disk im-
age and UEFI as parameters). An xTerm terminal will show up, where the virtual
machine can be started by loading the virtualization module into the kernel using
kldload, loading the virtual machine using bhyveload and starting the virtual ma-
chine using bhyve.

For testing the virtualization implementation using the ESPRESSObin board,
we need to build the kernel for host using the GENERIC configuration settings. To
start the host operating system on ESPRESSObin, we need to install the world and
the kernel, to copy the root filesystem on the MicroSD card (both on the FAT32
partition and the UFS partition), set the fdt name with the DTB file, image name
with the loader binary and bootcmd, then execute the bootcmd. When the loader
asks for a a disk where it can find the kernel, we have to set the currdev variable
with the second partition (disk0p2) and run the boot command to start the kernel.
When the kernel asks for a root filesystem, we must give it the UFS partition, by
running ufs:mmcsd0s2.

We rebased the ARMv8 branch and resolved all the compilation conflicts and
errors and some of the newly appeared issues. At this point, we tested the virtualiza-
tion implementation using the ARM Foundation Platform. However, in this state,
the vmm driver does not load and block the host operating system. After the START
message, there had to be twelve messages and then STOP message, but the module
remain in the initialization function after four messages. We also tried to bring-up
the host FreeBSD on ESPRESSObin but it blocks in the booting process. In this
case, the operating system starts, but it waits for usbus0,usbus1 and CAM.

7. Conclusions and Further Work

This paper presents a recipe for building and deploying a FreeBSD operating
system on ARM hardware. This recipe is based on compiling, testing and solving
the issues occurred by debugging (the trial and error method). Moreover, the thesis
describes the working environment from a bhyve on ARMv8 developer point of
view. To work on a type-2 hypervisor the host should work fine and all the issues
to be found in the guest operating system, in the connection between the host and
the guest or in the context switch. In this particular case (with an old FreeBSD
version), some of the problems (the MicroSD missing support) make the hypervisor
development and bring-up process more difficult.

Due to the issues encountered with the lack of the MicroSD support and the
tremendous number of changes in the ARMv8 base code in FreeBSD, the project
had to be rebased with a newer version of FreeBSD. Since the code base added on

Bring-up bhyve on ESPRESSObin board 75

the main FreeBSD project contains a large number of code lines, the rebase proce-
dure introduced issues that needed to be solved before continuing with the bring-up
procedure. Some of the issues encountered were related to the misspelling of a
ARMv8 registry (ICH ELRSR EL2), the renaming of some definitions
(ID AA64MMFR0 EL1 registry related) and the removal some devices (e.g. ran-
dom).

However, even if some of the issues were resolved, others are still work in
progress. At this moment, the virtual machine monitor kernel module (vmm) does
not load properly and an investigation of the problem is made.

We plan to further develop the bhyve implementation for ARM architectures.
Our current implementation is facing some issues (vmm module load is blocked in
the ARM Foundation Platform emulator, and the root mount waiting for usbus0,
usbus1 and CAM issue) that must be solved to bring-up the bhyve code on real
hardware. The next steps we want to take are to fix the virtualization driver load
issue for the ARM Foundation Platform emulator to start an virtual machine in an
emulated system, start the FreeBSD host on the ESPRESSObin v5 by solving the
root mount waiting problem, start a virtual machine on the board, with the FreeBSD
operating system and solve all the issues in this process, test the implementation
with virtual machines that have other operating systems, such as Linux or Windows,
and open a review ticket to add the ARMv8 bhyve in the FreeBSD’s upstream.

Acknoledgments

The work has been funded by the Operational Programme Human Capital of
the Ministry of European Funds through the Financial Agreement 51675/09.07.2019,
SMIS code 125125.

R E F E R E N C E S

[1] “FreeBSDs official site.” Online link: https://www.freebsd.org. Last accessed: 24th of
April, 2020.

[2] “Bhyves wiki page.” Online link: https://wiki.freebsd.org/bhyve. Last accessed: 18th
of April, 2020.

[3] “ARMv8 Foundation Platform.” Online link: https://developer.arm.com/docs/

100961/1190/armv8a-foundation-platform-introduction/platform-overview.
Last accessed: 24th of April, 2020.

[4] “ESPRESSObin wiki page.” Online link: http://wiki.espressobin.net/tiki-index.

php. Last accessed: 28th of April, 2020.
[5] “ARMv8 architecture.” online link: https://developer.arm.com/docs/

ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-

architecture-profile. Last accessed: 28th of April, 2020.
[6] “ARMv8 wiki page.” online link: http://infocenter.arm.com/help/index.jsp?

topic=/com.arm.doc.ddi0488c/CHDHJIJG.html. Last accessed: 28th of April, 2020.
[7] “RFC 793: Transmission Control Protocol.” Online link: https://tools.ietf.org/html/

rfc793. Last accessed: 28th of April, 2020.

https://www.freebsd.org
https://wiki.freebsd.org/bhyve
https://developer.arm.com/docs/100961/1190/armv8a-foundation-platform-introduction/platform-overview
https://developer.arm.com/docs/100961/1190/armv8a-foundation-platform-introduction/platform-overview
http://wiki.espressobin.net/tiki-index.php
http://wiki.espressobin.net/tiki-index.php
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0488c/CHDHJIJG.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0488c/CHDHJIJG.html
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793

76 Andrei-Costin Martin, Darius Mihai, Maria-Elena Mihailescu, Mihai Carabas, Sergiu Weisz

[8] “Intel 64 and IA-32 Architectures Software Developer’s Manual.” Online link:
https://software.intel.com/sites/default/files/managed/39/c5/325462-

sdm-vol-1-2abcd-3abcd.pdf. Last accessed: 28th of April, 2020.
[9] “Flattened Device Tree.” Online link: https://wiki.freebsd.org/

FlattenedDeviceTree. Last accessed: 15th of February, 2020.
[10] “Summer of Code FreeBSD wiki.” Online link: https://wiki.freebsd.org/

SummerOfCode2015/PortingBhyveToArm. Last accessed: 18th of February, 2020.
[11] Christoffer Dall, Jason Nieh, “KVM/ARM: The Design and Implementation of the

Linux ARM Hypervisor.” Online link: http://systems.cs.columbia.edu/files/wpid-
asplos2014-kvm.pdf. Last accessed: 15th of February, 2020.

[12] “FreeBSD-UPB Github organisation.” Online link: https://github.com/FreeBSD-UPB.
Last accessed: 2nd of May, 2020.

https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://wiki.freebsd.org/FlattenedDeviceTree
https://wiki.freebsd.org/FlattenedDeviceTree
https://wiki.freebsd.org/SummerOfCode2015/PortingBhyveToArm
https://wiki.freebsd.org/SummerOfCode2015/PortingBhyveToArm
http://systems.cs.columbia.edu/files/wpid-asplos2014-kvm.pdf
http://systems.cs.columbia.edu/files/wpid-asplos2014-kvm.pdf
https://github.com/FreeBSD-UPB

	1. Introduction
	2. State of the art
	2.1. FreeBSD and bhyve
	2.2. ARMv7 vs ARMv8
	2.3. ESPRESSObin, Device Trees and U-Boot

	3. Related work
	4. ARMv8 bring-up Infrastructure
	5. FreeBSD hypervisor bring-up on real hardware
	5.1. FOUNDATION and GENERIC build
	5.2. FreeBSD started in ARM Foundation Platform
	5.3. Compiling and flashing U-Boot for ESPRESSObin
	5.4. FreeBSD on ESPRESSObin

	6. Emulation and bring-up results
	7. Conclusions and Further Work
	Acknoledgments
	REFERENCES

