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SUBGRADIENT AND HYBRID ALGORITHMS FOR EQUILIBRIUM

PROBLEMS AND FIXED POINT PROBLEMS

Youli Yu1, Yeong-Cheng Liou2

In this paper, we studied the fixed point and equilibrium problems in Hilbert

spaces. We present an iterative algorithm combined with subgradient and hybrid methods

for solving the fixed point problems of pseudocontractive operators and the equilibrium

problems of pseudomonotone operators. We show the strong convergence of the proposed

algorithm.

Keywords: Fixed point, equilibrium problem, pseudomonotone operators, pseudocon-

tractive operators, subgradient, projection.

MSC2010: 47J25, 47J40, 65K10.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a

nonempty closed and convex subset of H.

Let f : C × C → R be a bifunction. Recall that f is said to be

• strongly monotone with modulus µ > 0 if

f(x, y) + f(y, x) ≤ −µ‖x− y‖2, ∀x, y ∈ C.

• monotone if

f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C.
• pseudomonotone if

f(x, y) ≥ 0 implies that f(y, x) ≤ 0, ∀x, y ∈ C.

• Lipschitz-type continuous with constants µ1 > 0, µ2 > 0 if

f(x, y) + f(y, z) ≥ f(x, z)− µ1‖x− y‖2 − µ2‖y − z‖2, ∀x, y, z ∈ C.

In this paper, we focus on the equilibrium problem associated with the bifunction f

which is to solve the following problem:

find x ∈ C such that f(x, y) ≥ 0, ∀y ∈ C. (1)

The solution set of equilibrium problem (1) is denoted by Sol(f, C).

It is well known that some important problems such as variational inequalities ([2, 6,

8, 12, 19, 20, 25, 27, 28, 32]), fixed point problems ([4, 5, 9, 23, 24, 26, 29, 30, 31, 33]), Nash

equilibrium ([3, 17]), can be formulated in the form of the equilibrium problem (1). The most

approaches to the equilibrium problem are relied on the resolvent of equilibrium bifunction
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([7]) in which a strongly monotone regularization problem is solved at each iterative step.

Mastroeni ([15]) used the auxiliary problem principle to the equilibrium problem involving

a strongly monotone bifunction and satisfying Lipschitz-type condition. Another important

method for solving (1) is proximal point method which was firstly proposed by Martinet

([13]) and further studied by Rockafellar ([18]) for finding a zero of maximal monotone

operators. Konnov ([11]) extended proximal point method to the equilibrium problem for

monotone bifunctions.

Very recently, iterative algorithms for solving (1) and fixed point problems have been

future studied in the literature, see, for instance ([1, 10, 21, 35]). Especially, Nguyen, Strodiot

and Nguyen ([16]) presented a hybrid method for solving equilibrium problem (1) and a fixed

point problem. Yang and Liu ([22]) suggested a subgradient extragradient method for solving

the pseudomonotone equilibrium problems and fixed point of nonexpansive mappings. Yao,

Li and Postolache ([24]) investigated the split equilibrium problems of monotone operators

and fixed point problems of pseudo-contractions. Zhu, Yao and Postolache ([35]) proposed

a projection algorithm with linesearch technique for solving equilibrium problems and fixed

point problems.

Motivated and inspired by the work in this direction, the main objective of this paper

is to investigate the equilibrium problem (1) and fixed point problems in Hilbert spaces. We

present an iterative algorithm combined with subgradient and hybrid methods for solving

the fixed point problems of pseudocontractive operators and the equilibrium problems of

pseudomonotone operators. We show the strong convergence of the proposed algorithm.

2. Notations and Lemmas

Let C be a nonempty convex and closed subset of a real Hilbert space H. Let g : C →
(−∞,+∞] be a proper, lower semicontinuous and convex function. Then, the subdifferential

∂g of g is defined by

∂g(u) := {v† ∈ H : g(u) + 〈v†, u† − u〉 ≤ g(u†),∀u† ∈ C} (2)

for each u ∈ C.

It is known that u† is a solution to the optimization problem

min
u∈C

g(u)

if and only if

0 ∈ ∂g(u†) +NC(u†),

where NC(u†) means the normal cone of C at u† defined by

NC(u†) = {ω ∈ H : 〈ω, u− u†〉 ≤ 0,∀u ∈ C}.

Recall that a bi-function f : C×C → R is called jointly sequently weakly continuous,

if there exist two sequence {xk} and {yk} in C such that xk ⇀ x† and yk ⇀ y†, then

f(xk, yk)→ f(x†, y†).

Let f : C × C → R be a bi-function. Assume that the following conditions hold:

(f1): f(z†, z†) = 0 for all z† ∈ C;

(f2): f is pseudomonotone on Sol(f, C);

(f3): f is jointly sequently weakly continuous on C × C;

(f4): f(z†, ·) is convex and subdifferentiable for all z† ∈ C.

Recall that an operator S : C → C is said to be pseudocontractive if

‖Su− Su†‖2 ≤ ‖u− u†‖2 + ‖(I − S)u− (I − S)u†‖2,∀u, u† ∈ C
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and S : C → C is called L-Lipschitz if

‖Su− Su†‖ ≤ L‖u− u†‖

for all u, u† ∈ C.

Recall that the metric projection PC : H → C is an orthographic projection from H

onto C, which possesses the following characteristic: for given x ∈ H,

〈x− PC [x], y − PC [x]〉 ≤ 0,∀y ∈ C. (3)

The following symbols are needed in the paper.

• pk ⇀ z† indicates the weak convergence of pk to p† as k →∞.

• pk → p† implies the strong convergence of pk to p† as k →∞.

• Fix(S) means the set of fixed points of S.

• ωw(pk) = {p† : ∃{pki} ⊂ {pk} such that pki ⇀ p†(i→∞)}.

Lemma 2.1 ([16]). Let H be a real Hilbert space. Then, we have

‖κu+ (1− κ)u†‖2 = κ‖u‖2 + (1− κ)‖u†‖2 − κ(1− κ)‖u− u†‖2,

∀u, u† ∈ H and ∀κ ∈ [0, 1].

Lemma 2.2 ([35]). Assume that the operator S : C → C is L-Lipschitz pseudocontractive.

Then, for all ũ ∈ C and u† ∈ Fix(S), we have

‖u† − S((1− η)ũ+ ηSũ)‖2 ≤ ‖ũ− u†‖2 + (1− η)‖ũ− S((1− η)ũ+ ηSũ)‖2,

where 0 < η < 1√
1+L2+1

.

Lemma 2.3 ([21]). Assume that the bi-function f : C × C → R satisfies assumptions (f3)

and (f4). For given two points ū, v̄ ∈ C and two sequences {uk} ⊂ C and {vk} ⊂ C, if

uk ⇀ ū and vk ⇀ v̄, respectively, then, for any ε > 0, there exist η > 0 and Nε ∈ N
verifying

∂2f(vk, uk) ⊂ ∂2f(v̄, ū) +
ε

η
B

for every k ≥ Nε, where B := {b ∈ H|‖b‖ ≤ 1}.

Lemma 2.4 ([34]). If the operator S : C → C is continuous pseudocontractive, then S is

demi-closedness, i.e., yk ⇀ ũ and Syk → v† as k →∞ imply that Sũ = v†.

Lemma 2.5 ([14]). For given a sequence {xk} ⊂ H and p ∈ H, if ωw(xk) ⊂ C and

‖xk − p‖ ≤ ‖p− PC [p]‖ for all k ∈ N, then xk → PC [p].

3. Main results

In this section, we first introduce an algorithm for solving the pseudomonotone equi-

librium problem and fixed pint problem. Consequently, we show the convergence of the

proposed algorithm.

Let C be a nonempty closed and convex subset of a real Hilbert space H. Let f :

C × C → R be a function which satisfies the assumptions (f1)-(f4). Let S : C → C be

L(> 0)-Lipschitz pseudocontractive operator. Assume that Sol(f, C) ∩ Fix(S) 6= ∅. Let

γ ∈ (0, 2) and µ ∈ (0, 1) be two constants. Let {λk}, {δk}, {σk} and {γk} be four real

number sequences satisfying the following conditions:

(i) λk ∈ [ρ, 1] with 0 < ρ ≤ 1 for all k ≥ 0;

(ii) 0 < δ < δk < δ < σk < σ < 1√
1+L2+1

for all k ≥ 0;
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(iii) 0 < lim infn→∞ γk ≤ lim supn→∞ γk < 2.

Next, we present our iterative algorithm.

Algorithm 3.1. Step 1. Let x0 ∈ H be an initial value. Set C1 = C and compute x1 =

PC1 [x0]. Set k = 0.

Step 2. For given xk, calculate

vk = (1− δk)xk + δkS[(1− σk)xk + σkSx
k]. (4)

Step 3. Compute

yk = arg min
y†∈C

{
f(vk, y†) +

1

2λk
‖vk − y†‖2

}
. (5)

Find the smallest positive integer m such that

f(zk,m, yk) +
γ

2λk
‖vk − yk‖2 ≤ 0 (6)

where

zk,m = (1− µm)vk + µmyk, (7)

and consequently, write µm = µk and zk,m = zk.

Step 4. Calculate uk by

uk =


zk, if 0 ∈ ∂2f(zk, zk),

PC

[
vk +

µkγkf(zk, yk)

(1− µk)‖gk‖2
gk
]
, where gk ∈ ∂2f(zk, zk), if 0 /∈ ∂2f(zk, zk).

(8)

Step 5. Calculate xk+1 by the following form{
Ck+1 = {u† ∈ Ck : ‖uk − u†‖ ≤ ‖xk − u†‖},
xk+1 = PCk+1

[x0].
(9)

Step 6. Set k := k + 1 and return to Step 2.

Proposition 3.1 ([35]). For each z† ∈ C, we have

f(vk, z†) ≥ f(vk, yk) +
1

λk
〈vk − yk, z† − yk〉. (10)

Proposition 3.2. The search rule (6) is well-defined, i.e., there exists m such that (6)

holds. In this case, f(zk, yk) < 0 when vk 6= yk.

Proof. Case 1. vk = yk. Hence, zk = vk and f(zk, vk) = f(zk, yk) = 0 by (f1). Thus, (6)

holds and select m = 1.

Case 2. vk 6= yk. If (6) is not well-defined, then m must violate the inequality (6),

i.e., for every m ∈ N, we have

f(zk,m, yk) +
γ

2λk
‖vk − yk‖2 > 0. (11)

In zk = (1 − µm)vk + µmyk, letting m → ∞, we conclude that zk → vk as m → ∞. From

(f3), we deduce that f(zk, vk) → 0 and f(zk, yk) → f(vk, yk). This together with (11)

implies that

f(vk, yk) +
γ

2λk
‖vk − yk‖2 ≥ 0. (12)

Letting z† = vk in (10) and noting that f(vk, vk) = 0, we deduce

0 ≥ f(vk, yk) +
‖vk − yk‖2

λk
.
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Combine the above inequality and (12) to derive that 0 ≤ ( 1
λk
− γ

2λk
)‖vk − yk‖2 ≤ 0.

Hence, vk = yk, which is incompatible with the assumption. Thus, the search rule (6) is

well-defined. Consequently, f(zk, yk) ≤ − γ
2λk
‖vk − yk‖2 < 0 when vk 6= yk. �

Proposition 3.3. The sequence {xk} generated by (9) is well-defined.

Proof. Firstly, we prove by induction that Sol(f, C)∩Fix(S) ⊂ Ck for all k ≥ 1. Sol(f, C)∩
Fix(S) ⊂ C1 is obvious. Suppose that Sol(f, C) ∩ Fix(S) ⊂ Ck for some k ∈ N. Pick up

p ∈ Sol(f, C) ∩ Fix(S) ⊂ Ck.

By (4) and Lemmas 2.1 and 2.2, we obtain

‖vk − p‖2 = ‖(1− δk)(xk − p) + δk(S[(1− σk)xk + σkSx
k]− p)‖2

= (1− δk)‖xk − p‖2 − δk(1− δk)‖S[(1− σk)xk + σkSx
k]− xk‖2

+ δk‖S[(1− σk)xk + σkSx
k]− p‖2

≤ (1− δk)‖xk − p‖2 − δk(1− δk)‖S[(1− σk)xk + σkSx
k]− xk‖2

+ δk(‖xk − p‖2 + (1− σk)‖xk − S[(1− σk)xk + σkSx
k]‖2)

= ‖xk − p‖2 − δk(σk − δk)‖xk − S[(1− σk)xk + σkSx
k]‖2.

(13)

Note that f(zk, p) ≤ 0. Applying the subdifferential inequality, we have

f(zk, p) ≥ 〈gk, p− zk〉.

It follows that

〈gk, zk − p〉 ≥ −f(zk, p) ≥ 0.

So,

〈gk, vk − p〉 = 〈gk, vk − zk〉+ 〈gk, zk − p〉 ≥ 〈gk, vk − zk〉.

Note that

vk − zk =
µk

1− µk
(zk − yk)

and

f(zk, yk) ≥ 〈gk, yk − zk〉.

Therefore,

〈gk, vk − p〉 ≥ µk
1− µk

〈gk, zk − yk〉 ≥ −µk
1− µk

f(zk, yk). (14)

Case 1. If 0 /∈ ∂2f(zk, zk). According to (8), we get

‖uk − p‖2 =

∥∥∥∥PC[vk +
µkγkf(zk, yk)

(1− µk)‖gk‖2
gk
]
− p
∥∥∥∥2

≤
∥∥∥∥vk +

µkγkf(zk, yk)

(1− µk)‖gk‖2
gk − p

∥∥∥∥2

= ‖vk − p‖2 +
2µkγkf(zk, yk)

(1− µk)‖gk‖2
〈gk, vk − p〉+

µ2
kγ

2
kf

2(zk, yk)

(1− µk)2‖gk‖2

≤ ‖vk − p‖2 − 2µ2
kγkf

2(zk, yk)

(1− µk)2‖gk‖2
+
µ2
kγ

2
kf

2(zk, yk)

(1− µk)2‖gk‖2

= ‖vk − p‖2 − γk(2− γk)
µ2
kf

2(zk, yk)

(1− µk)2‖gk‖2
.

(15)
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Combining (13) and (15), we obtain

‖uk − p‖2 ≤ ‖xk − p‖2 − γk(2− γk)
µ2
kf

2(zk, yk)

(1− µk)2‖gk‖2

− δk(σk − δk)‖xk − S[(1− σk)xk + σkSx
k]‖2

≤ ‖xk − p‖2,

(16)

and hence p ∈ Ck+1.

Case 2. If 0 ∈ ∂2f(zk, zk). In this case, uk = vk and ‖uk − p‖ ≤ ‖xk − p‖ is obvious.

So, Sol(f, C) ∩ Fix(S) ⊂ Ck for all k ≥ 1.

It is known that Ck is closed and convex for all k ∈ N. Therefore, the sequence {xk}
is well-defined. �

Proposition 3.4. limk→∞
µkf(zk,yk)
(1−µk)‖gk‖ = 0 and limk→∞ ‖xk − Sxk‖ = 0.

Proof. Since xk = PCk
[x0], by the definition of the projection, we have

‖xk − x0‖ ≤ ‖x0 − u‖,∀u ∈ Ck, (17)

which by selecting u = p, implies that the sequence {xk} is bounded. Consequently, the

sequences {vk} and {uk} are bounded. By the maximum theorem, {yk} is also bounded.

Thus, {zk} is bounded. Together with Lemma 2.3, {gk} is bounded.

Since xk+1 ∈ Ck+1 ⊂ Ck, we have from (3) that

〈x0 − xk, xk+1 − xk〉 ≤ 0.

So,

‖xk+1 − xk‖2 = 2〈x0 − xk, xk+1 − xk〉+ ‖xk+1 − x0‖2 − ‖x0 − xk‖2

≤ ‖xk+1 − x0‖2 − ‖xk − x0‖2.
(18)

Choosing u = xk+1 in (17), we deduce ‖xk−x0‖ ≤ ‖x0−xk+1‖. Thus, the limit limk→∞ ‖xk−
x0‖ exists, denoted by q. This together with (18) implies that ‖xk+1 − xk‖ → 0. Thanks to

the definition of Ck+1 and xk+1 ∈ Ck, we derive ‖uk − xk+1‖ ≤ ‖xk − xk+1‖ → 0. Hence,

‖uk − xk‖ ≤ ‖uk − xk+1‖+ ‖xk+1 − xk‖ → 0.

By (16), we obtain

0 ≤ γk(2− γk)
µ2
kf

2(zk, yk)

(1− µk)2‖gk‖2
+ δk(σk − δk)‖xk − S[(1− σk)xk + σkSx

k]‖2

≤ ‖xk − p‖2 − ‖uk − p‖2

≤ ‖xk − uk‖[‖xk − p‖+ ‖uk − p‖]
→ 0.

It follows that

lim
k→∞

µkf(zk, yk)

(1− µk)‖gk‖
= 0, (19)

and

lim
k→∞

‖xk − S[(1− σk)xk + σkSx
k]‖ = 0. (20)

Consequently,

lim
k→∞

‖vk − xk‖ = 0.
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On the other hand,

‖xk − Sxk‖ ≤ ‖xk − S[(1− σk)xk + σkSx
k]‖+ ‖S[(1− σk)xk + σkSx

k]− Sxk‖

≤ ‖xk − S[(1− σk)xk + σkSx
k]‖+ Lσk‖xk − Sxk‖.

It follows from (20) that

‖xk − Sxk‖ ≤ 1

1− Lσk
‖xk − S[(1− σk)xk + σkSx

k]‖ → 0. (21)

�

Proposition 3.5. ωw(xk) ⊂ Sol(f, C) ∩ Fix(S).

Proof. By (6), we have

f(zk, yk) +
γ

2λk
‖vk − yk‖2 ≤ 0. (22)

We will consider two cases:

Case 1. lim supk→∞ µk > 0. Then there exists µ0 > 0 and N0 such that µki ≥ µ0 for

every i ≥ N0. From (19) and (22), we deduce

lim
i→∞

‖vki − yki‖ = 0. (23)

Selecting any x† ∈ ωw(vki), there exists a subsequence {vkij } ⊂ {vki}, still denoted by

{vki}, such that vki ⇀ x† ∈ C. Using (23), we also deduce that yki ⇀ x† ∈ C. By (5), we

have

f(vki , yki) +
1

2λki
‖vki − yki‖2 ≤ f(vki , y†) +

1

2λki
‖vki − y†‖2 (∀y† ∈ C)

≤ f(vki , y†) +
1

2ρ
‖vki − y†‖2.

(24)

Letting i→∞ in (24), we obtain

0 ≤ f(x†, y†) +
1

2ρ
‖x† − y†‖2, ∀y† ∈ C. (25)

Therefore, x† ∈ Sol(f, C).

Case 2. limk→∞ µk = 0. Selecting any x‡ ∈ ωw(vk), there exists a subsequence

{vkj} ⊂ {vk} such that vkj ⇀ x‡ ∈ C. Since {ykj} is bounded, without loss of generality,

we may assume that ykj ⇀ y‡ ∈ C. By the definition of ykj , we have

f(vkj , ykj ) +
1

2λkj
‖vkj − ykj‖2 ≤ f(vkj , y†) +

1

2λkj
‖vkj − y†‖2 (∀y† ∈ C). (26)

Letting j →∞ with limj→∞ λkj = ρ† in (26), we derive

f(x‡, y‡) +
1

2ρ†
‖x‡ − y‡‖2 ≤ f(x‡, y†) +

1

2ρ†
‖x‡ − y†‖2 (∀y† ∈ C). (27)

Choose y† = x‡ in (27) to deduce

f(x‡, y‡) +
1

2ρ
‖x‡ − y‡‖2 ≤ f(x‡, x‡) +

1

2ρ
‖x‡ − x‡‖2 = 0. (28)

On the other hand, m is the smallest positive integer satisfying (6), so we have

f(zkj ,m−1, ykj ) +
γ

2λkj
‖vkj − ykj‖2 > 0. (29)
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Note that

zkj ,m−1 = (1− µm−1)vkj + µm−1ykj → x‡.

This together with (29) implies that

f(x‡, y‡) +
γ

2ρ
‖x‡ − y‡‖2 ≥ 0. (30)

Taking into account (28) and (30), we deduce that

0 ≤ 1− γ
2ρ
‖x‡ − y‡‖2 ≤ 0,

which implies that x‡ = y‡. Therefore,

f(x‡, y†) +
1

2ρ
‖x‡ − y†‖2 ≥ 0, ∀y† ∈ C. (31)

Therefore, x† ∈ Sol(f, C).

Next, we show x† ∈ Fix(S). Note that xki ⇀ x†. This together with Lemma 2.4 and

(21) implies that x† ∈ Fix(S). So, ωw(xk) ⊂ Sol(f, C) ∩ Fix(S). �

Theorem 3.1. The iterate {xk} defined by Algorithm 3.1 converges to PSol(f,C)∩Fix(S)[x
0].

Proof. First, it is obvious that Sol(f, C) ∩ Fix(S) is nonempty, closed and convex. Thus,

PSol(f,C)∩Fix(S) is well-defined. Thanks to (17), we deduce

‖xk − x0‖ ≤ ‖x0 − PSol(f,C)∩Fix(S)[x
0]‖.

By Proposition 3.5, we obtain ωw(xk) ⊂ Sol(f, C)∩Fix(S). Hence, all conditions of Lemma

2.5 are fulfilled. Consequently, we conclude that xk → PSol(f,C)∩Fix(S)[x
0]. �

4. Conclusion

Recently, the equilibrium problem and fixed point problem have attracted so much

attention. In this paper, we devote to construct an iterative algorithm for solving the

equilibrium problem (1) and fixed point problems in Hilbert spaces. We present an itera-

tive algorithm combined with subgradient and hybrid methods for solving the fixed point

problems of pseudocontractive operators and the equilibrium problems of pseudomonotone

operators. We show the strong convergence of the proposed algorithm.
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