GENERALIZED DERIVATIONS AND GENERALIZED AMENABILITY OF BANACH ALGEBRAS

Ali Zohri\(^1\), Ali Jabbari\(^2\)

Let \(\mathfrak{A} \) be a Banach algebra. A generalized derivation from \(\mathfrak{A} \) into itself is a linear map \(D \) such that \(D(xa) = D(a)x + xD(a) \) for all \(a, x \in \mathfrak{A} \), where \(d \) is a derivation from \(\mathfrak{A} \) into \(\mathfrak{A} \). In this paper we define dual generalized derivation from Banach algebra \(\mathfrak{A} \) into dual of its \(\mathfrak{A}^* \) or dual of some Banach \(\mathfrak{A} \)-module \(X \) and study its properties.

Keywords: dual generalized derivation, generalized amenability, generalized derivation, generalized inner derivation, triangular Banach algebras, Jordan derivations, Jordan generalized derivations.

2000 Mathematics Subject Classification: Primary 46H20; Secondary 13N15.

1. Introduction

Amenability is a cohomological property of Banach algebras which was introduced by Johnson in [14]. Let \(\mathfrak{A} \) be a Banach algebra, and suppose that \(X \) is a Banach \(\mathfrak{A} \)-bimodule such that the following statements hold
\[
\|a \cdot x\| \leq \|a\|\|x\| \quad \text{and} \quad \|x \cdot a\| \leq \|a\|\|x\|
\]
for each \(a \in \mathfrak{A} \) and \(x \in X \).

We can define the right and left actions of \(\mathfrak{A} \) on dual space \(X^* \) of \(X \) via
\[
\langle x, \lambda \cdot a \rangle = \langle a \cdot x, \lambda \rangle \quad \langle x, a \cdot \lambda \rangle = \langle x \cdot a, \lambda \rangle,
\]
for each \(a \in \mathfrak{A}, x \in X \) and \(\lambda \in X^* \).

Suppose that \(X \) is a Banach \(\mathfrak{A} \)-bimodule. A derivation \(D : \mathfrak{A} \to X \) is a linear map which satisfies \(D(ab) = a \cdot D(b) + D(a) \cdot b \) for each \(a, b \in \mathfrak{A} \) and it is called Jordan derivation in case \(D(x^2) = D(x) \cdot x + x \cdot D(x) \) for each \(x \in \mathfrak{A} \). It is clear that every derivation is a Jordan derivation.

A derivation \(\delta \) is said to be inner if there exists a \(x \in X \) such that \(\delta(a) = \delta_x(a) = a \cdot x - x \cdot a \) for each \(a \in \mathfrak{A} \). We denote the linear space of bounded derivations from \(\mathfrak{A} \) into \(X \) by \(Z^1(\mathfrak{A}, X) \) and the linear subspace of inner derivations by \(N^1(\mathfrak{A}, X) \).

We consider the quotient space \(H^1(\mathfrak{A}, X) = Z^1(\mathfrak{A}, X) / N^1(\mathfrak{A}, X) \), it is called the first Hochschild cohomology group of \(\mathfrak{A} \) with coefficients in \(X \). The Banach algebra \(\mathfrak{A} \) is said to be amenable if \(H^1(\mathfrak{A}, X^*) = \{0\} \) for each Banach \(\mathfrak{A} \)-bimodules \(X \). The Banach algebra \(\mathfrak{A} \) is called weakly amenable if, \(H^1(\mathfrak{A}, X^*) = \{0\} \) (for more details

\(^1\) Department of Mathematics, "PAYAME NOOR" University, Iran, E-mail: zohri_a@pnu.ac.ir

\(^2\) Young Researchers and Elite Club, Ardabil Branch, "ISLAMIC AZAD" University, Ardabil, Iran, E-mail: jabbari_al@yahoo.com & ali.jabbari@iauardabil.ac.ir, *Corresponding author
A derivation $D : \mathfrak{A} \rightarrow \mathfrak{A}$ is called generalization derivation if there exists a derivation $d : \mathfrak{A} \rightarrow \mathfrak{A}$ such that $D(xy) = D(x)y + xd(y)$ for each pairs $x, y \in \mathfrak{A}$ and we say D is a d-derivation. It is easy to see that $D : \mathfrak{A} \rightarrow \mathfrak{A}$ is generalized derivation if and only if D is of the form $D = d + \varphi$, where d is a derivation from \mathfrak{A} into \mathfrak{A} and φ is a left module mapping.

The set of bounded \mathfrak{A}-module homomorphisms from \mathfrak{A} into an \mathfrak{A}-module M is itself an \mathfrak{A}-module, when the module operation is given by $a \cdot \phi(x) = \phi(x \cdot a)$ or $\phi(a \cdot x) = \phi(x) \cdot a$, for each $a \in \mathfrak{A}$ and each module homomorphisms ϕ. This module is denoted by $\text{Hom}(\mathfrak{A}, M)$. A map $T \in \text{Hom}(\mathfrak{A}, \mathfrak{A})$ is called a multiplier, and we write $\text{Hom}(\mathfrak{A}, \mathfrak{A}) = M(\mathfrak{A})$. The set $M(\mathfrak{A})$ is a Banach subalgebra of $B(\mathfrak{A})$, the set of all bounded operators on \mathfrak{A}. The homomorphic image of \mathfrak{A} in $M(\mathfrak{A})$ is given by $a \mapsto L_a$, where $L_a(x) = ax$, is called the regular representation of \mathfrak{A}.

The generalized derivation $D : \mathfrak{A} \rightarrow \mathfrak{A}$ is inner if there exist $a, b \in \mathfrak{A}$, such that $D(x) = bx - xa$. If we consider \mathfrak{A} as a right \mathfrak{A}-module, generalized derivation $\delta : \mathfrak{A} \rightarrow \mathfrak{A}$ is inner if there exist $a \in \mathfrak{A}$ and $\phi \in M(\mathfrak{A})$, such that $\delta(x) = \phi(x) - xa$, that $\phi(x) = bx$.

There are some generalizations for amenability of Banach algebras such as approximate amenability [10], character amenability [15, 17], approximate character amenability [13], ideal amenability [7] and approximate ideal amenability [6]. We denote the linear space of bounded generalized derivations from \mathfrak{A} into X by $GZ^1(\mathfrak{A}, X)$ and the linear subspace of generalized inner derivations by $GN^1(\mathfrak{A}, X)$, we consider the quotient space $GH^1(\mathfrak{A}, X) = GZ^1(\mathfrak{A}, X)/GN^1(\mathfrak{A}, X)$, called the first generalized Hochschild cohomology group of \mathfrak{A} with coefficients in X. Similar to amenability of Banach algebra we say \mathfrak{A} is a generalized amenable if $GH(\mathfrak{A}, X^*) = \{0\}$ for every Banach \mathfrak{A}-bimodule X.

2. Basic Properties

In this section let \mathfrak{A} be a Banach algebra and M be a Banach \mathfrak{A}-bimodule. We use \textquotedblleft\cdot\textquotedblright for module product between M and its dual and \textquotedblleft\cdot\textquotedblright denote the module product between M and \mathfrak{A}.

Definition 2.1. A linear mapping $\delta : M \rightarrow M^*$ is said to be dual generalized derivation on M, if there exist a derivation $d : \mathfrak{A} \rightarrow M^*$ such that

$$\delta(xa) = \delta(x) \cdot a + x.d(a)$$

for each $x \in M$ and for each $a \in \mathfrak{A}$.

Definition 2.2. Let M be a Banach algebra and let $\delta : M \rightarrow M^*$ be a dual generalized derivation. δ is said to be dual generalized inner derivation, if there exist $a, b \in M^*$ such that $\delta(x) = bx - xa$, for each $x \in M$.

As above mentioned, it is proved that $D : \mathfrak{A} \rightarrow \mathfrak{A}$ is generalized derivation if and only if D is of the form $D = d + \varphi$, where d is a derivation from \mathfrak{A} into \mathfrak{A} and
\(\varphi \) is a left module mapping. In the next lemma we extend this for the case when \(D: \mathfrak{A} \rightarrow \mathfrak{A}' \).

Lemma 2.1. A linear mapping \(\delta: \mathfrak{A} \rightarrow \mathfrak{A}' \) is dual generalized derivation if and only if there exist a derivation \(d: \mathfrak{A} \rightarrow \mathfrak{A} \) and module map \(\varphi: \mathfrak{A} \rightarrow \mathfrak{A} \) such that \(\delta = d + \varphi \).

Proof. Let \(\delta \) be a dual generalized derivation on \(\mathfrak{A} \), so there exist a derivation \(d: \mathfrak{A} \rightarrow \mathfrak{A} \) and module map \(\varphi: \mathfrak{A} \rightarrow \mathfrak{A} \) such that \(\delta = d + \varphi \). Then for each \(a, x \in \mathfrak{A} \), we have

\[
\varphi(xa) = \delta(xa) - d(xa) = \delta(x)a + x.d(a) - (d(x).a + x.d(a)) = \varphi(x)a.
\]

Thus \(\varphi \) is module map and \(\delta = d + \varphi \).

Conversely let \(d \) be a derivation from \(\mathfrak{A} \) to \(\mathfrak{A} \) and \(\varphi: \mathfrak{A} \rightarrow \mathfrak{A} \) be a module map. Take \(\delta = d + \varphi \), then clearly \(\delta \) is a \(d \)-derivation. \(\square \)

Proposition 2.1. Let \(\mathfrak{A} \) has a bounded approximate identity and \(\delta: \mathfrak{A} \rightarrow \mathfrak{A} \) be a \(d \)-derivation. Then \(\delta \) is bounded if and only if \(d \) is bounded.

Proof. By Lemma 2.1, we can decompose \(\delta \) as \(\delta = d + \varphi \) and by Cohen factorization Theorem [2], \(\varphi \) will be bounded and boundedness of \(\delta \) is only depend on boundedness of \(d \). \(\square \)

Theorem 2.1. Let \(\delta: M \rightarrow M^* \) be a bounded linear map. Then \(\delta \) is a dual generalized inner derivation if and only if there exist an inner derivation \(d_a: \mathfrak{A} \rightarrow M^* \) specified by \(a \in \mathfrak{A} \), such that \(\delta \) is a \(d_a \)-derivation.

Proof. Let \(\delta \) be a dual generalized derivation. Then there exist \(a, b \in M^* \) such that

\[
\delta(x) = b.x - x.a \quad (x \in M).
\]

Also for every \(x \in M \) we have

\[
\delta(x) \cdot c + x.d_a(c) = (b.x - x.a) \cdot c + xa \cdot c - x \cdot c \cdot a \\
= b.x \cdot c - x.a \cdot c + x.a \cdot c - x \cdot c \cdot a = b.x \cdot c - x \cdot c \cdot a \\
= \delta(x \cdot c).
\]

Thus \(\delta \) is a \(d_a \)-derivation.

Conversely, suppose \(\delta \) is a \(d_a \)-derivation for some \(a \in M^* \). Define \(T: M \rightarrow M^* \) by \(T(x) = \delta(x) + x.a \). Then \(T \) is linear, bounded and for each \(b \in \mathfrak{A} \)

\[
T(x \cdot b) = (\delta(x) + x.a) \cdot b = T(x) \cdot b.
\]

Thus

\[
\delta(x) = (\delta(x) + x.a) - x.a = T(x) - x.a.
\]

Therefore \(\delta \) is a dual generalized inner derivation. \(\square \)

3. Main Results

Proposition 3.1. Let \(\mathfrak{A}, \mathfrak{B} \) and \(\mathfrak{C} \) be Banach algebras such that \(\mathfrak{A} \) and \(\mathfrak{B} \) are Banach \(\mathfrak{C} \)-bimodule. Suppose that \(\theta: \mathfrak{A} \rightarrow \mathfrak{B} \) is a homeomorphism such that \(\theta \) and \(\theta^{-1} \) are linear module maps and \(d: \mathfrak{C} \rightarrow \mathfrak{C} \) is a derivation. Then for every \(d \)-derivation \(\delta_\mathfrak{B}: \mathfrak{B} \rightarrow \mathfrak{B} \) there exists a \(d \)-derivation \(\delta_\mathfrak{A}: \mathfrak{A} \rightarrow \mathfrak{A} \). Converse is true when \(\theta^{-1} \) is onto.
Proof. Let $\delta_\mathcal{B} : \mathcal{B} \rightarrow \mathcal{B}$ be a d-derivation. So for every $y \in \mathcal{B}$ and $c \in \mathcal{C}$ we have
$$\delta_\mathcal{B}(y \cdot c) = \delta_\mathcal{B}(y) \cdot c + y \cdot d(c).$$
Therefore, there exists a $x \in \mathcal{A}$ such that
$$\delta_\mathcal{B}(\theta(x) \cdot c) = \delta_\mathcal{B}(\theta(x)) \cdot c + \theta(x) \cdot d(c).$$
Consequently
$$\delta_\mathcal{B} \circ \theta(x \cdot c) = (\delta_\mathcal{B} \circ \theta(x)) \cdot c + \theta(x) \cdot d(c),$$
and also we have
$$\theta^{-1} \circ \delta_\mathcal{B} \circ \theta(x \cdot c) = (\theta^{-1} \circ \delta_\mathcal{B} \circ \theta(x)) \cdot c + x \cdot d(c) = (\theta^{-1} \circ \delta_\mathcal{B} \circ \theta(x)) \cdot c + x \cdot d(c).$$
Now, assume $\delta_\mathcal{A} = \theta^{-1} \circ \delta_\mathcal{B} \circ \theta$, and so proof is complete.

Let \mathcal{A}, \mathcal{B}, \mathcal{C} and θ be defined as above Proposition. Then for every inner d-derivation $\delta_\mathcal{B} : \mathcal{B} \rightarrow \mathcal{B}$ there exists a $\delta_\mathcal{A} : \mathcal{A} \rightarrow \mathcal{A}$ such that $\delta_\mathcal{A}$ is an inner d-derivation.

Proposition 3.2. If $\delta : \mathcal{A} \rightarrow \mathcal{A}$ is a d-derivation, then $\delta^{**} : \mathcal{A}^{**} \rightarrow \mathcal{A}^{**}$ is a d^{**}-derivation.

Proof. It is clear that δ^{**} is linear. For given $a, b \in \mathcal{A}^{**}$, there exist nets (a_α) and (b_β) in \mathcal{A} such that $a = w^* - \lim_\alpha a_\alpha = a$ and $b = w^* - \lim_\beta b_\beta = b$. Then
$$\delta^{**}(ab) = w^* - \lim_\alpha w^* - \lim_\beta \delta(a_\alpha b_\beta) = w^* - \lim_\alpha w^* - \lim_\beta (\delta(a_\alpha)b_\beta + a_\alpha d(b_\beta)) = \delta^{**}(a)b + ad^{**}(b).$$

Theorem 3.1. Suppose that the following sequence is a short exact sequence
$$0 \rightarrow \mathcal{J} \xrightarrow{i} \mathcal{A} \xrightarrow{q} \mathcal{B} \rightarrow 0,$$
of Banach algebras, Banach \mathcal{A}-bimodules and bounded algebra homomorphism (\mathcal{A} is an extension of \mathcal{B} by \mathcal{J}). If $\delta_1 : \mathcal{J} \rightarrow \mathcal{J}^*$ and $\delta_2 : \mathcal{B} \rightarrow \mathcal{B}^*$ be dual generalized d-derivations, then there exists a linear map $D : \mathcal{A} \rightarrow \mathcal{A}$ such that D is a dual generalized d-derivation.

Proof. We may assume that \mathcal{J} is a closed two sided ideal in \mathcal{A} and \mathcal{B} is the quotient space \mathcal{A}/\mathcal{J}. According to our assumption we have $\delta_1(xa) = \delta_1(x).a + x.d(a)$ and $\delta_2(ya) = \delta_2(y).a + y.d(a)$, for each $a \in \mathcal{A}$, $x \in \mathcal{J}$ and $y \in \mathcal{A}/\mathcal{J}$.

Now, we define $D = \delta_1 + \delta_2$. It is clear that D is linear and for each $z \in \mathcal{A}$ we have
$$D(za) = D((x + y)a) = D(xa + ya) = D(xa) + D(ya) = \delta_1(xa) + \delta_2(ya) = (\delta_1(x) + \delta_2(y)).a + (x + y)d(a) = D(x + y).a + (x + y).d(a).$$
Thus, $D(za) = D(z).a + z.d(a)$, and proof is complete. □
Let $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$, be Banach algebras and $D_i : \mathfrak{A}_i \rightarrow \mathfrak{A}_i^*$ be a dual d_i-derivation for each $i = 1, \ldots, n$. Then $D : \prod_{i=1}^n \mathfrak{A}_i \rightarrow \prod_{i=1}^n \mathfrak{A}_i^*$ is a dual d_i-derivation.

Proof. We have the following short exact sequence

$$0 \rightarrow \mathfrak{A}_i \overset{\pi_i}{\longrightarrow} \prod_{i=1}^n \mathfrak{A}_i \overset{\pi_i}{\longrightarrow} \mathfrak{A}_i \rightarrow 0.$$

Accordingly to above Theorem, D is a dual d_i-derivation. \hfill \Box

Definition 3.1. Let \mathfrak{A} be a Banach algebra. We say \mathfrak{A} is generalized amenable if $GH(\mathfrak{A}, X^*) = \{0\}$ for every Banach \mathfrak{A}-bimodule X.

Definition 3.2. Let \mathfrak{A} be a Banach algebra. We say \mathfrak{A} is generalized weakly amenable if $GH(\mathfrak{A}, \mathfrak{A}^*) = \{0\}$.

Theorem 3.2. Let \mathfrak{A} be a amenable Banach algebra. Then for every Banach \mathfrak{A}-bimodule M, we have $GH^1(M, M^*) = \{0\}$.

Proof. Let $\delta : M \rightarrow M^*$ be a dual generalized derivation. Then there exists a derivation $d : \mathfrak{A} \rightarrow M^*$ such that δ is a d-derivation. Thus by Theorem 2.1, $GH(M, M^*) = \{0\}$. \hfill \Box

If \mathfrak{A} is an amenable Banach algebra, then for every Banach algebra M, which is a Banach \mathfrak{A}-bimodule, we have $GH^1(M, M^{(n)}) = \{0\}$ (i.e. M is generalized-n-permanent amenable).

Theorem 3.3. Let \mathfrak{A} and M be Banach algebras and M be a right Banach \mathfrak{A}-module. If M is weakly amenable, then for every dual generalized d-derivation $\delta : M \rightarrow M^*$, d is inner derivation from \mathfrak{A} to M^*.

Proof. Let $\delta : M \rightarrow M^*$ be a dual generalized d-derivation so $\delta(x \cdot b) = \delta(x) \cdot b + x.d(b)$ for $b \in \mathfrak{A}$ and $x \in M$. Since M is weakly amenable, then δ is an inner derivation. Therefore there exists an $a \in M^*$ such that $\delta(x) = a.x - x.a$.

So we have

$$\delta(x \cdot b) = a.x \cdot b - x \cdot b \cdot a = \delta(x) \cdot b + x.d(b)$$

$$= a.x \cdot b - x.a \cdot b + x.d(b).$$

Then $d(b) = a \cdot b - b \cdot a$ and so d is an inner derivation. \hfill \Box

Theorem 3.4. Let $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$, be Banach algebras and M_i be a Banach \mathfrak{A}_i-module for each $i = 1, 2, \ldots, n$. Let $D_i : M_i \rightarrow M_i^*$ be a dual generalized derivation for each $i = 1, \ldots, n$. Then

$$D : \prod_{i=1}^n M_i \rightarrow \prod_{i=1}^n M_i^*$$

is a dual generalized derivation.
Proof. Since each D_i is a dual generalized derivation, therefore there exists a derivation such as $d_i : \mathfrak{A}_i \rightarrow M^*_i$ such that $D_i(a \cdot x) = D_i(a) \cdot x + a.d_i(x)$ for each $a \in M_i$ and $x \in \mathfrak{A}_i$. Define $D : M_1 \times M_2 \times \ldots \times M_n \rightarrow M^*_1 \times M^*_2 \times \ldots \times M^*_n$ by $D = (D_1, \ldots, D_n) = \prod_{i=1}^n D_i$. Then for every $(a_1, a_2, \ldots, a_n) \in \prod_{i=1}^n M_i$ and $(x_1, x_2, \ldots, x_n) \in \prod_{i=1}^n A_i$, we have
\[
D(a \cdot x) = D((a_1, a_2, \ldots, a_n) \cdot (x_1, x_2, \ldots, x_n)) = D((a_1 \cdot x_1, a_2 \cdot x_2, \ldots, a_n \cdot x_n)) \\
= (D_1(a_1, x_1), D_2(a_2, x_2), \ldots, D_n(a_n, x_n)) \\
= (D_1(a_1) \cdot x_1 + a_1.d_1(x_1), \ldots, D_n(a_n) \cdot x_n + a_n.d(x_n)) \\
= (D_1(a_1), \ldots, D_n(a_n)) \cdot (x_1, \ldots, x_n) + (a_1, \ldots, a_n). (d_1(x_1), \ldots, d_n(x_n)).
\]

Now, take $d = (d_1, \ldots, d_2)$. Since each d_i is a derivation, so d is a derivation from $\prod_{i=1}^n \mathfrak{A}_i$ into $\prod_{i=1}^n M^*_i$. Then we have
\[
D(a \cdot x) = D(a) \cdot x + a.d(x),
\]
for every $x \in \mathfrak{A}$ and $a \in M$. Thus, D is a d-derivation and proof is complete. \(\square\)

Let $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$, be generalized amenable Banach algebras, then $\prod_{i=1}^n \mathfrak{A}_i$ is generalized amenable.

4. Results for Triangular Banach Algebras

Let \mathcal{A} and \mathcal{B} be unital Banach algebra and suppose that \mathcal{M} is Banach \mathcal{A}, \mathcal{B}-module. We define triangular Banach algebra
\[
T = \begin{bmatrix} \mathcal{A} & \mathcal{M} \\ \mathcal{M} & \mathcal{B} \end{bmatrix},
\]
with the sum and product being given by the usual 2×2 matrix operations and internal module actions. The norm on T is
\[
\| \begin{bmatrix} a & m \\ b & \end{bmatrix} \| = \|a\|_\mathcal{A} + \|m\|_\mathcal{M} + \|b\|_\mathcal{B}.
\]

Derivation on triangular Banach algebras have been studied by B. E. Forrest and L. W. Marcoux in [6] and amenability and weak amenability of these algebras are studied in [7] and [11]. T as a Banach space is isomorphic to the ℓ^1-direct sum of \mathcal{A}, \mathcal{B} and \mathcal{M}, so we have $T^{(2m-1)} \simeq \mathcal{A}^{(2m-1)} \oplus \mathcal{M}^{(2m-1)} \oplus \mathcal{B}^{(2m-1)}$ and $T^{(2m)} \simeq \mathcal{A}^{(2m)} \oplus \mathcal{M}^{(2m)} \oplus \mathcal{B}^{(2m)}$ for each $m \geq 1$.

When $m = 1$, for every $\tau = \begin{bmatrix} \alpha & \mu \\ \beta & \end{bmatrix} \in T^*$ and $\omega = \begin{bmatrix} x & y \\ z & \end{bmatrix}$, the actions of ω on τ and τ on ω are given by
\[
\omega \circ \tau = \begin{bmatrix} x \circ \alpha + y \circ \mu & z \circ \mu \\ z \circ \beta & \end{bmatrix} \quad \text{and} \quad \tau \circ \omega = \begin{bmatrix} \alpha \circ x & \mu \circ x \\ \mu \circ y + \beta \circ z & \end{bmatrix}
\]

By above relations and easy calculations we have the following theorem:

Theorem 4.1. Let $D : T \rightarrow T^*$ be a bounded dual generalized derivation. Then there exist bounded dual generalized derivations $D_A : \mathcal{A} \rightarrow \mathcal{A}^*$, $D_B : \mathcal{B} \rightarrow \mathcal{B}^*$, and
an element $\gamma_D \in M$ such that
\[
D \begin{bmatrix} x & y \\ z \end{bmatrix} = \begin{bmatrix} D_A(x) - y \circ \gamma_D & \gamma_D \circ x - z \circ \gamma_D \\ D_B(z) + \gamma_D \circ y \end{bmatrix} \quad (x \in A, y \in M, z \in B).
\]

Theorem 4.2. Let $\delta_A : A \to A^*$ be a dual generalized derivation. Then $D_{\delta_A} : T \to T^*$ defined by
\[
\begin{bmatrix} x & y \\ z \end{bmatrix} \mapsto \begin{bmatrix} \delta_A(x) & 0 \\ 0 & 0 \end{bmatrix}
\]
is a bounded dual generalized derivation and δ_A is a dual generalized inner derivation if and only if D_{δ_A} is a dual generalized inner derivation.

Similarly, for $\delta_B : B \to B^*$ with define $D_{\delta_A} : T \to T^*$ by
\[
\begin{bmatrix} x & y \\ z \end{bmatrix} \mapsto \begin{bmatrix} 0 & 0 \\ \delta_B(z) & 0 \end{bmatrix}
\]
above result is true.

Proof. Since δ_A is a dual generalized derivation thus exist derivation $d : A \to A^*$ such that $\delta_A(xa) = \delta_A(x).a + x.d(a)$, for each $x, a \in A$. Then for every $\omega = \begin{bmatrix} x & y \\ z \end{bmatrix}, \nu = \begin{bmatrix} a & m \\ b & 0 \end{bmatrix} \in T$ we have
\[
D_{\delta_A}(\omega \nu) = D_{\delta_A}\left(\begin{bmatrix} xa & xm + yb \\ zb \end{bmatrix} \right) = \begin{bmatrix} \delta_A(xa) & 0 \\ 0 & 0 \end{bmatrix}
\]
\[
= \begin{bmatrix} \delta_A(x).a & 0 \\ 0 & x.d(a) \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ x.d(a) & 0 \end{bmatrix}
\]
\[
= D_{\delta_A}(\omega) \nu + \omega \cdot D_d(\nu),
\]
where D_d is a derivation from T into T^* corrolaryresponding to d.

Now suppose that δ_A is a dual generalized inner derivation, therefore d is a inner and accorrolarying to Lemma 3.3 of [7], D_d is a dual generalized inner derivation and by Theorem 2.1, D_{δ_A} is a dual generalized inner derivation. Converse by Lemma 3.3 of [7] is clear.

We can write the similar proof for δ_B and D_{δ_B}, and the above results hold too.

5. Jordan Dual Generalized Derivation

Definition 5.1. Let \mathfrak{A} be a Banach algebra. An additive mapping $D : \mathfrak{A} \to \mathfrak{A}$ is generalized Jordan derivation if $D(x^2) = D(x)x + xd(x)$ holds for each $x \in \mathfrak{A}$ where $d : \mathfrak{A} \to \mathfrak{A}$ is a Jordan derivation.

Definition 5.2. Let \mathfrak{A} be a Banach algebra. An additive mapping $D : \mathfrak{A} \to \mathfrak{A}^*$ is dual Jordan derivation if $D(x^2) = D(x)x + x.D(x)$ holds for each $x \in \mathfrak{A}$.

Definition 5.3. Let \mathfrak{A} be a Banach algebra. An additive mapping $D : \mathfrak{A} \to \mathfrak{A}^*$ is dual generalized Jordan derivation if $D(x^2) = D(x)x + x.d(x)$ holds for each $x \in \mathfrak{A}$ where $d : \mathfrak{A} \to \mathfrak{A}^*$ is a dual Jordan derivation.

Theorem 5.1. Let \mathfrak{A} be a semisimple Banach algebra and let $D : \mathfrak{A} \to \mathfrak{A}^*$ be a dual generalized Jordan derivation. Then D is a dual generalized derivation.
Proof. Since D is a dual generalized Jordan derivation, we have

$$D(x^2) = D(x).x + x.d(x) \quad (x \in \mathfrak{A})$$

where d is a dual Jordan derivation from \mathfrak{A} into \mathfrak{A}^*. Since \mathfrak{A} is a semisimple, then d is a derivation. Define $\varphi = D - d$, then we have

$$\varphi(x^2) = D(x^2) - d(x^2) = D(x).x + x.d(x) - (x.d(x) + d(x).x)$$

$$= D(x).x - d(x).x = (D(x) - d(x)).x = \varphi(x).x$$

therefore $\varphi(x^2) = \varphi(x).x$, for each $x \in \mathfrak{A}$. By Proposition 1.4 of [14], we conclude that φ is a module map. Hence $D = \varphi + d$, where φ is a module map and d is a derivation. Then by Lemma 2.1, D is a dual generalized derivation. \qed

REFERENCES