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STRONGLY EXPONENTIALLY CONVEX FUNCTIONS

Muhammad Aslam Noor1, Khalida Inayat Noor2

In this paper, we define and introduce some new concepts of the strongly ex-

ponentially convex functions with respect to an auxiliary non-negative bifunction. We
establish various new relationships among various concepts of strongly exponentially

convex functions. We have also investigated the optimality conditions for the strongly

exponentially convex functions.It is shown that the difference of strongly exponentially
convex functions and strongly exponentially affine functions is again an exponentially

convex function. Results obtained in this paper can be viewed as refinement and im-

provement of previously known results.
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1. Introduction

In recent years, several extensions and generalizations have been considered for clas-
sical convexity. Strongly convex functions were introduced and studied by Polyak [27],
which play an important part in the optimization theory and related areas, see, for example,
[1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 18, 19, 21, 26] and the references therein.
Adamek [1] introduced an other class of convex function with respect to an arbitrary non-
negative bifunction, called relative strongly convex functions. With appropriate choice of
non-negative bifunction, one can obtain various known classes of convex functions. For the
properties of the strongly convex functions, see Adamek [1], Nikodem et al. [2, 3, 4, 5, 6, 7],
Awan et al[5, 6, 7, 8] and Noor et al. [21].

It is known that more accurate and inequalities can be obtained using the algorithmi-
cally convex functions than the convex functions. Closely related to the log-convex functions,
we have the concept of exponentially convex(concave) functions, which have important ap-
plications in information theory, big data analysis, machine learning and statistic, see, for
example, [2, 24] and the references therein. Exponentially convex(concave) functions can
be considered as a significant extension of the convex functions. Pal and Wong [24] have
discussed its applications in information geometry and statistics. Antczak [3] introduced
these exponentially convex functions implicitly and discussed their role in mathematical
programming. Alirazaie and Mathur [2] , Dragomir and Gomm [10, 12] and Noor and Noor
[20, 22] have derived several results for these exponentially convex functions.
Inspired by the work of Adamek [1], Nikodem et al. [18] and Noor et al[21], we introduce
and consider another class of nonconvex functions with respect to an arbitrary non-negative
bifunction. This class of nonconvex functions is called the strongly exponentially convex
functions. Serval new concepts of monotonicity are introduced. We establish the relation-
ship between these classes and derive some new results under some mild conditions. We
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have also investigated the optimality conditions for the strongly exponentially convex func-
tions. It is shown that the minimum of the differentiable exponentially convex function
can be characterized by a class of variational inequalities, which is called exponential vari-
ational inequality. We prove that the difference of strongly exponentially convex functions
and strongly exponentially affine functions is again an exponentially convex function. It is
expected that the ideas and techniques of this paper may stimulate further research in this
field.

2. Preliminary Results

Let K be a nonempty closed set in a real Hilbert space H. We denote by 〈·, ·〉 and
‖ · ‖ be the inner product and norm, respectively. Let F : K → R be a continuous function.
Let G(., ) : [0,∞)× [0,∞)→ R be a non-negative bifunction.

Definition 2.1. [18].The set K in H is said to be a convex set, if

u+ t(v − u) ∈ K, ∀u, v ∈ K, t ∈ [0, 1].

We now consider a class of exponentially convex function, which is mainly due to Antczak
[3].

Definition 2.2. A positive function F is said to be exponentially convex function, if

eF ((1−t)a+tb) ≤ (1− t)eF (a) + teF (b), ∀a, b ∈ K, t ∈ [0, 1]. (1)

or equivalently

Definition 2.3. A positive function F is said to be exponentially convex function, if

eF ((1−t)a+tb) ≤ log[(1− t)eF (a) + teF (b)], ∀a, b ∈ K, t ∈ [0, 1]. (2)

One can also define the exponentially convex functions on I = [a, b].

Definition 2.4. Let I = [a, b]. Then F is exponentially convex function, if and only if,∣∣∣∣∣∣
1 1 1
a x b

eF (a) eF (x) eF (b)

∣∣∣∣∣∣ ≥ 0; a ≤ x ≤ b.

The following statements are equivalent:

(1) F is exponentially convex function.

(2) eF (x) ≤ eF (a) + eF (b)−eF (a)

b−a (x− a).

(3) eF (x) ≤ b−x
b−ae

F (a) + x−a
b−a e

F (b).

(4) eF (x)−eF (a)

x−a ≤ eF (b)−eF (a)

b−a ≤ eF (b)−eF (a)

b−a .

(5) (x− a)eF (a) + (b− a)eF (x) + (a− x)eF (b)) ≥ 0.

(6) eF (a)

(b−a)(a−x) + eF (x)

(x−b)(a−x) + eF (b

(b−a)(x−b) ≥ 0,

where x = (1− t)a+ tb ∈ [0, 1].

Remark 2.1. If the exponentially convex function F is differentiable, then, from

eF (x) ≤ eF (a) +
eF (b) − eF (a)

b− a
(x− a),

we have

〈F ′(x)eF (x), b− a〉 ≤ eF (b) − eF (a),
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where F ′(.) is the differential of the function F.

For the applications of the exponentially convex(concave) functions in the mathe-
matical programming and information theory, see Antczak [3] and Alirezaei and Mathar[2].
To convey an idea of the applications of the exponentially convex function in information
theory, we have the following example.

Example 2.1. [2] The error function

erf(x) =
2√
π

∫ x

0

e−t
2

dt,

becomes an exponentially concave function in the form erf(
√
x), x ≥ 0, which describes

the bit/symbol error probability of communication systems depending on the square root of
the underlying signal-to-noise ratio. This shows that the exponentially concave functions can
play important part in communication theory and information theory.

We now introduce the concept of the strongly exponentially convex functions, which
is the main motivation of this paper.

Definition 2.5. The function F on the convex set K is said to be strongly exponentially
convex with respect to an arbitrary non-negative bifunction G(., .), if there exists a constant
µ > 0, such that

eF (u+t(v−u)) ≤ (1− t)eF (u) + teF (v)− µt(1− t)G(v, u),∀u, v ∈ K, t ∈ [0, 1]. (3)

The function F is said to be strongly exponentially concave, if and only if, −F is
strongly exponentially convex.
If t = 1

2 and µ = 1, then

eF (u+v
2 ) ≤ eF (u) + eF (v)

2
− 1

4
G(v, u), ∀u, v ∈ K, t ∈ [0, 1]. (4)

The function F is called the strongly exponentially J-convex function.

We also introduce the concept of strongly exponentially affine convex functions.

Definition 2.6. A positive function F on the convex set K is said to be strongly affine
exponentially convex with respect to an arbitrary non-negative bifunction G(., .), if there
exists a constant µ > 0, such that

eF (u+t(v−u)) = (1− t)eF (u) + teF (v) − µt(1− t)G(v, u), ∀u, v ∈ K, t ∈ [0, 1]. (5)

Also, we say that the positive function F is strongly exponentially affine J-convex
function, if

eF (u+v
2 ) =

eF (u) + eF (v)

2
− 1

4
µG(v, u), ∀u, v ∈ K, t ∈ [0, 1]. (6)

We now discuss some special cases, which appears to be new ones.
I. If G(v, u) = ‖v − u‖σ, σ > 1, then the strongly exponentially convex functions reduces
to:

eF (u+t(v−u)) ≤ (1− t)eF (u) + teF (v) − µt(1− t)‖v − u‖2, ∀u, v ∈ K, t ∈ [0, 1],

which is called the higher order strongly exponentially convex functions. It is itself an
interesting problem to study its characterizations and applications in various field of pure
and applied sciences.
II. If G(v, u) = G(v − u) then strongly exponentially convex function becomes:

eF (u+t(v−u)) ≤ (1− t)eF (u) + teF (v) − µt(1− t)G(v − u), ∀u, v ∈ K, t ∈ [0, 1].
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For the properties of the strongly convex functions in optimization, inequalities and equilib-
rium problems, see [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] and the
references therein..

Definition 2.7. The function F on the convex set K is said to be strongly exponentially
quasi convex with respect to an arbitrary non-negative bifunction G(., ), if there exists a
constant µ > 0 such that

eF (u+t(v−u)) ≤ max{eF (u), eF (v)} − µt(1− t)G(v, u), ∀u, v ∈ K, t ∈ [0, 1].

Definition 2.8. A positive function F on the convex set K is said to be strongly exponen-
tially log-convex with respect to the bifunction G(v, u), if there exist a constant µ > 0 such
that

eF (u+t(v−u)) ≤ e(F (u))1−t

e(F (v))t − µt(1− t)G(v, u), ∀u, v ∈ K, t ∈ [0, 1],

where F (·) > 0.

From this Definition, we have

eF (u+t(v−u)) ≤ e(F (u))1−t

e(F (v))t − µt(1− t)G(v, u),

= (1− t)eF (u) + teF (v) − µt(1− t)G(v, u)

This shows that every strongly exponentially lg-convex function is a strongly exponentially
convex function, but the converse is not true.
In fact, we have

eF (u+t(v−u)) ≤ e(F (u))1−t

e(F (v))t − µt(1− t)G(v, u)

≤ (1− t)eF (u) + teF (v) − µt(1− t)G(v, u)

≤ max{eF (u), eF (v)} − µt(1− t)G(v, u)

This shows that every strongly exponentially log-convex function is a strongly exponentially
convex function and every strongly exponentially convex function is a strongly exponentially
quasi-convex function. However, the converse is not true.

Definition 2.9. A differentiable function F on the convex set K is said to be strongly
exponentially pseudo G-convex function with respect to an arbitrary bifunction G(., .) , if
and only if, if there exists a constant µ > 0 such that

〈eF (u)F ′(u), v − u〉+ µG(u, v) ≥ 0

⇒
eF (v) − eF (u) ≥ 0, ∀u, v ∈ K.

We also need the following assumptions regarding the bifunction G(., .), which is due
to Noor and Noor [21] and plays a crucial part in the derivation of our results.

Condition N. Let G(., .) satisfy the assumptions

G(u, u+ t(v − u)) = −t2G(v, u)

G(v, u+ t(v − u) = (1− t)2G(v, u), ∀u, v ∈ K, t ∈ [0, 1].

Clearly for t = 0, we have G(u, u) = 0. Thus, it is clear that G(u, v) = 0, if and only if,
u = v,∀u, v ∈ K.
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3. Main Results

In this section, we consider some basic properties of generalized strongly convex func-
tions.

Theorem 3.1. Let F be a differentiable function on the convex set K and let Condition
N hold. Then the function F is strongly exponentially convex function with respect to the
non-negative bifunction G(., .), if and only if,

eF (v) − eF (u) ≥ 〈eF (u)F ′(u), v − u〉+ µG(v, u), ∀v, u ∈ K. (7)

Proof. Let F be a strongly exponentially convex function on the convex set K. Then

eF (u+t(v−u)) ≤ (1− t)eF (u) + teF (v) − t(1− t)µG(v, u), ∀u, v ∈ K,
which can be written as

eF (v) − eF (u) ≥ {e
F (u+t(v−u) − eF (u)

t
}+ (1− t)µG(v, u).

Taking the limit in the above inequality as t→ 0 , we have

eF (v) − eF (u) ≥ 〈eF (u)F ′(u), v − u)〉+ µG(v, u),

which is (7), the required result.

Conversely, let (7) hold. Then ∀u, v ∈ K, t ∈ [0, 1], vt = u + t(v − u) ∈ K and using
Condition N, we have

eF (v) − eF (vt) ≥ 〈eF (vt)F ′(vt), v − vt)〉+ µG(v, vt)

= (1− t)〈eF (vt)F ′(vt), v − u〉+ µ(1− t)2G(v, u). (8)

In a similar way, we have

eF (u) − eF (vt) ≥ 〈eF (vt)F ′(vt), u− vt)〉+ µG(u, vt)

= −t〈eF (vt)F ′(vt), v − u〉+ µt2G(v, u). (9)

Multiplying (8) by t and (9) by (1− t) and adding the resultant, we have

eF (u+t(v−u)) ≤ (1− t)eF (u) + teF (v) − t(1− t)µG(v, u),

showing that F is a strongly exponentially convex function. �

Theorem 3.2. Let F be differentiable on the convex set K and let Condition N hold. Then,
(7) holds, if and only if,

〈eF (u)F ′(u)− eF (v)F ′(v), u− v〉 ≥ µ{G(v, u) +G(u, v)}, ∀u, v ∈ K, t ∈ [0, 1]. (10)

Proof. Let F be a strongly exponentially convex function on the convex set K. Then, from
Theorem 3.1, we have

eF (v) − eF (u) ≥ 〈eF (u)F ′(u), v − u〉+ µG(v, u) ∀u, v ∈ K. (11)

Changing the role of u and v in (11), we have

eF (u) − eF (v) ≥ 〈eF (v)F ′(v), u− v)〉+ µG(u− v) ∀u, v ∈ K. (12)

Adding (11) and (12), we have

〈eF (u)F ′(u)− eF (v)F ′(v), u− v〉 ≥ µ{G(v, u) +G(u, v)},
the required (10).

Conversely, let F ′ satisfy (10). Then from (16), we have

〈eF (v)F ′(v), u− v〉 ≤ 〈eF (u)F ′(u), u− v)〉 − µ{G(v, u)) +G(u, v)}, (13)
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Since K is an convex set, ∀u, v ∈ K, t ∈ [0, 1] vt = u+ t(v − u) ∈ K.
Taking v = vt in (13) and using Condition N, we have

〈eF (vt)F ′(vt), u− vt〉 ≤ 〈eF (u)F ′(u), u− vt〉 − µ{G(vt, u)) +G(u, vt))}
= −t〈eF (u)F ′(u), v − u〉 − 2t2µG(v, u)),

which implies that

〈eF (vt)F ′(vt), v − u〉 ≥ 〈eF (u)F ′(u), v − u〉+ 2tµG(v, u). (14)

Consider the auxiliary function

g(t) = eF (u+t(v−u)),

from which, we have

g(1) = eF (v), g(0) = eF (u).

Then, from (14), we have

g′(t) = 〈eF (vt)F ′(vt, v − u〉
≥ 〈eF (u)F ′(u), v − u〉+ 2µtG(v, u). (15)

Integrating (15) between 0 and 1, we have

g(1)− g(0) =

∫ 1

0

g′(t)dt ≥ 〈eF (u)F ′(u), v − u〉+ µG(v, u).

Thus it follows that

eF (v) − eF (u) ≥ 〈eF (u)F ′(u), v − u〉+ µG(v, u),

which is the required (7). �

Theorem 3.1 and Theorem 3.2, enable us to introduce the following new concepts.

Definition 3.1. The differential F ′(.) of the strongly exponentially convex functions is said
to be strongly exponentially monotone with respect to an arbitrary bifunction G(., .) , if

〈eF (u)F ′(u)− eF (v)F ′(v), u− v〉 ≥ µ{G(v, u) +G(u, v)},∀u, v ∈ H.

Definition 3.2. The differential F ′(.) of the exponentially convex functions is said to be
exponentially monotone, if

〈eF (u)F ′(u)− eF (v)F ′(v), u− v〉 ≥ 0,∀u, v ∈ H.

Definition 3.3. The differential F ′(.) of the strongly exponentially convex functions is said
to be strongly exponentially G-pseudo monotone with respect to an arbitrary bifunction G(., .),
if

〈eF (u)F ′(u), v − u〉 ≥ 0.

implies that

〈eF (v)F ′(v), v − u〉 ≥ µG(u, v),∀u, v ∈ H. (16)

We now give a necessary condition for strongly exponentially G-pseudo-convex func-
tion.

Theorem 3.3. Let F ′ be strongly exponentially G-pseudomonotone and Condition N hold.
Then F is a strongly exponentially G-pseudo-invex function.
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Proof. Let F ′ be a strongly exponentially G-pseudomonotone. Then, ∀u, v ∈ K,

〈eF (u)F ′(u), v − u〉 ≥ 0.

implies that

〈eF (v)F ′(v), v − u〉 ≥ µG(u, v). (17)

Since K is an convex set, ∀u, v ∈ K, t ∈ [0, 1], vt = u+ t(v − u) ∈ K.
Taking v = vt in (17) and using condition Condition N, we have

〈eF (vt)F ′(vt), v − u〉 ≥ tµG(v, u)). (18)

Consider the auxiliary function

g(t) = eF (u+t(v−u)) = eF (vt), ∀u, v ∈ K, t ∈ [0, 1],

which is differentiable, since F is differentiable function. Then, using (18), we have

g′(t) = 〈eF (vt)F ′(vt), v − u)〉 ≥ tµG(v, u)).

Integrating the above relation between 0 to 1, we have

g(1)− g(0) =

∫ 1

0

g′(t)dt ≥ µ

2
G(v, u),

that is,

eF (v) − eF (u) ≥ µ

2
G(v, u),

showing that F is a strongly exponentially G-pseudo-convex function. �

Definition 3.4. The function F is said to be sharply strongly exponentially pseudo convex,
if there exists a constant µ > 0 such that

〈eF (u)F ′(u), v − u〉 ≥ 0

⇒
F (v) ≥ eF (v+t(u−v)) + µt(1− t)G(v, u) ∀u, v ∈ K, t ∈ [0, 1].

Theorem 3.4. Let F be a sharply strongly exponentially pseudo convex function on K with
a constant µ > 0. Then

〈eF (v)F ′(v), v − u〉 ≥ µG(v, u) ∀u, v ∈ K.

Proof. Let F be a sharply strongly exponentially pesudo convex function on K. Then

eF (v) ≥ eF (v+t(u−v)) + µt(1− t)G(v, u), ∀u, v ∈ K, t ∈ [0, 1].

from which we have

eF (v+t(u−v)) − eF (v)

t
+ µt(1− t)G(v, u) ≤ 0.

Taking limit in the above inequality, as t→ 0, we have

〈eF (v)F ′(v), v − u〉 ≥ µG(v, u),

the required result. �

We now discuss the optimality condition for the differentiable strongly exponentially
convex functions, which is the main motivation of our next result.

Theorem 3.5. Let F be a differentiable strongly exponentially convex function with mod-
ulus µ > 0. If u ∈ K is the minimum of the function F, then

eF (v) − eF (u) ≥ µG(v, u), ∀u, v ∈ K. (19)
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Proof. Let u ∈ K be a minimum of the function F. Then

F (u) ≤ F (v),∀v ∈ K

from which, we have

eF (u) ≤ eF (v),∀v ∈ K (20)

Since K is a convex set, so, ∀u, v ∈ K, t ∈ [0, 1],

vt = (1− t)u+ tv ∈ K.

Taking v = vt in (20), we have

0 ≤ lim
t→0
{e

F (u+t(v−u)) − eF (u)

t
}

= 〈eF (u)F ′(u), v − u〉. (21)

Since F is differentiable strongly exponentially convex function, so

eF (u+t(v−u)) ≤ eF (u) + t(eF (v) − eF (u))

−µt(1− t)G(v, u), u, v ∈ K, t ∈ [0, 1],

from which, using (21), we have

eF (v) − eF (u) ≥ lim
t→0

eF (u+t(v−u)) − eF (u)

t
+ µG(v, u).

= 〈eF (u)F ′(u), v − u〉+ µG(v, u)

≥ µG(v, u),

the required result (19). �

Remark 3.1. We would like to mention that, if

〈eF (u)F ′(u), v − u〉+ µG(v, u) ≥ 0, ∀u, v ∈ K,

then u ∈ K is the minimum of the function F.

We would like to emphasize that the minimum u ∈ K of the exponentially convex
functions can be characterized of the inequality

〈eF (u)F ′(u), v − u〉 ≥ 0,∀v ∈ K, (22)

which is called the exponential variational inequality, which appears to be new on. It is an
interesting problem to study the existence of a unique solution of the inequality (22) and its
applications.

Definition 3.5. A function F is said to be a exponentially pseudo convex function, if
there exists a strictly positive bifunction b(., .), such that

eF (v) < eF (u)

⇒
eF (u+t(v−u)) < eF (u) + t(t− 1)b(v, u),∀u, v ∈ K, t ∈ [0, 1].

Theorem 3.6. If the function F is exponentially convex function such that eF (v) < eF (u),
then the function F is strongly exponentially pseudo convex.
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Proof. Since eF (v) < eF (u) and F is strongly exponentially convex function, then ∀u, v ∈
K, t ∈ [0, 1], we have

eF (u+t(v−u)) ≤ eF (u) + t(eF (v) − eF (u))− µt(1− t)G(v, u)

< eF (u) + t(1− t)(eF (v) − eF (u))− µt(1− t)G(v, u)

= eF (u) + t(t− 1)(eF (u) − eF (v))− µt(1− t)G(v, u)

< eF (u) + t(t− 1)b(u, v)− µt(1− t)G(v, u),

where b(u, v) = eF (u) − eF (v) > 0, the required result. This shows that the function F is
strongly exponentially convex function.

�

It is well known that each strongly convex functions is of the form f±‖.‖2, where f is
a convex function. Similar result is proved for the strongly exponentially convex functions.
In this direction, we have:

Theorem 3.7. Let f be a strongly exponentially affine function with respective to an
arbitrary bifunction G(., .). Then F is a strongly exponentially convex function with respect
to the same arbitrary bifuction G(., .), if and only if, g = F − f is a exponentially convex
function.

Proof. Let f be strongly exponentially affine function with respect to the arbitrary bi-
function G(., .). Then

ef((1−t)u+tv) = (1− t)ef(u) + tef(v) − µt(1− t)G(v, u). (23)

From the strongly exponentially convexity of F, we have

eF ((1−t)u+tv) ≤ (1− t)eF (u) + teF (v) − µt(1− t)G(v, u). (24)

From (23 ) and (24), we have

eF ((1−t)u+tv) − ef((1−t)u+tv) ≤ (1− t)(eF (u) − ef(u)) + t(eF (v) − ef(v)), (25)

from which it follows that

eg((1−t)u+tv) = eF ((1−t)u+tv)) − ef((1−t)u+tv)

≤ (1− t)(eF (u) − ef(u)) + t(eF (v) − ef(v)),
which show that g = F − f is an exponentially convex function.
The inverse implication is obvious. �

We would like to remark that one can show that a function F is a strongly exponen-
tially convex function, if and only if, F is strongly exponentially affine function essentially
using the technique of Adamek [1] and Noor et al. [21].

Conclusion

In this paper, we have introduced and studied a new class of convex functions with
respect to any arbitrary bifunction, which is called the strongly exponentially convex func-
tion. It is shown that several new classes of strongly exponentially convex functions can be
obtained as special cases of these strongly exponentially convex functions. We have stud-
ied the basic properties of these functions. Several new and interesting results have been
obtained. It is shown that the optimality conditions of the differentiable exponentially con-
vex functions can be characterized by a class of variational inequality, which is called the
exponentially variational inequality. The qualitative study of the exponentially variational
inequalities is an interesting problem for future research. It is expected that the ideas and
techniques of this paper may stimulate further research.
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