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BEST PROXIMITY POINT UNDER THE FRAME OF QUASI-PARTIAL

METRIC SPACES

by Wasfi Shatanawi1,2,3

The best proximity point plays an important role in applied sciences. In
this paper, we introduce two types of contractions based on the notion of P−property

in the notion of quasi-partial metric spaces. We use our new contractions to build and

prove some new theorems of proximity type. Our results modify many existing known
results. We close our paper by introducing an example to support our results.
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1. Introduction

The notion of quasi-partial metric spaces was introduced by Karapiner et al [1] as a
generalization of partial metric spaces [2] in the sense that the commutative property between
x and y coordinates is not allowed. Moreover, the study and construct fixed and common
fixed points in frame of metric spaces, quasi metric spaces and quasi-partial metric spaces
are very useful for the Scientists in many different branches such as Physics, Chemistry, and
Engineering. For some works on metric and partial metric spaces, see [3]-[15]. Also, for
some works on quasi-metric space and quasi-partial metric spaces, see [16]-[27].

The definition of partial metric spaces is given as follows:

Definition 1.1. [1] The function ρ : M ×M → [0,∞) is called a quasi-partial metric if ρ
satisfies the following hypotheses:

(1) If ρ(c, c) = ρ(c, d) = ρ(d, d), then c = d,
(2) ρ(c, c) ≤ ρ(c, d),
(2) ρ(c, c) ≤ ρ(d, c), and
(2) ρ(c, e) + ρ(d, d) ≤ ρ(c, d) + ρ(d, e)

for all c, d, e ∈ X. The pair (M,ρ) is said to be a quasi partial-metric space.

Definition 1.2. [1] A sequence (an) in a quasi-partial metric space (M,ρ) converges to a
point a∗ ∈M if

lim
n→+∞

ρ(an, a
∗) = lim

n→+∞
ρ(a∗, an) = ρ(a∗, a∗).

Definition 1.3. [1] On the quasi-partial metric space (M,ρ), a sequence is called Cauchy
if limn,m→+∞ ρ(an, am) and limn,m→+∞ ρ(am, an) exist as a finite number.
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Definition 1.4. [1] The quasi-partial metric space (M,ρ) is called complete if every Cauchy
sequence (an) in M converges to a point a∗ ∈M such that

lim
n,m→+∞

ρ(an, am) = lim
n→+∞

ρ(am, an) = ρ(a∗, a∗).

Moreover, Karapiner in [1] proved that the following assertions hold in quasi-partial
metric space:

[1] If ρ(c, d) = 0, then c = d.

[2] If c 6= d, then ρ(c, d) > 0 and ρ(d, c) > 0.

The notion of best proximity point and the P−property in the metric space (M,d)
were introduced by Samet et al [28].

Definition 1.5. [28] Let M1 and M2 be subsets of a metric space (M,d). An element
m∗ ∈M1 is said to be a best proximity point of the mapping h : M1 →M2 if

d(m∗, hm∗) = d(M1,M2),

where

d(M1,M2) = inf

{
d(s, r) : s ∈M1 and r ∈M2

}
.

Definition 1.6. [28] Let (M1,M2) be subsets of a metric space (M,d). Also, let

M0
1 :=

{
m1 ∈M1 : there exists m2 ∈M2 such that d(m1,m2) = d(M1,M2)

}
, and

M0
2 :=

{
m2 ∈M2 : there exists m1 ∈M1 such that d(m1,m2) = d(M1,M2)

}
.

Then, we say that (M1,M2) have the P -property if(
d(m1,m2) = d(M1,M2)
d(k1, k2) = d(M1,M2)

)
⇒ d(m1, k1) = d(m1, k2).

For some works in fixed point theory, we ask the reader to see [29]-[36]. Also, for
related works on P -property, see [36], [37].

2. Main Results

Let M be a nonempty set endowed with a quasi-partial metric space ρ. Also, let M1

and M2 be two nonempty subsets of M . From now on, we let

M0
1 :=

{
m1 ∈M1 : there exists m2 ∈M2

such that ρ(m1,m2) = ρ(M1,M2), ρ(m2,m1) = ρ(M2,M1)

}
and

M0
2 :=

{
m2 ∈M2 : there exists m1 ∈M1

such that ρ(m1,m2) = ρ(M1,M2), ρ(m2,m1) = ρ(M2,M1)

}
,

where

ρ(M1,M2) := inf{ρ(m1,m2) : m1 ∈M1,m2 ∈M2}.
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Definition 2.1. Let M1 and M2 be non-empty subsets of a quasi-partial metric space (M,ρ).
We say that the pair (M1,M2) has the P -property if(

ρ(m1,m2) = ρ(M1,M2)
ρ(k1, k2) = ρ(M1,M2)

)
⇒ ρ(m1, k1) = ρ(m2, k2).

By Σ−function, we mean a function σ : [0,+∞)4 → [0,+∞) posses the following
conditions:

(1) σ is continuous in all of its variables.
(2) σ(0, j, k, l) = 0 for all j, k, l ∈ [0,+∞),
(3) σ(i, 0, k, l) = 0 for all i, k, l ∈ [0,+∞),
(4) σ(i, j, 0, l) = 0 for all i, j, l ∈ [0,+∞), and
(5) σ(i, j, k, 0) = 0 for all i, j, k ∈ [0,+∞).

Example 2.1. Define
σ1, σ2, σ3 : [0,+∞)4 → [0,+∞)

by
σ1(i, j, k, l) = s inf{i, j, k, l}, s > 0

σ2(i, j, k, l) = e(sijkl − 1, s > 0,

and
σ3(i, j, k, l) = sijkl, s > 0.

Then σ1, σ2, σ3 are Σ−functions.

By a c−comparison function τ on [0,+∞), we mean a function posses the following
assertions:

(1) τ is continuous and nondecreasing.
(2) For s > 0, τn(s)→ +∞ as n→ +∞.

In the rest of the present paper τ stands to a c−comparison function and σ stands to
a Σ−function.

Definition 2.2. Let ρ be a quasi-partial metric on a set M . Assume M1 and M2 be subsets
of M . We call h : M1 → M2 is (ρ, τ, σ,M1,M2)−contraction of type I if for all r, s ∈ M1,
we have

ρ(hr, hs) ≤ τ(ρ(r, s)) + σ

(
ρ(s, hr)− ρ(M1,M2),

ρ(r, hs)− ρ(M1,M2), ρ(r, hr)− ρ(M1,M2), ρ(s, hs)− ρ(M1,M2)

)
.

Our first result is:

Theorem 2.1. Let (M,ρ) be a complete quasi-partial metric space. Suppose M1 and M2

be closed subsets of M with respect to ρ. Assume h : M1 → M2 be a mapping satisfies the
following conditions:

1) h is (ρ, τ, σ,M1,M2)−contraction,
2) M0

1 is nonempty.
3) hM0

1 ⊆M0
2 , and

4) (M1,M2) posses the P -property,
Then h has a unique best proximity m∗ ∈M1.

Proof. Choosing u0 ∈M0
1 . Condition (3) implies that there is u1 ∈M0

1 such that ρ(u1, hu0) =
ρ(M1,M2) and ρ(hu0, u1) = ρ(M1,M2). So we can construct a sequence (un) ⊆ M0

1 such
that

ρ(un+1, hun) = ρ(M1,M2), ∀n ∈ N ∪ {0}
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and

ρ(hun, un+1) = ρ(M2,M1), ∀n ∈ N ∪ {0}.
For anym,n ∈ N∪{0}, the P−property of (M1,M2) ensures that ρ(un, um) = ρ(hun−1, hum−1)
and ρ(um, un) = ρ(hum−1, hun−1).
If there is i ∈ N ∪ {0}, for which ρ(ui, ui+1) = 0, it follows ρ(ui+1, ui) = 0 and hence

ρ(M1,M2) ≤ ρ(ui, hui) ≤ ρ(ui, ui+1) + ρ(ui+1, hui) = ρ(ui+1, hui) = ρ(M1,M2)

and

ρ(M2,M1) ≤ ρ(hui, ui) ≤ ρ(hui, ui+1) + ρ(ui+1, ui) = ρ(hui, ui+1) = ρ(M2,M1),

hence ρ(M1,M2) = ρ(ui, hui) and ρ(M2,M1) = ρ(hui, ui). Therefore ui is a best proximity
point of h.

By assuming that ρ(un, un+1) > 0, ∀ n ≥ 0, we may deduce that ρ(un+1, un) >
0, ∀ n ≥ 0.

Using the fact that h is (ρ, τ, σ,M1,M2)−contraction, we have

ρ(un, un+1) = ρ(hun−1, hun)

≤ τ(ρ(un−1, un)) + σ

(
ρ(un, hun−1)− ρ(M1,M2), ρ(un−1, hun)− ρ(M1,M2),

ρ(un−1, hun−1)− ρ(M1,M2), ρ(un, hun)− ρ(M1,M2)

)
= τ(ρ(un−1, un)) + σ

(
0, ρ(un−1, hun)− ρ(M1,M2),

ρ(un−1, hun−1)− ρ(U, V ), ρ(un, hun)− ρ(U, V )

)
= τ(ρ(un−1, un)), n ∈ N ∪ {0}

and

ρ(un+1, un) = ρ(hun, hun−1)

≤ τ(ρ(un, un−1)) + σ

(
ρ(un−1, hun)− ρ(M1,M2), ρ(un, hun−1)− ρ(M1,M2),

ρ(un, hun)− ρ(M1,M2), ρ(un−1, hun−1)− ρ(M1,M2)

)
= τ(ρ(un, un−1)) + σ

(
ρ(un, hun−)− ρ(M1,M2), 0,

ρ(un, hun)− ρ(M1,M2), ρ(un−1, hun−1)− ρ(M1,M2)

)
= τ(ρ(un, un−1)), n ∈ N ∪ {0}.

By refining process, we obtain

ρ(un, un+1) ≤ τn(ρ(u0, u1)), n ∈ N ∪ {0}

and

ρ(un+1, un) ≤ τn(ρ(u1, u0)), n ∈ N ∪ {0}.
On the other hand, triangular inequality and condition (4) give us

ρ(M1,M2) ≤ ρ(un, hun)

≤ ρ(un, hun−1) + ρ(hun−1, hun)− ρ(hun−1, hun−1)

= ρ(M1,M2) + ρ(un, un+1)
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and

ρ(M1,M2) ≤ ρ(hun, un)

≤ ρ(hun, hun−1) + ρ(hun−1, un)− ρ(hun−1, hun−1)

= ρ(un+1, un) + ρ(M1,M2).

Allowing n tends to infinity, we deduce that

lim
n→+∞

ρ(un, hun) = ρ(M1,M2) (2.1)

and

lim
n→+∞

ρ(hun, un) = ρ(M1,M2) (2.2)

Now, given ε > 0, we adopt the induction on t to show that

ρ(un, ut) < ε, ∀ t, n > m0 for some m0 ∈ N ∪ {0}. (2.3)

Without lose of generality, we shall prove that

ρ(un, ut) < ε, ∀ t > n > m0 for some m0 ∈ N ∪ {0}. (2.4)

If t = n+ 1, since 1
2 (ε− σ(ε)) > 0 and ρ(un, un+1)→ 0, we choose m0 such that

ρ(un, un+1) <
1

2
(ε− τ(ε)) ∀ n ≥ m0. (2.5)

Since 1
2 (ε− τ(ε)) < ε, we deduce that (2.3) is true for t = n+ 1.

Suppose (2.3) holds for t = k.
Now, we shall prove (2.3) holds for t = k + 1.
In view of definition of ρ and the P−property of (M1,M2), we see that

ρ(un, uk+1) ≤ ρ(un, un+1) + ρ(un+1, uk+1)

= ρ(un, un+1) + ρ(hun, huk)

≤ ρ(un, un+1) + τ(ρ(un, uk)) + σ

(
ρ(uk, hun)− ρ(M1,M2), ρ(un, huk)− ρ(M1,M2),

ρ(un, hun)− ρ(M1,M2), ρ(uk, huk)− ρ(M1,M2))

(2.6)

Using (2.1) and the continuity of θ, we get

lim inf
n→+∞

σ(ρ(uk, hun)− ρ(U, V ), ρ(un, huk)− ρ(M1,M2),

ρ(un, hun)− ρ(U, V ), ρ(uk, huk)− ρ(M1,M2)) = 0.

So, we can choose n0 to be large enough such that for each n > n0,

σ(ρ(uk, hun)− ρ(M1,M2), ρ(un, huk)− ρ(M1,M2), (2.7)

ρ(un, hun)− ρ(M1,M2), ρ(uk, huk)− ρ(M1,M2)) <
1

2
(ε− σ(ε))

By employing inequalities (2.5), and (2.7) in (2.6), we deduce

ρ(un, uk+1) ≤ 1

2
(ε− τ(ε)) + τ(ε) +

1

2
(ε− τ(ε)).

Thus ρ(un, uk+1) < ε, which implies that ρ(un, ut) < ε, for all t > n > n0. Imitate the
above arguments, we deduce that ρ(ut, un) < ε, for all t > n > n0. Thus, we have

lim
n,m→+∞

ρ(um, un) = 0.
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Therefore, we conclude that (un) is Cauchy in M1. The closeness property of M1 in the
complete space (M,ρ) implies that u∗ ∈ U such that un → u∗ as n → +∞ in (M,ρ); that
is,

lim
n,m→+∞

ρ(un, um) = lim
n,m→+∞

ρ(um, un)

= ρ(u∗, u∗) = lim
n→+∞

ρ(un, u
∗)

= lim
n→+∞

ρ(u∗, un).

Now, allowing n→ +∞ in:

ρ(hu∗, hun) ≤ τ(ρ(u∗, un)) + σ(ρ(un, hu
∗)− ρ(M1,M2), ρ(u∗, hun)− ρ(M1,M2),

ρ(un, hun)− ρ(M1,M2), ρ(u∗, hu∗)− ρ(M1,M2))

and

ρ(hun, hu
∗) ≤ τ(ρ(un, u

∗)) + σ(ρ(u∗, hun)− ρ(M1,M2), ρ(un, hu
∗)− ρ(M1,M2),

ρ(u∗, hu∗)− ρ(M1,M2), ρ(un, hun)− d(M1,M2)),

we reach to
lim

n→+∞
ρ(hu∗, hun) = lim

n→+∞
ρ(hun, hu

∗) = 0.

Applying triangle inequality of the definition of ρ, to get

ρ(u∗, hu∗) ≤ ρ(u∗, un) + ρ(un, hun) + ρ(hun, hu
∗)− ρ(un, un)− ρ(hun, hun)

and

ρ(hu∗, u∗) ≤ ρ(hu∗, hun) + ρ(hun, un) + ρ(un, u
∗)− ρ(hun, hun)− ρ(un, un).

On letting n→ +∞ in above inequalities, we get ρ(u∗, hu∗) ≤ ρ(M1,M2) and ρ(hu∗, u∗) ≤
ρ(M2,M1). Thus ρ(u∗, hu∗) = ρ(M1,M2) and ρ(hu∗, u∗) = ρ(M2,M1). So u∗ is best prox-
imity point of h.

Now, suppose there is a∗ ∈ M1 such that ρ(a∗, Ta∗) = ρ(M1,M2) and ρ(Ta∗, a∗) =
ρ(M2,M1). Then by P−property of (M1,M2), we get ρ(a∗, u∗) = ρ(ha∗, hu∗). Thus,

ρ(a∗, u∗) = ρ(ha∗, hu∗)

≤ τ(ρ(a∗, u∗)) + σ(ρ(u∗, ha∗)− ρ(M1,M2), ρ(a∗, hu∗)− ρ(M1,M2),

ρ(a∗, ha∗)− ρ(M1,M2), ρ(u∗, hu∗)− ρ(M1,M2))

= τ(ρ(a∗, u∗)) + σ(ρ(u∗, ha∗)− ρ(M1,M2), ρ(a∗, hu∗)− ρ(M1,M2), 0, 0)

≤ τ(ρ(a∗, y∗)),

The last inequality holds only if a∗ = u∗. So we conclude that the best proximity point of
h is unique. �

Definition 2.3. Let ρ be a quasi-partial metric on a set M . Assume M1 and M2 be subsets
of M . We call h : M1 → M2 is (ρ, τ, σ,M1,M2)−contraction of type II if for all r, s ∈ M1,
we have

ρ(hr, hs) ≤ τ

(
max

{
ρ(r, hr)− ρ(M1,M2), ρ(s, hs)− ρ(M1,M2)

})
+ σ

(
ρ(s, hr)− ρ(M1,M2), ρ(r, hs)− ρ(M1,M2), ρ(r, hr)− ρ(M1,M2),

ρ(s, hs)− ρ(M1,M2)

)
.

Our second result is:
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Theorem 2.2. Let (M,ρ) be a complete quasi-partial metric space. Suppose M1 and M2

be closed subsets of M with respect to ρ. Assume h : M1 → M2 be a mapping satisfies the
following conditions:

1) h is (ρ, τ, σ,M1,M2)−contraction of type II,
2) M0

1 is nonempty,
3) hM0

1 ⊆M0
2 , and

4) (M1,M2) posses the P -property.
Then h has a unique best proximity m∗ ∈M1.

Proof. As in the proof of Theorem 2.1, we generate a sequence (un) in M0
1 such that

ρ(un+1, hun) = ρ(M1,M2) ∀ n ∈ N,
ρ(hun, un+1) = ρ(M2,M1) ∀ n ∈ N,

and
ρ(un, um) = ρ(hun−1, hum−1) ∀ n,m ∈ N.

If there is t ∈ N such that ρ(ut, ut+1) = 0, then by triangular inequality we deduce
that ρ(ut, hut) = ρ(M1,M2) and ρ(hut, ut) = ρ(M2,M1). Thus, we may assume that
ρ(ui, ui+1) 6= 0 for all i ∈ N. So ρ(ui+1, ui) 6= 0

For n ∈ N, Condition (1) tell us

ρ(un, un+1) = ρ(hun−1, hun)

≤ τ
(

max

{
ρ(un−1, hun−1)− ρ(M1,M2), ρ(un, hun)− ρ(M1,M2)

})
+ σ

(
ρ(un, hun−1)− ρ(M1,M2), ρ(un−1, hun)− ρ(M1,M2), ρ(un−1, hun−1)− ρ(M1,M2),

ρ(un, hun)− ρ(M1,M2)

)
≤ τ

(
max

{
ρ(un−1, hun−1)− ρ(M1,M2), ρ(un, hun)− ρ(M1,M2)

})
. (2.8)

Now, suppose

max

{
ρ(un−1, hun−1)− ρ(M1,M2), ρ(un, hun)− ρ(M1,M2)

}
= ρ(un, hun)− ρ(M1,M2).

From triangular inequality, we have

ρ(un, hun)− ρ(M1,M2)

≤ ρ(un, un+1) + ρ(un+1, hun)− ρ(un+1, un+1)− ρ(M1,M2)

≤ ρ(un, un+1).

From (2.8), we have ρ(un, un+1) ≤ ρ(un, un+1)−ρ(M1,M2), which is a contradiction. Thus

max

{
ρ(un−1, hun−1)− ρ(M1,M2), ρ(un, hun)− ρ(M1,M2)

}
= ρ(un−1, hun−1)− ρ(M1,M2).

Again,by applying triangle inequality, we get

ρ(un−1, hun−1)− ρ(M1,M2) ≤ ρ(un−1, un).

Inequality (2.8) leads us to

ρ(un, un+1) ≤ τ(ρ(un−1, un)), (2.9)

and hence {
ρ(un, un+1) : n ∈ N ∪ {0}

}
(2.10)
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is a decreasing sequence of the set of real numbers. Repeating (2.9) n times, we produce

ρ(un, un+1) ≤ τn(ρ(u0, u1)). (2.11)

Using the same arguments as above, we have

ρ(un+1, un) ≤ τn(ρ(u1, u0)) (2.12)

and {
ρ(un+1, un) : n ∈ N ∪ {0}

}
(2.13)

is a decreasing sequence of the set of real numbers.

Inequalities (2.11) and (2.12) imply that

lim
n→+∞

ρ(un, un+1) = lim
n→+∞

ρ(un+1, un) = 0.

For t, n ∈ N with t > m, we have

ρ(un, ut) = ρ(hun−1, hut−1)

≤ τ
(

max

{
ρ(un−1, hun−1)− ρ(M1,M2), ρ(ut−1, hut−1)− ρ(M1,M2)

})
+ σ

(
ρ(ut−1, hun−1)− ρ(M1,M2), ρ(un−1, hut−1)− ρ(M1,M2), ρ(un−1, hun−1)− ρ(M1,M2),

ρ(ut−1, hut−1)− ρ(M1,M2)

)
(2.14)

and

ρ(ut, un) = ρ(hut−1, hun−1)

≤ τ
(

max

{
ρ(ut−1, hut−1)− ρ(M1,M2), ρ(un−1, hun−1)− ρ(M1,M2)

})
+ σ

(
ρ(un−1, hut−1)− ρ(M1,M2), ρ(ut−1, hun−1)− ρ(M1,M2), ρ(ut−1, hut−1)− ρ(M1,M2),

ρ(un−1, hun−1)− ρ(M1,M2)

)
. (2.15)

For s ∈ N ∪ {0}, triangular inequality implies that

ρ(us, hus)− ρ(M1,M2) ≤ ρ(us, us+1). (2.16)

Employing (2.11) and (2.16) in (2.14) and (2.15), we get

ρ(un, ut) ≤ τ(ρ(un−1, un))

+ σ

(
ρ(ut−1, hun−1)− ρ(M1,M2), ρ(un−1, hut−1)− ρ(M1,M2), ρ(un−1, hun−1)− ρ(M1,M2),

ρ(ut−1, hut−1)− ρ(M1,M2)

)
(2.17)

and

ρ(ut, un) ≤ τ(ρ(un−1, un)

+ σ

(
ρ(un−1, hut−1)− ρ(M1,M2), ρ(ut−1, hun−1)− ρ(M1,M2), ρ(ut−1, hut−1)− ρ(M1,M2),

ρ(un−1, hun−1)− ρ(M1,M2)

)
. (2.18)
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On other hand

ρ(M1,M2) ≤ ρ(un, hun)

≤ ρ(un, un+1) + ρ(un+1, hun)− ρ(un+1, un+1)

≤ ρ(un, un+1) + ρ(M1,M2).

Letting n→ +∞, we get

lim
n→+∞

ρ(un, hun) = ρ(M1,M2) (2.19)

By taking the limit on (2.17) and (2.18) and using the continuity of σ and (2.19), we obtain

lim
n,t→+∞

ρ(un, ut) = 0.

Thus (un) is a Cauchy sequence in M1. Since M is complete, un → a∗ for some a∗ ∈ M .
Since M1 is closed in M , then a∗ ∈M1. Moreover, we have

lim
n,t→+∞

ρ(un, ut) = lim
n,t→+∞

ρ(ut, un)

= lim
n→+∞

ρ(un, a
∗)

= lim
n,t→+∞

ρ(a∗, un)

= lim
n,t→+∞

ρ(a∗, a∗).

Our attention right now is to show that

ρ(a∗, ha∗) = ρ(M1,M2) and ρ(ha∗, a∗) = ρ(M2,M1).

Suppose on the contrary, that are, ρ(a∗, ha∗) 6= ρ(M1,M2) and ρ(ha∗, a∗) 6= ρ(M2,M1)
Since h is (ρ, τ, σ,M1,M2)−contraction of type II, we get

ρ(hun, ha
∗)

≤ τ
(

max

{
ρ(un, hun)− ρ(M1,M2), ρ(a∗, ha∗)− ρ(M1,M2)

})
+ σ

(
ρ(a∗, hun)− ρ(M1,M2), ρ(un, ha

∗)− ρ(M1,M2), ρ(un, hun)− ρ(M1,M2),

ρ(a∗, ha∗)− ρ(M1,M2)

)
(2.20)

and

ρ(ha∗, hun)

≤ τ
(

max

{
ρ(a∗, ha∗)− ρ(M1,M2), ρ(un, hun)− ρ(M1,M2)

})
+ σ

(
ρ(un, ha

∗)− ρ(M1,M2), ρ(a∗, hun)− ρ(M1,M2), ρ(a∗, ha∗)− ρ(M1,M2),

ρ(un, hun)− ρ(M1,M2)

)
. (2.21)

By allowing n goes to infinity in (2.20) and (2.21), we conclude that

lim
n→+∞

ρ(ha∗, hun) ≤ τ(ρ(a∗, ha∗)− ρ(M1,M2)) < ρ(a∗, ha∗)− ρ(M1,M2) (2.22)

and

lim
n→+∞

ρ(hun, ha
∗) ≤ τ(ρ(ha∗, a∗)− ρ(M1,M2)) < ρ(ha∗, a∗)− ρ(M1,M2). (2.23)
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Applying the triangular inequality, we get

ρ(a∗, ha∗) ≤ ρ(a∗, un) + ρ(un, hun) + ρ(hun, ha
∗)− ρ(un, un)− ρ(hun, hun)

≤ ρ(a∗, un) + ρ(un, hun) + ρ(hun, ha
∗).

On letting n tends to infinity in above inequality, we arrive to

ρ(a∗, ha∗) < ρ(M1,M2) + ρ(a∗, ha∗)− ρ(M1,M2),

which is a contradiction. So ρ(a∗, ha∗) = ρ(M1,M2).
Similarly, by the aiding of (2.22) and triangular inequality, we may show that ρ(ha∗, a∗) =
ρ(M2,M1). at this end we proved that a∗ is a best proximity point of h. To prove the
uniqueness of fixed proximity point of h, we assume that ρ(b∗, hb∗) = ρ(M1,M2) and
ρ(hb∗, b∗) = ρ(M2,M1). So ρ(a∗, b∗) = ρ(ha∗, hb∗). Using condition (1) of the theorem,
we get

ρ(ha∗, hb∗) = ρ(ha∗, hb∗)

≤ τ
(

max

{
ρ(a∗, ha∗)− ρ(M1,M2), ρ(b∗, hb∗)− ρ(M1,M2)

})
(2.24)

+ σ

(
ρ(b∗, ha∗)− ρ(M1,M2), ρ(a∗, hb∗)− ρ(M1,M2), ρ(a∗, ha∗)− ρ(M1,M2),

ρ(b∗, hb∗)− ρ(M1,M2)

)
(2.25)

= 0. (2.26)

Thus ρ(a∗, b∗) = 0, and hence a∗ = b∗. �

Now, we employ our main results to derive more results:

Corollary 2.1. Let (M,ρ) be a complete quasi-partial metric space. Let h : M → M be a
mapping such that for r, s ∈M , we have

ρ(hr, hs) ≤ τ(ρ(r, s)) + σ

(
ρ(s, hr), ρ(r, hs), ρ(r, hr), ρ(s, hs)

)
.

Then h has a unique fixed point m∗ ∈M .

Corollary 2.2. Let (M,ρ) be a complete quasi-partial metric space. Let h : M → M be a
mapping such that for r, s ∈M , we have

ρ(hr, hs) ≤ τ
({

ρ(r, hr)), ρ(s, hs)

})
+ σ

(
ρ(s, hr), ρ(r, hs), ρ(r, hr), ρ(s, hs)

)
.

Then h has a unique fixed point m∗ ∈M .

Corollary 2.3. Let (M,ρ) be a complete quasi-partial metric space. Suppose M1 and M2

be closed subsets of M with respect to ρ. Let h : M1 → M2 be a mapping such that for
r, s ∈M1, we have

ρ(hr, hs) ≤ τ(ρ(r, s)) + inf

{
ρ(s, hr)− ρ(M1,M2),

ρ(r, hs)− ρ(M1,M2), ρ(r, hr)− ρ(M1,M2), ρ(s, hs)− ρ(M1,M2)

}
.

Moreover assume the following conditions:
1) M0

1 is nonempty,
2) hM0

1 ⊆M0
2 , and

3) (M1,M2) posses the P -property.
Then h has a unique best proximity m∗ ∈M1.
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Corollary 2.4. Let (M,ρ) be a complete quasi-partial metric space. Suppose M1 and M2

be closed subsets of M with respect to ρ. Let h : M1 → M2 be a mapping such that for
r, s ∈M1, we have

ρ(hr, hs) ≤ τ
({

ρ(r, hr)− ρ(M1,M2), ρ(s, hs)− ρ(M1,M2)

})
+ inf

{
ρ(s, hr)− ρ(M1,M2), ρ(r, hs)− ρ(M1,M2),

ρ(r, hr)− ρ(M1,M2), ρ(s, hs)− ρ(M1,M2)

}
.

Moreover assume the following conditions:
1) M0

1 is nonempty,
2) hM0

1 ⊆M0
2 , and

3) (M1,M2) posses the P -property.
Then h has a unique best proximity m∗ ∈M1.

Corollary 2.5. Let (M,ρ) be a complete quasi-partial metric space. Let h : M → M be a
mapping such that for r, s ∈M , we have

ρ(hr, hs) ≤ τ(ρ(r, s)) + inf

{
ρ(s, hr), ρ(r, hs), ρ(r, hr), ρ(s, hs)

}
.

Then h has a unique fixed point m∗ ∈M .

Corollary 2.6. Let (M,ρ) be a complete quasi-partial metric space. Let h : M → M be a
mapping such that for r, s ∈M , we have

ρ(hr, hs) ≤ τ

(
max

{
ρ(r, hr), ρ(s, hs)

})
+ inf

{
ρ(s, hr), ρ(r, hs), ρ(r, hr), ρ(s, hs)

}
.

Then h has a unique fixed point m∗ ∈M .

Example 2.2. Define the quasi-partial metric ρ on

M =
{

0, 2,
1

2
, 3,

1

3
, 4,

1

4
, · · ·

}
by ρ(a, b) = |a − b| + a. Take M1 =

{
0, 2, 3, 4, · · ·

}
and M2 =

{
0,

1

2
,

1

3
,

1

4
, · · ·

}
. Define

h : M1 →M2 by

h(r) =

{
0, if r = 0;
1
r , if r 6= 0.

Define the function τ on [0,+∞) via

τ(u) =

{
1
2u

2, if u < 1;
1
2u, if u ≥ 1.

Also, define
σ : M ×M ×M ×M → [0,+∞)

by σ(i, j, k, r) = inf{i, j, k, r}. Then

(1) hM0
1 ⊆M0

2 .
(2) (M1,M2) satisfies the P -property.
(3) h is an (ρ, τ, σ,M1,M2)-contraction.

Proof. Note that M0
1 = {0}, M0

2 = {0}, ρ(M1,M2) = 0 and ρ(M2,M1) = 0.
To prove that h is an (ρ, τ, σ,M1,M2)-contraction. Given r, s ∈ M1. we discuss the

following cases:
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Case 1: r = s = 0. Here, we have

ρ(h0, h0) = 0 ≤ τ(ρ(r, s)) + σ

(
ρ(s, hr)− ρ(M1,M2), ρ(r, hs)− ρ(M1,M2),

ρ(r, hr)− ρ(M1,M2), ρ(s, hs)− ρ(M1,M2)

)
.

Case 2: r = 0 and s 6= 0. Here, we have

ρ(h0, hs) =
1

s
≤ 1

2
s = τ(ρ(0, s)) + σ

(
ρ(s, 0), ρ(0,

1

s
), ρ(0, h0), ρ(s, hs)

)
.

Case 3: r 6= 0 and s = 0. Here, we have

ρ(hr, h0) =
2

r
≤ r = τ(ρ(r, 0)) + σ

(
ρ(0,

1

s
), ρ(r, 0), ρ(r,

1

r
), ρ(0, h0)

)
.

Case 4: r 6= 0 and s 6= 0. Here, we have

ρ(hr, hs) = ρ

(
1

r
,

1

s

)
=

∣∣∣∣1r − 1

s

∣∣∣∣+
1

r
(2.27)

and

τ(ρ(r, s)) + σ

(
ρ(s, hr)− ρ(M1,M2), ρ(r, hs)− ρ(M1,M2),

ρ(r, hr)− ρ(M1,M2), ρ(s, hs)− ρ(M1,M2)

)
=

1

2
|r − s|+ 1

2
r + σ

(
|s− 1

r
|+ s, |r − 1

s
|+ r,

|r − 1

r
|+ r, |s− 1

s
|+ s

)
. (2.28)

By comparing (2.27) with (2.28), we conclude that

ρ(hr, hs) ≤ τ(ρ(r, s)) + σ

(
ρ(s, hr)− ρ(M1,M2), ρ(r, hs)− ρ(M1,M2),

ρ(r, hr)− ρ(M1,M2), ρ(s, hs)− ρ(M1,M2)

)
.

Hence we deduce that h is an (ρ, τ, σ,M1,M2)-contraction.
Theorem 2.1, ensures that h has a best proximity point in M1.

�
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