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THE STABILIZING EFFECT OF CONFINEMENT ON A LIQUID JET

IN A VISCOUS OUTER FLUID

Claudiu Patrascu1, Corneliu Balan2

This paper reports the effect of confinement on the instability of a liquid

thread having as surrounding medium an immiscible Newtonian fluid. The analysis is

made on a previously derived model [17] which investigates the effect of an outer liquid
that extends at infinity. The current approach considers, in extension, a solid cylindrical

wall that bounds the external medium. We show that theoretical predictions lead to lower

values for the temporal growth rate of disturbance when the rigid wall is closer to the
thread. This implies that the fluid thread can be stabilized by confinement, in the limit of

full confinement it being completely stable, i.e. zero growth rate for all wave numbers of

disturbances. Furthermore, when the wall is located at a distance which is greater than
10 unperturbed jet-radii, the theoretical predictions for the growth rate are the same as

for the case in which the external viscous medium extends to infinity.
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1. Introduction

Theoretical studies concerning capillary instability started with the early work of
Rayleigh [15], which highlighted the role of the fastest growing mode in jet/thread break-
up. This was done for an inviscid liquid thread in a quiescent external medium. It is
well known that an external, immiscible, viscous fluid has a stabilizing effect [12, 17]. In
terms of confinement, prior studies, both theoretical and/or experimental, have been mainly
concerned with determining the role of confinement in dripping to jetting transitions [5, 6, 8].
It is assumed that the fluid thread is naturally dominated by convective instability. This
claim is based on experimental evidence that confirms the existence of a ”pure” convective
type of instability even in the case of a confined co-flowing system [2, 3]. To what degree the
fastest growing mode is affected by confinement, we wish to highlight in this study. Previous
experimental studies have shown that the selection of the fastest growing mode is clearly
dependent on confinement [9, 16]. Non-linear theories predict the same general trend, i.e.
the break-up of the thread is delayed when confined [18]. Another stabilizing factor is the
presence of elasticity in the external medium [14], a case which is not considered here.

It is worthwhile to note that confinement does not necessarily imply a stabilizing effect
in general. For example, in the case of a confined Kelvin-Helmholtz flow in a plane channel,
confinement has a strong destabilizing effect [1]. Furthermore, confinement can favour the
transition from convective to absolute instability [10]. Somewhat the same behavior is
encountered for two coaxial inviscid incompressible flows confined within a pipe, having
different plug velocities [11].
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2. Derivation of the dispersion relation

The present paper is concerned with the effect of confinement on the dispersion rela-
tion derived by Tomotika [17]. The jet flow which we consider is schematically represented
in Fig.1. The analysis starts by considering the superposition of a basic uniform flow and a
perturbation v = vb +v

′
. We assume no velocity difference between the two media concern-

ing the basic flow. A reference system is chosen having the velocity of the basic flow. The
external medium is confined by a cylindrical wall which is suddenly brought from rest to the
velocity of the basic flow, thus stationary in the moving reference system. This is done in
order to avoid large velocity gradients and capture only the effects of confinement relative to
the instability of the thread. A word of caution must be added, since velocity gradients do
occur because the fluids are viscous, but due to the small characteristic length scale of the
jet, the approximation of uniform flow still captures the relevant dynamics of the instability.
The equation of motion, valid for both fluids, is represented by the Navier-Stokes equation:

ρ
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= ρg −∇p+ η∇2v, (1)

with ρ and η denoting density and viscosity, v and p the velocity and pressure fields. Both the
inner and outer media are considered immiscible incompressible Newtonian fluids obeying
divv = 0. We make use of cylindrical coordinates by considering the symmetry around the
axis of the thread, therefore the projections of Eq. (1) onto r and z directions read as follows
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where in the limit of a small perturbation of the flow field |v′ | � |vb| we can neglect terms
involving products of velocity components. One can eliminate the pressure field and gravity
by partially differentiating the first equation with respect to z and the second one with
respect to r. In this manner we are left with a single equation having as primary unknowns
the velocity components.
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Figure 1. Schematic representation of a confined fluid thread surrounded
by a another immiscible fluid.
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Notice that, since the characteristic length scales are small (millimeters or below)
the gravitational field is considered constant, therefore the derivatives of gr and gz vanish.
Introducing the stream function, which is related to the velocity components by

vr =
1

r

∂ψ

∂z
, vz = −1

r

∂ψ

∂r
, (4)

one can reduce the number of unknowns to one. It is assumed that the stream function has
the form ψ(r, z, t) = Ψ(r) exp (ikz + ωt), where k is the wave-number of disturbance and ω
is the growth rate. The assumption stems from the hypothesis that the radius of the jet
evolves as R(z, t) = R0 + ε0 exp (ikz + ωt), where ε0 � R0 is a small initial perturbation of
the flow.

By the introduction of the stream function the partial differential equation, obtained
by coupling the two projections, now becomes an ordinary differential equation in ψ

ΨIV − 2

r
ΨIII + f(k, l, r)ΨII − f(k, l, r)

r
ΨI + (kl)2Ψ = 0, (5)

where f(k, l, r) = 3/r2 − k2 − l2, and l2 = k2 + ρω/η is the modified wave-number. The
general solution of Eq. (5) in terms of the r component of the stream function is [17]

Ψ(r) = r [C1I1(kr) + C2I1(lr) + C3K1(kr) + C4K1(lr)] , (6)

where I1 and K1 are the modified Bessel functions of the first and second kind, respectively,
and C1−C6 are real constants. The solution can be applied to both inner and external fluid,
with the observation that for the internal fluid the general solution needs to be adapted to
physically represent the phenomena in question. Since K1 tends to infinity as r approaches
0, the stream function must not contain terms depending on K1. The separate solutions for
the two media read as follows

Ψi(r) = r [C1I1(kr) + C2I1(lir)] ,

Ψe(r) = r [C3K1(kr) + C4K1(ler) + C5I1(kr) + C6I1(ler)] ,
(7)

with Cn, n = 1, 6 as integration constants, indices i and e denoting internal and external
fluids, respectively.

We are seeking to obtain a relation between the growth rate ω and the wave-number
k, called a dispersion relation, that incorporates the effect of confinement. In order to obtain
the latter, the following boundary conditions are assumed:
• no slip condition at the interface r ≈ R0 :

vz
e = vz

i, vr
e = vr

i, (8)

• no slip condition at the solid wall, r = Rc, with Rc the radius of the cylindrical
confinement geometry:

vz
e = vr

e = 0, (9)

• continuity of tangential stresses at the interface, r ≈ R0 :

n · (T i − T e) τ = 0, (10)

• the normal stress balance at the interface, r ≈ R0 :

n · (T e − T i)n = σ∇ · n. (11)

where σ is the constant interfacial tension between the two immiscible fluidsand T i,e rep-
resent the stress tensors of the inner and outer fluid, n and τ being the unit normal and
unit tangent vectors at the interface. Together they form a homogeneous system of six
linear equations having six unknowns, C1 − C6. It is worth mentioning that confinement is
introduced by Eqs. (9), where we considered that the solid wall is moving with the velocity
of the base flow, thus the condition of zero velocity at the wall.
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In determining the dispersion relation we proceed in the same manner as for the
unbounded case of Tomotika, with which a comparison is pursued. Since the details can
be found in his paper [17], we only provide a summarized version and a minor observation
related to an omitted pressure term.

Making use of the stream function one can introduce the velocity components as
described by Eqs. (4). Introducing these expressions in Eqs. (8) and (9) yields the first four
equations needed to obtain the dispersion relation
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where ψi,e = Ψi,e(r) exp(ikz+ωt). In a similar manner, the continuity of tangential stresses,
represented by Eq. (10), can be rewritten as
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In equation (11) the divergence of the normal can be computed by considering the interface
as a material surface described by the equation F = r − R(t, z), with R(t, z) = R0 +
ε0exp(ikz + ωt). The normal is therefore n = ∇F/|∇F |. The divergence of the normal is
approximately equal to 1/R0− ε/R2

0 + εk2, with ε = ε0exp(ikz+ωt) being the displacement
of a particle residing at the interface, which obeys ∂ε/∂t = vir. In deriving the divergence of
the normal an approximation of order ε0 has been taken since ε0 � R0. Equation (11) thus
becomes
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Since in the basic state, that of unperturbed flow, the pressure difference at the interface is
∆p = σ/R0, the first term on the right hand side cancels. In the analysis of Tomotika this
pressure difference is omitted, but it can be showed that this term naturally cancels when
relating it to the base flow. Incorporating the last result we obtain a system of six equations
having as primary unknowns the integration constants Cn from Eqs. (7). The explicit forms
of the above mentioned equations are given below and were obtained by using the relation
between the velocity components and the stream function (4) and the solution provided by
(7)

C1kI0(kR0) + C2liI0(liR0) + C3kK0(kR0)+

+C4leK0(leR0)− C5kI0(kR0)− C6I0(leR0) = 0
(15)

C1I1(kR0) + C2I1(liR0)− C3K1(kR0)−
−C4K1(leR0)− C5I1(kR0)− C6I1(leR0) = 0,

(16)

C3kK0(kRc) + C4leK0(leRc)− C5kI0(kRc)− C6I0(leRc) = 0, (17)

C3K1(kRc) + C4K1(leRc) + C5I1(kRc) + C6I1(leRc) = 0, (18)

2k2 [βC1I1(kR0)− C3K1(kR0)− C5I1(kR0)] +

+
(
k2 + li

2
)

[βC2I1(liR0)− C4leK1(leR0)− C6I1(leR0)] = 0,
(19)
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The system is homogeneous and we wish to obtain non-trivial solutions, thus the
determinant of the coefficients must be equal to zero. In order to compare the effects of
confinement to those obtained by the unbounded case we proceed by expanding all terms
dependent on density in ascending powers of either ρi or ρe, considered very small but not
zero. For example, the modified Bessel function of the first kind I0(liR0) can be written as

I0(liR0) ≈ I0(kR0) +
1

2

ρiω

2ηik
I ′0(kR0) + O(ρ2

i ), (21)

where the same expansion has been inferred for the modified wave number liR0 ≈ kR0(1 +
ρiω/2ηik). Taking the same inertia-less limit of the model as Tomotika [17] and considering
the addition of the confinement hypotheses, the dispersion relation will become a six-by-six
determinantal equation. The determinantal equation is therefore∣∣∣∣∣∣∣∣∣

a11 a12 · · · a16

a21 a22 · · · a26

...
...

. . .
...

a61 a22 · · · a66

∣∣∣∣∣∣∣∣∣ = 0. (22)

The explicit form of aij terms in the above determinant can be found in Appendix A.
An explicit expression for the growth rate can be obtained by expanding the determi-

nant from Eq. (22) with respect to the first row. Finally, the dispersion relation is obtained
as

ω̃ =
1

2
(1− k̃2) f(α, β, k̃), (23)

where ω̃ = ωηeR0/σ is the non-dimensional growth rate, k̃ = kR0 is the non-dimensional
wave-number, α = Rc/R0 is the confinement ratio and β = ηi/ηe the viscosity ratio. The

function f(α, β, k̃) is given by:

f =
D2k̃I0(k̃)− (D1 + D2) I1(k̃)

a46D6 − a45D5 + a44D4 − a43D3 −D1B1 + D2B2
, (24)

where Dn = det (aij), with n = 1, 6, i = 2, 6, j = 1, 6 \ {n}, being the six determinants that
result from the expansion with respect to the first row of the determinant present in Eq.
(22), B1 = β[k̃I0(k̃)− I1(k̃)] and B2 = β[k̃2I1(k̃)− k̃I0(k̃) + I1(k̃)].

3. Discussion

Having determined the dispersion relation (23), we now seek to find the manner in
which the confinement ratio α alters the instability of the thread. Fig.2 shows the modifica-
tions brought by increasing the value of α, on the dispersion curve. Two main observations
can be made: i) the maximum of the dispersion curve increases as α increases, bigger values
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Figure 2. Dispersion curves relating the growth rate ω̃ and the wave
number k̃ for different values of the confinement ratio α and β = 1. In-
creasing the radius of confinement results in an increase of ω̃, the upper
limit (of no confinement) being achieved when the radius of confinement is
more than 10 times greater than the radius of the unperturbed thread R0.

in terms of growth rate implying that the instability evolves more rapidly as the thread is
less confined; ii) the wave-number corresponding to the maximum growth rate decreases,
thus longer wave-lengths are seen dominating the thread as the solid wall is further away.
As the confinement ratio approaches unity, i.e. Rc → R0, the growth rate tends to zero,
thus implying a ”totally” stable thread. On the other hand, above α = 10, the dispersion
curves show no alteration as the confinement ratio increases, the predictions being, in this
case, identical to those provided by the model of Tomotika, which is derived for an exter-
nal medium extending at infinity. This suggests that the fluid thread can be considered as
unconfined if the solid wall is at a distance 10 times larger than the unperturbed thread ra-
dius. The result is similar to previous theoretical investigations regarding temporal stability
analysis of a viscoelastic thread under zero pressure gradient [7], with the observation that
the dispersion relation is obtained by means of a steady-state Poiseuille flow.

The maximum value of the growth rate, over a wide range of viscosity ratios, decreases
as the viscosity ratio increases as shown in Fig.3 . The same behaviour is encountered for
any value of the confinement ratio, with the observation that lower values of the maximum
growth rate are predicted as α decreases. The physical significance of the maximum value
of the growth rate is related to the fastest growing mode of perturbation. The mode that
has the greatest value in terms of the growth rate will become dominant, and cause thread
break-up. This is, of course, an implication of linear stability theory, the final stages of
break-up being dominated by non-linear effects [4].
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Figure 3. Curves of the maximum value of the growth rate as a function
of both the viscosity and the confinement ratio. The graph shows decreas-
ing values of the growth rate with a decreasing confinement ratio and an
increasing viscosity ratio.

The maximum value of the growth rate is related to a single wave-number of dis-
turbance (k̃M ). Fig.4 depicts the effects of the confinement ratio α, over a wide range of

Figure 4. The dependence of the critical non-dimensional wave-number
k̃M on the viscosity ratio β for a several values of the confinement ratio
α. When α > 10 the theoretical predictions tend to those provided by
Tomotika [17] (�).



92 Claudiu Patrascu, Corneliu Balan

Figure 5. a) Curves of max(ω̃) as a function of the confinement ratio
α. The graph shows higher values of ω̃ for increasing values of α. As the
latter increases above 10 it brings no change to the theoretical prediction;
b) Modifications brought by the increase of α on the maximum value of the

critical wave-number k̃M and the correspondent critical viscosity ratio βcr.

viscosity ratios β. Increasing α results in a decrease of the critical wave-number k̃M , over the
entire range of viscosity ratios. When α > 10 the prediction is identical to that of the model
having no confinement. For the case where no solid wall is present, the maximum value of
the critical wave-number, i.e. the minimum critical wave-length, is achieved for a critical
viscosity ratio of βcr ≈ 0.28. When the solid wall is present, the value of the viscosity ratio
that triggers this maximum value of k̃M increases. For example, for α = 2 this viscosity
ratio is close to unity. The results are similar to those obtained in [13], except that in the
latter the rigid wall is stationary with respect to the liquid thread, thus making this current
approach applicable to dynamically-confined liquid jets.

4. Conclusions

In order to summarize the present findings, Fig.5 presents the effect of the confine-
ment ratio α on the maximum value of the growth rate ω̃, the maximum value of the critical
wave-number k̃M and the correspondent critical viscosity ratio βcr that triggers it. The
increase of the confinement ratio increases the value of the maximum growth rate, implying
a faster development of the instability of the thread (Fig.5-a). Above the value of 10 the
prediction is insensible to the presence of the solid wall. The same behaviour is predicted
in terms of the maximum value of the critical wave-number, as depicted in Fig. 5-b. From
a theoretical point of view, the fluid thread acts as if it is not subject to confinement, in
terms of both growth rate and wave-number of disturbance, when the solid wall is located
at a distance 10 times larger than the unperturbed thread radius.
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Appendix A. Explicit form of aij terms found in Eqn. (22)

a11 = β
[
k̃I0(k̃)− I1(k̃)

]
+

1

2ω̃

(
k̃2 − 1

)
I1(k̃),

a12 = β
[
k̃2I1(k̃)− k̃I0(k̃) + I1(k̃)

]
+

1

2ω̃

(
k̃2 − 1

) [
k̃I0(k̃)− I1(k̃)

]
,

a13 = −
[
k̃K0(k̃) +K1(k̃)

]
,

a14 = −
[
k̃2K1(k̃)− k̃K0(k̃) +K1(k̃)

]
,

a15 = I1(k̃)− k̃I0(k̃), a16 = k̃I0(k̃)− k̃2I1(k̃)− I1(k̃),

a21 = I0(k̃), a22 = I0(k̃) + k̃I1(k̃), a23 = K0(k̃),

a24 = K0(k̃)− k̃K1(k̃), a25 = −I0(k̃),

a26 = −I0(k̃)− k̃I1(k̃), a31 = βI1(k̃), a32 = βk̃I0(k̃)

a33 = −K1(k̃), a34 = k̃K0(k̃), a35 = −I1(k̃), a36 = −k̃I0(k̃),

a41 = I1(k̃), a42 = k̃I0(k̃)− I1(k̃),

a43 = −K1(k̃), a44 = K1(k̃) + k̃K0(k̃), a45 = −I1(k̃)

a46 = I1(k̃)− k̃I0(k̃), a51 = 0, a52 = 0, a53 = K1(αk̃),

a54 = −K1(αk̃)− αk̃K0(αk̃), a55 = I1(αk̃),

a56 = αk̃I0(αk̃)− I1(αk̃), a61 = 0, a62 = 0, a63 = K0(αk̃),

a64 = K0(αk̃)− αk̃K1(αk̃), a65 = −I0(αk̃),

a66 = −I0(αk̃)− k̃cI1(αk̃).
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