
U.P.B. Sci. Bull., Series A, Vol. 81, Iss. 3, 2019 ISSN 1223-7027

NOISE-INDICATOR AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTIC
PROCESS WITH APPLICATION IN MODELING ACTUAL TIME SERIES

Milan Randjelović1, Vladica Stojanović2, Tijana Kevkić3

This paper describes a modification of the ARCH-type models with threshold regime and
two independent white noise innovations, obtained by using the so-called Noise Indicator. Basic sto-
chastic properties of the modified, so-called NIN-ARCH model, has been researched. For estimation of
parameters of the NIN-ARCH model, the conditional characteristic function (CCF) estimation method
has been considered. Numerical simulation, along with the application of the model in the analysis
dynamics of two actual time series is given as well.
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1. Introduction. Definition of the model

The most conventional time series and models which have been used in finance assume a
constant standard deviation in asset returns. With appearance of first Autoregressive Conditional
Heteroskedastic (ARCH) model [1], the fitting models to describe conditional heteroskedasticity
became widely discussed topic. To overcome drawbacks and weaknesses of the first ARCH model
there was appeared a wide range of its extensions, such as generalization of ARCH (GARCH) [2],
the exponential GARCH (EGARCH) [3], and the threshold GARCH (TGARCH) [4]. As soon as it
became clear that volatility plays an important role in measures of risk of investments, these models
have found successful application in asset pricing, portfolio optimizing and building the value-at-risk
models to help provide a picture of risks with potential investments [5].

Further, in the volatility dynamics of some actual data series has been observed emphasized
nonlinearity, manifested by sharp changes in a relatively short time intervals [6]. Since that kind
of nonlinearity could not be explained by the standard (G)ARCH models, there was need for their
further generalization as well as the creation of new related models that complement, in greater or
lesser degree, their deficiencies. In cases where nonlinear behavior of volatilities is caused by em-
phatic fluctuations of current data series, a conditional heteroskedastic model called the Split-ARCH
process can be used [7]. Similarly, the analog modification (and generalization) of the Stochastic
Volatility Model (SV) was introduced in [8], as well as the integer-valued autoregressive time series
in [9].

To describe the time dynamic and stochastic properties of the actual data series, a novel
ARCH-type model, called the Noise-Indicator AutoRegressive Conditional Heteroskedastic (NIN-
ARCH) process, is developed here. In that sense, we begin with the assumption that (Ω,F ,P) is the
probability space, additionally expanded by filtration F = (Ft). Next, with (Xt) we denote the time
series with known values at time t ∈ Z adapted to the filtration F . Given that we have a return series
that is serially uncorrelated but admits higher order dependencies, such as volatility clustering, we
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define the NIN-ARCH process by following relations:
Xt = σtεt ,

σ
2
t = a0 +

p

∑
i=1

aiX2
t−i +

q

∑
j=1

b jηt− jσ
2
t− j,

(1)

where t ∈ Z and ai,b j ≥ 0. Here, (σt) is the volatility, defined as series of Ft−1 adaptive random
variables (RVs), and (εt) is the white noise, i.e. the series of (0,1) independent identical distributed
(i.i.d.) Ft adaptive RVs. Finally, ηt(c) = I(ξ 2

t ≥ c) is the Noise-Indicator, and (ξt) is the i.i.d. (0,1)
noise series, mutually independent from the noise (εt).

The series (ηt), obtained by the additional noise (ξt), enables that the volatility terms (σ2
t− j)

in Eqs. (1) have the property of optionality. In more detail, if the noise (ξt) has ’small’ preceding
realized values (in some moment t− j), the NIN-ARCH model will follow standard ARCH regime.
Conversely, in the case of ’greater’ realizations of noise (ξt), the model introduces extended values of
volatility (σ2

t− j). In that way, series (Xt) follows the changes of volatility, but also shapely reacts on
unexpected volatilitys changes. The level of significance in realizations of the series (ξt) determines
the critical value of reaction c > 0, for which we denote:

mc := E
[
I(ξ 2

t ≥ c)
]
= P{ξ 2

t ≥ c}= 1−F(c),

where F(·) is the cumulative distribution function (CDF) of (ξ 2
t ). Therefore, for the given value

c > 0, the constant mc can be determined, and vice versa. Moreover, in accordance with the real-
based implementation of the NIN-ARCH process, we assume that RVs (εt) and (ξt) have absolutely
continuous probability distributions.

2. Stochastic properties of the NIN-ARCH process

For purpose of researching the strong stationary conditions of the NIN-ARCH process, Eqs. (1)
can be rewritten in form of following stochastic difference equation of order one:

Yt = AtYt−1 +B, t ∈ Z. (2)

Here, we denoted:

At =



ψt−1 ψt−2 · · · ψt−r

1 0 · · · 0
0 1 · · · 0
...

...
...

0 · · · 1 0


, Yt =


σ2

t

σ2
t−1
...

σ2
t−r+1

 , B =


a0

0
...
0

 ,

r =max{p,q}, ψt− j = a jε
2
t− j +b jηt− j, when j = 1, . . .r, and ap+i = bq+ j = 0, when i = 1, . . . ,r− p,

j = 1, . . . ,r− q. The necessary and sufficient stationary conditions of the vector series (Yt) can be
specify in the following way:

Theorem 2.1. Let vector series (Yt) be defined by the recurrence relation (2). Then the following
conditions are equivalent:

(i) The polynomial P(λ ) = λ r−∑
r
j=1 c j λ r− j, where

c j =


a j +mcb j, 1≤ j ≤min{p,q}
a j, q < j ≤ p
b j, p < j ≤ q

,

has the roots λ1, ...,λr which satisfy the condition
∣∣λ j
∣∣< 1, for any j = 1, . . . , p.
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(ii) Eq. (2) has the unique, strong stationary and ergodic solution

Yt =

(
I+

∞

∑
k=0

At · · ·At−k

)
B, (3)

where the sum above converges almost surely and in the mean square sense.
(iii) The inequality ∑

r
j=1 c j = ∑

p
i=1 ai +mc ∑

q
j=1 b j < 1 holds.

Proof. (i)⇒ (ii): After some computations, it is easy to get equality:

det(A−λ I) = (−1)r P(λ ),

where:

A = E (At) =


c1 c2 · · · cr

1 0 · · · 0
...

...
...

0 · · · 1 0

 .

Thus, it follows that the eigenvalues of matrix A are the roots of characteristics polynomial P(λ ).
Then, assumption (i) implies the convergence Ak −→ Or×r, when k→ ∞. Following Francq et al.
[10], the existence of almost sure unique, ergodic and stationary solution (3) of Eq. (2) is equivalent
to the above convergence.

(ii)⇒ (iii): If suppose that the condition (ii) is true, according Eq. (3) follows:

E(Yt) = (I−A)−1 B = a0 ·

(
1−

p

∑
i=1

ai−mc

q

∑
j=1

b j

)−1

·1r×1.

Therefore, the non-negative time series (X2
t ) and (σ2

t ) have the mean:

E
(
X2

t
)
= E

(
σ

2
t
)
= a0 ·

(
1−

p

∑
i=1

ai−mc

q

∑
j=1

b j

)−1

> 0

and (iii) obviously holds.
(iii)⇒ (i): Let Sr(A) = max

j
{λ j} be the spectral radius of the matrix A. Then, Sr(A) ≤

‖A‖
∞

, where ‖A‖
∞
= max

{
∑

r
j=1 c j, 1

}
= 1. If assume that Sr(A) = 1, then for some ϕ ∈ [0,2π)

there exists an eigenvalue λ ′ = eiϕ which satisfies equality:

P(λ ′) = eiϕ −
r

∑
j=1

c j ei(r− j)ϕ = 0.

After that, the inequality
∣∣eipϕ

∣∣ ≤ ∑
r
j=1 c j

∣∣∣ei(r− j)ϕ
∣∣∣ implies ∑

r
j=1 c j ≥ 1, which contradicts (iii).

Hence, Sr(A)< 1 is valid, what is equivalent to (i). �

Further, we have considered in a more detail the simplest case of NIN-ARCH process, when
p = q = 1. According to Eqs. (1), the volatility series is:

σ
2
t = a0 +a1X2

t−1 +b1ηt−1σ
2
t−1 =

{
a0 +a1X2

t−1 +b1σ2
t−1, ξ 2

t−1 ≥ c

a0 +a1X2
t−1, ξ 2

t−1 < c,
t ∈ Z, (4)

and under condition a1+mcb1 < 1, the both series (Xt) and (σ2
t ) are strictly stationary. Also, Eq. (3)

gives the following, stationary representation of the volatility:

σ
2
t = a0

(
1+

∞

∑
k=1

ψt−1 · · ·ψt−k

)
= a0

(
1+

∞

∑
k=1

k

∏
j=1

(
a1ε

2
t− j +b1ηt− j

))
. (5)
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As the noise series (ε) and (ηt) are mutually independent, the series (ψt) is also the i.i.d. sequence
of RVs. This fact is particularly important in researching the properties of the NIN-ARCH process.
Namely, it is easy to show that (Xt) is series of uncorrelated RVs, with:

E(Xt) = E(εt) = 0, Var(Xt) = E(X2
t ) = E(σ2

t ) =
a0

1−a1−b1mc
.

Also, in the case of Gaussian noise series (εt), which will be further considered, according to
Eqs. (4)-(5) and after some computation, the autocorrelation of series (X2

t ) is as follows:

Corr(X2
t ,X

2
t+k) =


1, k = 0;
a1(1−a1b1mc−b2

1m2
c)

1−2a1b1mc−b2
1 m2

c
(a1 +b1 mc)

k−1 , k ≥ 1.

Finally, the fourth moment of the series (Xt) is

E(X4
t ) = 3E(σ4

t ) =
3a2

0(1+a1 +b1mc)

(1−a1−b1mc)(1−3a2
1−2a1b1mc−b2

1m2
c)
,

from here the stationarity value of kurtosis can be obtained as:

K :=
E(X4

t )[
E(X2

t )
]2 =

3
(
1− (a1 +b1mc)

2
)

1−3a2
1−2a1b1mc−b2

1m2
c
≥ 3.

Similar to (G)ARCH models, this value indicates the “peaked” distribution density of the series
(Xt). Also, is valid K = 3 ⇐⇒ a1 = 0, when the NIN-ARCH process is reduced to a Gaussian
white noise.

3. Estimation of the model’s parameters

Due the threshold structure of the NIN-ARCH process, the estimation of its parameters
θ = (a0,a1,b1,mc)

′ requires a more complex procedure. In order to get efficient estimators of the
process parameters, here is proposed the novel estimation method, called the conditional character-
istic function (CCF) method. In short, it is a hybrid method that combines two well-known estima-
tion methods: the empirical characteristic function (ECF) method [11]-[14], and the conditional least
squares (CLS) method [15]. The main aim of the CCF method is to minimize “distance” (in sense of
a certain measure) between the CCFs ϕt(r;θ) := E (exp(irXt)|Ft−1) and corresponding empirical
characteristic functions (ECFs) ϕ̃t(r) := exp(irXt). Notice that, when θ = θ0 is a true value of the
parameter, the CCFs and ECFs have the same means, which are equal the theoretical characteristic
function ϕX (r,θ0) := E[ϕ̃t(r)] = E[ϕt(r;θ0)]. Therefore, here can be used a principle based on CLS
method, where the distance between CCFs and ECFs is given by sum:

QT (r;θ) =
1
T

T

∑
t=1

[exp(irXt)−E (exp(irXt)|Ft−1)]
2 =

1
T

T

∑
t=1

[ϕ̃t(r)−ϕt(r;θ)]2 ,

and XT := {X1, . . . ,XT} is the sample of length T ∈ N of the NIN-ARCH(1,1) process (Xt). Since
the CCFs and ECFs depend on variable r ∈ R, estimates based on the CCF method can be obtained
by a minimization the following objective function:

ST (θ) :=
∫
R

QT (r;θ)g(r)dr,

where g : R→ R+ is some weight function. Accordingly, CCF estimates are solutions of the mini-
mization equation:

θ̂T = argmin
θ∈Θ

ST (θ), (6)

where Θ ⊆ R4 is the parameter space of the non-trivial, stationary NIN–ARCH(1,1) process. The
necessary conditions of strong consistency and asymptotic normality (AN) of the CCF estimates can
be specified by the following statement.
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Theorem 3.1. Let θ0 be the true value of the parameter θ ∈Θ, and let θ̂T , T = 1,2, . . . be solutions
of the Eq. (6). Additionally, we suppose that are satisfied the following regularity conditions:

(i) There exists the bounded set Θ′ ⊂Θ so that θ0, θ̂T ∈Θ′ for all T ≥ T0 > 0;

(ii)
∂ 2ST (θ0)

∂θ ∂θ ′
is a regular matrix;

(iii)
∂ϕX (r;θ0)

∂θ
· ∂ϕX (r;θ0)

∂θ ′
is a non-zero matrix, uniformly bounded by the strictly positive, g-

integrable function h : R→ R+.

Then, θ̂T is strictly consistent and represents AN estimator for parameter θ .

Proof. Firstly, we prove the consistency of estimator θ̂T . Notice that functions ST (θ) and QT (r;θ)
have the continuous partial derivatives up to the second order, for any component of the vector θ .
Thus, according to the Taylor expansion of ∂ST (θ)/∂θ at θ = θ0, we have:

∂ST (θ)

∂θ
=

∂ST (θ0)

∂θ
+

∂ 2ST (θ0)

∂θ∂θ ′
· (θ −θ0)+o(θ −θ0),

and substituting θ with θ̂T , under assumption (ii) and the fact that ∂ST (θ̂T )/∂θ = 0, we obtain:

θ̂T −θ0 =−
[

∂ 2ST (θ0)

∂θ∂θ ′

]−1
∂ST (θ0)

∂θ
+o(θ̂T −θ0). (7)

Using aforementioned properties of the function ST (θ), it can be differentiated under the integral
sign, e.g.,

∂ST (θ)

∂θ
=

∫
R

∂QT (r;θ)

∂θ
g(r)dr =

2
T

T

∑
t=1

∫
R
[ϕt(r;θ)− ϕ̃t(r)]

∂ϕt(r;θ)

∂θ
g(r)dr, (8)

∂ 2ST (θ)

∂θ∂θ ′
=

2
T

T

∑
t=1

∫
R

[
∂ϕt(r;θ)

∂θ
· ∂ϕt(r;θ)

∂θ ′
+[ϕt(r;θ)− ϕ̃t(r)]

∂ 2ϕt(r;θ)

∂θ ∂θ ′

]
g(r)dr. (9)

In that way, Eqs. (8)-(9) imply:

E
[

∂ST (θ0)

∂θ

]
= 0, E

[
∂ 2ST (θ0)

∂θ ∂θ ′

]
= 2V, (10)

where V=
∫
R
[∂ϕX (r;θ0)/∂θ ]

[
∂ϕX (r;θ0)/∂θ

′]g(r)dr, and under assumption (iii), the inequalities

0 < ‖V‖ ≤
∫
R

h(r)g(r)dr <+∞ hold. Thus, Eqs. (10) and the strong law of large numbers give the

almost sure convergence:(
∂ST (θ0)

∂θ
,

∂ 2ST (θ0)

∂θ ∂θ ′

)
as−→ (0,2V), T →+∞. (11)

This convergence and Eq. (7) yield θ̂T −θ0
a.s.−→ 0, when T → +∞, i.e. the estimator θ̂T is strictly

consistent.
Now, we shall prove the AN of estimator θ̂T . Notice that, using Eq. (7), we can write:

√
T
(
θ̂T −θ0

)
= N−1

T ·MT , (12)

where:

MT =−
√

T
2
· ∂ST (θ0)

∂θ
, NT =

1
2
· ∂

2ST (θ0)

∂θ∂θ ′
.

According to Eq. (8), it is easily to prove that for any nonzero constant vector ν ∈ R4, equality

E
(√

T ν
′MT |FT−1

)
=
√

T −1ν
′MT−1
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holds. Hence, the series T 1/2ν ′MT is a martingale, and by applying Billingsley’s central limit theo-
rem for martingales [16], we obtain:

ν
′MT

d→N (0,ν ′4W2
ν), T →+∞,

where:

W2 = E
(

∂ST (θ0)

∂θ
· ∂ST (θ0)

∂θ ′

)
.

Using the above convergence and Cramer-Wald’s decomposition, we have:

MT
d−→N (0,4W2), T →+∞.

Finally, this convergence and Eqs. (11)–(12) imply:
√

T
(
θ̂T −θ0

) d−→N (0,V−1W2V−1), T →+∞,

which ends the proof of Theorem. �

Remark 3.1. Let us assume, in following, Gaussian distribution N (0,1) of the noise innovations
series (εt) and (ξt). In accordance to the fact that volatility (σt) is Ft−1 adaptive time series, we can
easy obtain the explicit expression of the CCFs:

ϕt(r;θ) := E [exp(irXt)|Ft−1] = exp
(
−r2σ2

t

2

)
.

Therefore, the CCFs represent the real-valued functions on r ∈R. Additionally, it means that appro-
priate ECF estimates are also real-valued functions Re ϕ̃t(r) = cos(rXt).

4. Numerical simulations & application of the model

The estimation procedure of the NIN-ARCH(1,1) parameters, based on the CCF method, has
been describe more precisely in this section. Since the CCF estimates are obtaining by minimization
of the objective function ST (θ), the computation of integral given by Eq. (9) becomes the main
problem. To overcome that problem, we have applied the numerical approximation of this integral
by using Gauss-Hermitian N-point cubature formula:

I( f ) :=
∫
R

f (r)g(r) dr ≈CN( f ) :=
N

∑
j=1

ω j f (v j).

Here, v j are the quadrature nodes and ω j are the corresponding weight coefficients, computed ac-
cording to the exponential weight function g(r) = exp

(
−r2

)
. This function puts more weights

around the origin according to the fact that CF in that point provides the most information about the
probability distribution of some model. In our case, 30-points quadrature formula has been used,
while minimization of the objective function ST (θ) has been carried out by using Nelder-Mead op-
timization method, implemented in statistical programming language “R”.

Two samples of different sizes: T = 250 (small sample) and T = 2500 (large sample)) have
been considered. For both samples are generated 500 independent Monte Carlo simulations, i.e. the
realizations {X0,X1, . . . ,XT} of the NIN-ARCH(1,1) series (Xt) with Gaussian innovations, where
X0

as
= 0. In Table 1 are presented obtained numerical results, i.e. means (Mean), minima (Min.),

maxima (Max.) and standard estimating errors (SEE). Table 1 also contains values of the objective
function S(2)T as the reference estimation errors. The convergence of the CCF estimates is evident,
since the values of SEE and S(2)T decrease with increasing the sample size. Finally, note that estimates
of the critical value are obtained by solving the equation P{ε2

t ≥ c}= mc with respect to c.
In following, the NIN-ARCH(1,1) process is applied in fitting of the probability distribution

and the analysis dynamic of two real-based time series. First of considered series (Series A) includes
the dynamics of the trading values of 15 the most liquid Serbian shares, integrated within the so-
called BELEX15 financial index. This index was defined and methodologically processed by the
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TABLE 1. Estimated parameters values of the NIN-ARCH(1,1) process. (True
parameters are: a0 = 0.1, a1 = b1 = 0.5, c = 1, mc ≈ 0.317.)

Sample size: T = 250 Sample size: T = 2500

a0 a1 b1 mc
S(2)T a0 a1 b1 mc

S(2)T

Min. 0.0539 0.3082 0.4272 0.2649 6.12E-4 0.0691 0.3924 0.4553 0.3111 1.47E-4
Mean 0.0928 0.4203 0.4752 0.3198 8.87E-3 0.0996 0.4996 0.4998 0.3169 8.06E-4
Max. 0.2369 0.5249 0.5481 0.3624 1.95E-2 0.2259 0.5208 0.5139 0.3337 1.86E-3
SEE 0.0312 0.0262 0.0215 0.0201 1.98E-2 0.0307 0.0252 0.0195 0.0196 1.49E-2

TABLE 2. Estimated parameters values and fitting errors statistics of the actual data.

Parameters estimates Fitting errors
Sample

a0 a1 b1 mc c S(2)T RMS AIC

GARCH 2.56E-4 0.2463 0.7486 1.0000 0.0000 3.38E-9 0.0334 -18275.2
NIN–ARCH 2.01E-4 0.2499 0.7501 0.4999 0.4550 3.41E-10 0.0275 -18275.3

Series A

GARCH 0.0713 0.2711 0.5438 1.0000 0.0000 6.84E-4 0.8553 -5315.88
NIN–ARCH 0.0137 0.5904 0.7549 0.2475 1.3370 4.07E-11 0.7846 -5316.05

Series B

FIGURE 1. Dynamics of the actual time series, along with their empirical fitted
PDFs: Series A (graphs above) and Series B (graphs below).

Belgrade Stock Exchange [17] at the beginning of October 2005. By collecting all of its changes
until the end of 2017., here is obtained the time series with total of T = 3087 data. In contrast, the
Series B contains data of the quantities of solar radiation between January 1998. and August 2016.,
supplied by the National Centers for Environmental Information (NCEI) [18]. The sample size of
this series is T = 2922 data. We point out that values of both of the datasets have been measured
at discrete, daily time intervals. Therefore, they represent univariate time series, with continuously
distributed variables, denoted as (Yt).
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The series of the so-called log-returns Xt = ln(Yt/Yt−1) has been introduced for both samples.
In that way, the condition E[Xt ] = 0 is fulfilled, so they can be modeled by the NIN–ARCH process.
For comparison, the same estimation procedure was applied on the standard GARCH(1,1) process.
The values of the estimated parameters of both processes are shown in Table 2. In addition, the
probability density functions (PDFs) of the empirical and simulated data are compared, and the effi-
ciency of both models is checked. For this purpose, two typical statistics of goodness are computed:
the Root Mean Squares (RMS) of differences between observed and predicted values, as well as the
Akaike Information Criterion (AIC). All calculated values indicate that the ECF estimates of NIN-
ARCH process have lesser fitting errors, i.e. that the proposed model has higher efficiency. Some of
these facts are illustrated in Fig. 1, which shows the dynamics of both actual time series. In this fig-
ure also are shown the empirical PDFs (histograms) of series A and B, along with PDFs obtained by
fitting with CCF estimates. As it can be easily seen, in both cases, the NIN-ARCH process provides
better matches with the appropriate empirical PDFs than the corresponding GARCH one.

5. Conclusion

In this paper, the novel nonlinear model of ARCH-type, named NIN-ARCH process, is de-
veloped. The model has been checked in fitting of an econometric and one physically-based actual
data series. The estimation of the model’s parameters has been performed using the CCF method
in both cases. Thus obtained results show that NIN-ARCH process can be used for estimation and
fitting the various kinds of non-linear time series. In the other words, the developed process can be
an efficient tool for exploring the dynamics of real-based time series and their empirical analysis.
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