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A STUDY OF A MULTI-DEGREE OF FREEDOM
FRACTIONAL ORDER DAMPED OSCILLATORY SYSTEM

Adel Agila1 and Dumitru Baleanu2

The fractional calculus is a promising applied mathematical tool
to different disciplines. Some dynamic systems can be precisely represented
as fractional systems due to their physical properties. A multi-degree of
freedom fractional damped oscillatory system is mathematically modeled by
means of fractional order differential equation. In this model the damping
force acting on the vibrating system is proportional to the fractional deriv-
ative of the displacement. The variable-order Caputo fractional derivative
and an approximation technique are utilized to obtain the system responses.
The approximation is accomplished by using a numerical discretization tech-
nique. Based on the definition of variable-order Caputo fractional deriva-
tive, the system response is investigated for different system parameters.
The approximation of the system response is verified to show the efficiency
of the applied techniques.

Keywords: Fractional damped oscillatory system, variable-order Caputo
fractional derivative, multi-degree of freedom system, numerical discretiza-
tion technique.

1. Introduction

The fractional calculus provides an excellent tool, via fractional deriva-
tives, for the description of models memory and hereditary that represents the
properties of various materials and processes ([1], [6]). Moreover, the fractional
calculus is widely applied to many disciplines of science and engineering ([3],
[4], [10], [2], [7]). In active suspension control, a fractional skyhook damping
control for full-car suspension is simulated to verify the importance of proposed
fractional damping in real applications ([8]).

Experiments proved that the fractional models give good approximations
to the experimental data ([22], [9]). In certain applications the fractional rep-
resentations show a performance improvement compared to integer representa-
tions ([5]). Some dynamic systems are accurately modeled by using fractional
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model. This is due to the behavior of included sub-systems such as viscoelastic
materials or some types of dampers ([11], [12]). Some systems, such as some
diffusion processes and systems with time accumulated damage, are better to
be modeled as variable order fractional systems ([24]).

In some applications a variable damping force is used to suppress dy-
namic systems. In those systems, the damping ratio escalates depending on
other parameters. As an example, we recall the Magneto-Rheological (MR)
damper ([14]) and the brush disk sliding friction ([15]). Dynamic response
of non-homogeneous discrete systems are simulated by using fractional order
differential models. In this simulation study, the fractional calculus is used to
achieve efficient and accurate model order reduction ([13]).

In this work, a hypothetical variable order fractional damped oscillating
multi degree of freedom (M-dof) system is considered to be modeled. All the
system elements are within single-order fractional derivatives, however in some
applications, systems are modeled within the multi-order fractional derivatives
([23], [20]). The responses of the system are obtained and investigated based
on system parameter’s values. Due to the adaptation of initial conditions
([16]) and the derivative of a constant is zero ([17]), the variable-order Ca-
puto fractional derivative is used to represent the fractional derivative of the
system model. Together with the variable-order Caputo fractional derivative,
an approximation technique is utilized to obtain the system responses. The
approximation is accomplished by using a numerical discretization technique.

In this paper, some forms of the Caputo fractional derivatives are defined
in section 2. The considered fractional system is described, in section 3, based
on the fractional model of a single-degree of freedom system. In section 4, a
M-dof system model is generated and the responses of the system are obtained
by using the applied approximation techniques. In section 5, the feasibility
of approximation approach is verified and the responses of the system are
investigated based on some system parameters.

2. Some preliminaries of Caputo fractional derivatives

The fractional derivatives and integrals have two main forms. The con-
stant order fractional derivative form and integral form are given, respectively,
by:

aD
q
tx (t) = f (t) , (1a)

aD
−q
t f (t) = x (t) , (1b)

where q can be taken as a real or complex value. More practical formulas
of the constant order fractional forms are given by variable order fractional
derivatives and integrals forms, respectively, as follows:

aD
q(t)
t x (t) = g (t) , (2a)

aD
−q(t)
t g (t) = x (t) , (2b)
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where q (t) represents the fractional order q as a function of t. The definitions
of variable order fractional derivatives and integrals forms are derived from
the fractional order calculus ([24]). There are bunch of definitions such as
Riemann-Liouville and Caputo fractional derivatives and integrals definitions.
Based on a constant order fractional derivative, the left and right sided n-th
order Caputo fractional derivatives are defined by (3) and by (4), respectively,
(see [18]):

C
aD

q
tx (t) =

1

Γ (n− q)

∫ t

a

(t− σ)−q−1+n d
nx (σ)

dσn
dσ, n− 1 ≤ q < n, (3)

C
t D

q
bx (t) =

1

Γ (n− q)

∫ b

t

(σ − t)−q−1+n (−1)
dnx (σ)

dσn
dσ, n−1 ≤ q < n. (4)

For a = 0+, the left sided first order Caputo fractional derivative with
variable order is defined by ([16]):

C
0+
D
q(t)
t x (t) =

1

Γ [1− q (t)]

∫ t

0+
(t− σ)−q(t)

dx (σ)

dσ
dσ +

[x (0+)− x (0−)] t−q(t)

Γ [1− q (t)]
,

(5)
where the Caputo fractional order q (t) is defined by 0 ≤ q (t) < 1.

3. The Fractional system description

The applications of fractional calculus are exploited to describe some
systems in a real manner. These systems can be found in different disciplines,
such as fluid flow, control theory of dynamical systems, electro-chemistry of
Corrosion and so on ([19], [26]). The freely fractional damped oscillatory
dynamic system is one of these systems that can be modeled by fractional
differential equation as following:

mẍ (t) + c 0D
q
tx (t) + kx (t) = 0, (6)

where q is a real order fractional derivative, m is the mass, k is the stiffness
and the damping force represents a spring-pot ([12]) with a damping coefficient
c. The model described by (6) represents a real order fractional system. In
this model, a A relation between the critical damping coefficient and the order
fractional derivative can be derived ([8]). Some damped systems are modeled
as constant order fractional systems ([25]). Howover, as aforementioned in the
introduction section, some systems are modeled better by means of variable
order fractional systems. In some other applications, the damping coefficients
are varying depending on other system parameters or system element’s ma-
terial behaviors ([14], [15]). Based on these behaviors of processes, systems
and physical media, a hypothetical model of fractional order system can be
expressed by:
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ẍ (t) + b(t)0D
q(t)
t x (t) + ω2

nx (t) = 0. (7)

Equation (7) represents the normalization of the fractional system given
by (6), in which b(t) = c(t)/m, ωn is the natural frequency of the fractional os-
cillating system and c(t) is a variable damping coefficient. The model given by
(7) represents a fractional oscillating single degree of freedom (S-dof) system.
The considered system, in this study, is a fractional damped free vibration
M-dof system (Fig.1). In this system, the responses of each element (mass)
will be obtained where the damping force is proportional to fractional deriva-
tive of corresponding mass displacement. Some techniques are used to obtain
the systems responses, such as Coordinate transformation, modal matrix, dis-
cretization and numerical techniques.

Figure 1. Multi-degree of freedom fractional oscillating system

.

4. System Responses Approximation

4.1. System Model and Modal Analysis

The fractional damped free vibration M-dof system is analyzed based on
free body diagram to obtain the system equations of motions (EOMs). From
the generated EOMs the system can be modeled as follows:

[M ] {ẍ (t)}+ [C]
{

0D
q(t)
t x (t)

}
+ [K] {x (t)} = 0, (8)

where the matrices M,C and K, respectively, represent the mass, damping
and stiffness matrices and x (t) is the vector of general coordinates given by:

{x (t)} = [x1 (t)x2 (t) ... xi (t) ... xn (t)]T , (9)

where the general coordinate xi (t) represents the response of the mass mi in
the system and n is the number of sub-system. The modes of the system can
be computed from the following Eigenvalue problem:

[K] {u} = ω2
n [M ] {u} , (10)

where ωn is one of the system natural frequencies and {u} is the corresponding
mode shape. The Modal matrix Φ is generated from the mode shapes of the
system by:
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[Φ] = [{u1} {u2} ... {un}] . (11)

4.2. Coordinate Transformation

The mass, damping and stiffness matrices are transformed such that the
system responses can be obtained based on the system modes. The Modal
matrix is utilized to transform these matrices as follows:

[MT ] = [Φ]T [M ] [Φ] , (12a)

[KT ] = [Φ]T [K] [Φ] , (12b)

[CT ] = [Φ]T [C] [Φ] , (12c)

where the transformed mass matrix MT equals the identity matrix I,
the transformed stiffness matrix KT is a diagonal matrix, in which the diag-
onal entries are the square of the natural frequencies ωnr of the system, the
transformed damping matrix CT is a diagonal matrix, in which the diagonal
entries are 2ζrwnr : r = 1, 2, ..., n and ζ represents a damping ratio. The
system is remodeled based on the generated transformed matrices as follows:

[MT ] {ÿ (t)}+ [CT ]
{

0D
q(t)
t y (t)

}
+ [KT ] {y (t)} = 0, (13)

where the vector of principal coordinates {y (t)} represents the transformed
model responses for transformed initial conditions. The relationship between
the general coordinate and the principal coordinate is given as follows:

{x (t)} = [Φ] {y (t)} . (14)

In order to solve the transformed model, the initial conditions of the
system must be transformed to principal forms. This is because the sys-
tem responses are firstly obtained based on principal coordinates and then
re-transformed to actual or general coordinates so that the actual initial con-
ditions are transformed to principal initial conditions to match the principal
responses of the system. By means of the Modal matrix, the transformation of
the actual initial conditions of the system positions and velocities are obtained,
respectively, as follows:

{y0} = [Φ]T [M ] {x0} , (15a)

{ẏ0} = [Φ]T [M ] {ẋ0} . (15b)

The responses of the transformed fractional model given by (13) can then
be approximated by using discretization and numerical techniques.
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4.3. Generalization and Approximation of Transformed Model
Responses

The transformed fractional model given by (13) can be rewritten as the
following system of equations:

ÿ1 (t) + 2ζ1 (t)ωn1 0D
q(t)
t y1 (t) + ω2

n1
y1 (t) = 0,

ÿ2 (t) + 2ζ2 (t)ωn2 0D
q(t)
t y2 (t) + ω2

n2
y2 (t) = 0,

...

ÿn (t) + 2ζn (t)ωnn 0D
q(t)
t yn (t) + ω2

nn
yn (t) = 0,

(16)

where ζ (t) is a variable damping ratio. The response of each sub-equation of
the system in (16) can be approximated based on its principal initial condi-
tions. The responses approximation is accomplished by using finite differences,
discretization and numerical techniques. Applying the finite difference method
to the inertia terms in (16) yields

ÿim (t) =
yim+1 − 2yim + yim−1

h2
+O

(
h2
)
, (17)

where i = 1, 2, ..., n and h is the time increment. For simplicity, apply the
approximation procedure to the i − th equation of the system (16), whereas
this procedure can be applied to the rest of equations, as follows substitute
(17) into the i− th equation in (16) to obtain the following sub-system:

yim+1 − 2yim + yim−1

h2
+ 2ζi (tm)ωni 0D

q(tm)
t yi (tm) + ω2

ni
yi (tm) = 0. (18)

The left sided first order Caputo fractional derivative with variable order
is defined, for the i− th sub-system, by ([16]):

C
0+
D
q(t)
t yi (t) =

1

Γ [1− q (t)]

∫ t

0+

(t− σ)−q(t)
dyi (σ)

dσ
dσ+

[yi (0
+)− yi (0−)] t−q(t)

Γ [1− q (t)]
.

(19)
For yi (0

+) = yi (0
−) ([21]), a discretization technique can be applied to

approximate the integral in (19) as follows:

0D
q(t)
t yi (tm) =

1

Γ [1− q (tm)]

m−1∑
j=0

∫ tj+1

tj

(tm − σ)−q(tm) dyi (σ)

dσ
dσ . (20)

The derivative dyi(σ)
dσ

can be approximated at the point m by:

dyim (σ)

dσ
=
yim+1 − yim

h
+O (h) , (21)
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where h = tm+1 − tm is a small increment of the variable t. Substituting the
approximated derivative defined in (21) into (20) yields

0D
q(t)
t yi (tm) =

1

Γ [1− q (tm)]

m−1∑
j=0

yim+1 − yim
h

∫ tj+1

tj

(tm − σ)−q(tm) dσ . (22)

Solve the integral in (22) and consider that for j = 0, 1, 2, ...,m − 1 the
following equality is valid:

− [(tm − tj+1)
a − (tm − tj)a] = ha [(m− j)a − (m− j − 1)a], where a ∈

<.
Opening the summation for j = m−1, for more details (see, e.g. [20]) and

taking into account that
[
(m− (m− 1))1−q(tm) − (m− (m− 1)− 1)1−q(tm)

]
=

1 we obtain:

0D
q(tm)
t yi (tm) =

h−q(tm)

Γ [2− q (tm)]
m−2∑
j=0

{[
(m− j)1−q(tm) − (m− j − 1)1−q(tm)

]
[yi (tj+1)− yi (tj)]

}
+

h−q(tm)

{Γ [2− q (tm)]}
[yi (tm)− yi (tm−1)] .

(23)

Substitute the approximated Caputo fractional derivative in (23) into
(18) to generate the following fractional sub-system:

yim+1 − 2yim + yim−1

h2
+ 2ζi (tm)ωni

h−q(tm)

Γ [2− q (tm)]
m−2∑
j=0

{[
(m− j)1−q(tm) − (m− j − 1)1−q(tm)

]
[yi (tj+1)− yi (tj)]

}
+ 2ζi (tm)ωni

h−q(tm)

{Γ [2− q (tm)]}
[yi (tm)− y1 (tm−1)]) + ω2

ni
yi (tm) = 0.

(24)

The response of the sub-system given in (24) can be obtained based on
the principal coordinate yi (t) by applying the corresponding initial conditions
obtained in (15). Concerning the rest sub-systems in (16), based on the princi-
pal coordinates, the responses can be obtained by the same procedure used for
determination of yi (t). As for the M-dof system, the real responses, based on
the general coordinates, are obtained by using the modal matrix as illustrated
in (14).
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5. Applications

The approach illustrated in the previous section is applied to two degree
of freedom fractional oscillatory system with the following parameters: con-
stant parameters: m1 = 1, m2 = 1 kg, k1 = 9, k2 = 2, k3 = 9 N/m, variable
parameters: Damping coefficients and variable fractional orders. The system
parameters are chosen to generate diagonal transformed matrices and mass
normalization is applied to the generated eigenvectors.

5.1. Solution Verification

The responses of the two degree of freedom system are obtained by
means of the introduced approximation technique. The system is subject to
general initial conditions of its masses m1 and m2, as x10 = −0.2, x20 =
0.3, ẋ10 = 0 and ẋ20 = 0 and constant damping coefficients c1 = 0.6284, c2 =
0.0628, c3 = 0.6284 N.sq/m. The resulted responses are compared, as shown
in (Fig. 2), with classical solutions of integer representations to verify the
problem approximated solution.

Figure 2. Solution verification: a- Undamped system q is close
to 1, b- Damped system q is close to 1, c- Damped system q =
0.5, d- Damped system q = 0.8.

The undamped and damped systems responses are shown in (Fig. 2-a and
Fig. 2-b), respectively. It’s inferred from these sub-figures that for constant
fractional order q be close to 1 the responses of the fractional model and
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integer model are almost identical. As the orders of fractional derivatives be
far from one, the difference between the fractional and integer representations
get larger, as shown in (Fig. 2-c and Fig. 2-d).

5.2. The Effect of System Parameters on Its Responses

The effects of the fractional order derivative of the system on its responses
are illustrated in (Fig. 3). The fractional order derivative q increases, as
shown in (Fig. 3-a). Consider a damped fractional system, the effect of the
incremented q compared with a constant q = 0.3 is shown in (Fig. 3-b) where
the amplitude of the responses oscillations are larger as q be closer to zero. The
amplitudes become larger as q be closer to zero compared to the amplitudes
of the responses for q = 0.3. The same effects of q on the system responses are
shown in (Fig. 3-c and Fig. 3-d), where q is decreased with time.

The first and the second element responses of the fractional damped
oscillatory two-dof system are shown in (Fig. 4-a and Fig. 4-b), respectively.
It’s shown in the figure that the responses reach steady state faster as the
fractional order increases for the same damping coefficients.

Figure 3. Damped fractional oscillating system 0 ≤ q < 1 :
a- Incremented fractional order derivative, b- System responses
for incremented q compared to q = 0.3, c- decremented frac-
tional order derivative, d- System responses for decremented q
compared to q = 0.7.
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Figure 4. A freely fractional damped oscillating two-dof sys-
tem : a- The first element responses for 0 ≤ q < 1, b- The second
element responses for 0 ≤ q < 1.

The effects of the system damping ratios on the system responses are
shown in (Fig. 5) where the fractional order derivative q = 0.5. By increasing
the damping ratio the oscillations of system responses are damped faster. This
looks like the effect of the damping ratio on the integer order system.

Figure 5. shows the effect of the damping ratio on the frac-
tional damped two dof system responses for q = 0.5 : a- The
first element responses, b- The second element responses.

6. Conclusion

In this work a fractional damped oscillating M-dof model is studied.
The variable-order Caputo fractional derivative and numerical discretization
techniques are considered to approximate the system responses. The feasibility
of the introduced approximation is verified, as shown in (Fig. 2), by comparing
the damped and undamped fractional system responses, for q be close to one,
with the integer case. The effects of system parameters on the system responses
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are investigated. The effect of the variable order derivative q on the system
responses shows the following:
• The amplitude of the responses oscillations, as illustrated in (Fig. 3), are

larger as q be closer to zero compared to the system responses for q = 0.3
and q = 0.7.
• The responses reach steady state faster as the fractional order q increases

for the same damping coefficients, as illustrated in (Fig. 4).
For specific fractional order derivative q = 0.5 the effects of the system

damping ratios are investigated, as shown in (Fig. 5). The effects of the
damping forces show that as the damping ratios increase the system responses
are damped faster and the overshoots become lower. These effects which are
valid for 0 ≤ q < 1 look like the effect of the damping ratio on the integer
order system.
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