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ON A METHOD BASED ON BERNSTEIN OPERATORS FOR
2D NONLINEAR FREDHOLM-HAMMERSTEIN INTEGRAL

EQUATIONS

Manochehr Kazemi1, Vali Torkashvand2, Reza Ezzati3

In this research, a new iterative method based on Bernstein poly-
nomials for solving two-dimensional nonlinear Hammerstein-Fredholm in-
tegral equations is proposed. By using the posteriori error estimate, a prac-
tical stopping criterion of the iterative method is obtained. The convergence
analysis and the numerical stability of the method are proved. Finally, three
numerical examples approved the theoretical results and illustrate the effi-
ciency and accuracy of the method.
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1. Introduction

Many problems in applied mathematics, engineering, mechanics, mathe-
matical physics and many other fields can be transformed into the second-kind
two-dimensional integral equations [3, 2, 1, 4, 5]. Integral equations also arise
as representation formulas in the solutions of differential equations. Some
other applications of these equations can be found in [6, 7]. The numerical
methods for integral equations involve various techniques and some of them
can be extended for solving two-dimensional integral equations. The method
of successive approximations and other iterative techniques are applied in
[9, 11, 8, 10]. In [12, 13, 14, 15], authors proposed analytic methods, analytic-
numeric methods like Adomian decomposition method, the regularization-
homotopy method and homotopy perturbation method for solving one and
two dimensional integral equations. Other techniques used in the construction
of the numerical methods for integral equations are: the well-known colloca-
tions and Galerkin methods [18, 16, 17], Bernoulli operational matrix method
[19], the method based on the piecewise approximation by Chebyshev polyno-
mials [20], wavelet method [21], multi-step methods [22], Legendre functions
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[23], expansion method [24], triangular function[25], radial basis functions [26],
Runge-Kutta method [27], block-pulse functions [28], rationalized Haar func-
tions [29], hat basis function [30] and the Nyström type methods [31]. The
theorems on the existence and uniqueness of the solution for the multidimen-
tional integral equations can be found in researches, [32, 33, 34, 35]. In this
paper, we propose an iterative method in order to approximate the solution of
the following nonlinear Hammerstein integral equations in two dimensions:

X(s, t) = r(s, t) + λ

∫ d

c

∫ b

a

H(s, t, x, y)ψ(x, y,X(x, y))dxdy, (s, t) ∈ I, (1)

where a, b, c, d ∈ R, r : I = [a, b] × [c, d] → R, H : I × I → R and r,H are
continuous. In this work, we present a new iterative method based on the
two-dimensional Bernsteins approximation. There are some works that used
Bernestein polynomials as basis for numerically solving integral equations such
as [36, 37, 38, 39, 40, 41], the main characteristic of these techniques is that
it reduces these problems to those of solving a system of algebraic equations,
but present method is different from them. In this method, we introduce
a numerical iterative procedure using successive approximations method to
approximate the solution of Eq. (1). The advantages of the presented method
are as follows:

(1) The method is very effective and has simple structure for application.
(2) Most of the numerical methods to solve integral equations including

Galerkin methods, using quadrature rules, using interpolation polyno-
mials, applying Haar wavelets, finite and divided differences methods,
block pulse functions and some hybrid methods, finally end in linear
or nonlinear system of algebraic equations whose singularity of these
systems might be hard to investigate. However, the proposed iterative
method does not have such as problem and can be very useful.

(3) To prove the convergence and the numerical stability of the presented
successive approximations method, only Lipschits conditions are required,
smoothness conditions being not necessary.

This paper is composed of introduction in Section 1. In Section 2, we give
basic definitions, assumptions and mathematical preliminaries of the Bernstein
polynomials and their properties. In Section 3, we study the existence and
uniqueness of the solution of Eq. (1) and apply Bernstein’s approximation
to solve these equations. In addition, the convergence analysis and numerical
stability of the method are proved in this section. In Section 4, some numerical
examples have been solved using the present method and compared with the
exact solutions, and the conclusion in Section 5 accomplishes the paper.

2. Preliminaries

In this section, we review some necessary and basic definitions and results
which will be further needed.
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Definition 2.1. Let f : [0, 1] → R. The classical Bernstein operators (Bnf)
of degree n ∈ N, are defined as follows [42]

(Bnf)(x) =
n∑

i=0

f(
i

n
)Pn,i(x),

where Pn,i(x) =
(
n
i

)
xi(1 − x)n−i, i = 0, 1, 2, 3, ..., n, are called the Bernstein

basis polynomialas.

These polynomials were introduced by Bernstein [42]. There is obvious
that

n∑
i=0

Pn,i(x) = 1 (2)

Corollary 2.1. [43] Let x ∈ [0, 1]. Then
∑n

i=0 |x−
i
n
|Pn,i(x) ≤ 1

2
√
n
.

Definition 2.2. Let f : [0, 1]×[0, 1] → R. Then the two-dimensional Bernstein
operators, of degree (n,m), corresponding to the function f(x, y) on the square
{(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1} as follows [44]

(Bn,m)f(x, y) =
n∑

i=0

m∑
j=0

f(
i

n
,
j

m
)Pn,i(x)Pm,j(y), i = 0, 1, 2, 3, ..., n, j = 0, 1, 2, 3, ..., n

(3)
where Pn,i(s) =

(
n
i

)
si(1− s)n−i, i = 0, 1, 2, 3, ..., n

Definition 2.3. A function f : I → R is said to be L-Lipschitz if

|f(x1, y1)−f(x2, y2)| ≤ L
√
(x1 − x2)2 + (y1 − y2)2, ∀x1, x2 ∈ [a, b], y1, y2 ∈ [c, d]

Theorem 2.1. Let f : [0, 1]× [0, 1] → R, be a L-Lipschitz function. Then, we
have

∣∣(Bn,m)f(x, y)− f(x, y)
∣∣ ≤ L

2
(
1√
n
+

1√
m
) (4)
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Proof.∣∣(Bn,m)f(x, y)− f(x, y)
∣∣ = |

n∑
i=0

m∑
j=0

f(
i

n
,
j

m
)Pn,i(x)Pm,j(y)− f(x, y)|

≤
n∑

i=0

m∑
j=0

|Pn,i(x)||Pm,j(y)||f(
i

n
,
j

m
)− f(x, y)|

≤
n∑

i=0

m∑
j=0

|Pn,i(x)||Pm,j(y)|L
√
(x− i

n
)2 + (y − j

m
)2

≤
n∑

i=0

m∑
j=0

|Pn,i(x)||Pm,j(y)|L(|x−
i

n
|+ |y − j

m
|)

≤ L
n∑

i=0

|Pn,i(x)|
m∑
j=0

(|x− i

n
|+ |y − j

m
|)|Pm,j(y)|

≤ L
n∑

i=0

|Pn,i(x)|
( m∑

j=0

|x− i

n
||Pm,j(y)|+

m∑
j=0

|y − j

m
||Pm,j(y)|

)
According to Corollary (2.1) and (2), we have∣∣(Bn,m)f(x, y)− f(x, y)

∣∣ ≤ L

n∑
i=0

|Pn,i(x)|
(
|x− i

n
|+ 1

2
√
m

)
≤ L

n∑
i=0

Pn,i(x)|x−
i

n
|+ L

1

2
√
m

n∑
i=0

|Pn,i(x)|

≤ L

2
(
1√
n
+

1√
m
)

□
Remark 2.1. Since |(Bn,m)f(x, y) − f(x, y)

∣∣ tends to zero as n,m → +∞,
we infer that the sequence (Bn,m)f(x, y) converges uniformly to f(x, y) with
respect to (x, y) ∈ [0, 1]× [0, 1].

3. Main results

3.1. The existence result

Consider the space of the two-dimensional functions Ω = {f : I →
R; f is continuous} with the norm ∥ f − g ∥= supa≤s≤b

c≤t≤d
| f(s, t)− g(s, t) |, for

all f , g ∈ Ω. Also, consider the following condition:

(i) r ∈ C(I,R), H ∈ C(I × I,R), ψ ∈ C(I × R,R),
(ii) there exist α, β > 0, such that

| ψ(x, y, u) − ψ(x′, y′, u′) |≤ α(| x − x′ | + | y − y′ |) + β | u − u′ |
, ∀(x, y) ∈ I, ∀u, u′ ∈ R.
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(iii) βλMH(b−a)(d−c) < 1, whereMH > 0 is such that | H(s, t, x, y) |≤MH ,
∀s, x ∈ [a, b] ,t, y ∈ [c, d], according continuity of H,

(iv) there exist ζ, η > 0, such that
| (H(s, t, x, y)−H(s′, t′, x′, y′) |≤ ζ(| s− s′ | + | t− t′ |)
+ η(| x− x′ | + | y − y′ |)

(v) there exists θ > 0, such that
| r(s, t)− r(s′, t′) |≤ θ(| s− s′ | + | t− t′ |) ∀(s, t), (s′, t′) ∈ I.

Let {ψk}k∈N be a the sequence of function ψk : [a, b] × [c, d] → R, defined by
Ψk(x, y) = ψ(x, y,Xk(x, y)). Now, we will prove the existence and uniqueness
of the solution of Eq. (1) using the Banach’s fixed point principle and method
of successive approximations.

Theorem 3.1. (a) Let the conditions (i)-(iv) are satisfied. then the Eq. (1)
has a unique solution X∗ ∈ Ω, and the sequence of successive approximations
{Xk}k∈N
X0(s, t) = r(s, t),

Xk(s, t) = r(s, t) + λ

∫ d

c

∫ b

a

H(s, t, x, y)ψ(x, y,Xk−1(x, y))dxdy, k ≥ 1, (5)

converges to the solution X∗ ∈ Ω. Furthermore, the following a priori and a
posteriori error estimates hold∥∥X∗ −Xk∥ ≤ (βλMH(b− a)(d− c))k

1− βλMH(b− a)(d− c)
∥X0 −X1∥, (6)

∥∥X∗ −Xk∥ ≤ βλMH(b− a)(d− c)

1− βλMH(b− a)(d− c)
∥Xk−1 −Xk∥, (7)

Moreover, the sequence of successive approximations is uniformaly bounded,
that is, there exists a constant ρ ≥ 0 such that |Xk(s, t)| ≤ ρ.
(b) If all the condition (i)-(vi) are satifed, then the sequence {Xk}k∈N and
{Ψk}k∈N are uniformly Lipschitz with constants L0 = θ + λ(b − a)(d − c)Mζ
and L′ = α+β(θ+λ(b−a)(d− c)Mζ), respectively. where M is given in (11).

Proof. (a) Consider the iterative scheme

Xk+1(s, t) = r(s, t) + λ

∫ d

c

∫ b

a

H(s, t, x, y)ψ(x, y,Xk(x, y))dxdy, k ≥ 1, (8)

we have∣∣Xk+1(s, t)−Xk(s, t)
∣∣

≤ λ
∣∣H(s, t, x, y)

∣∣ ∫ d

c

∫ b

a

∣∣ψ(x, y,Xk(x, y))− ψ(x, y,Xk−1(x, y))
∣∣dxdy

≤ βλMH

∫ d

c

∫ b

a

∣∣ψ(Xk(x, y))− ψ(Xk−1(x, y))
∣∣dxdy

≤ (βλMH(b− a)(d− c))d(Xk, Xk−1)
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Therefore, we obtained d(Xk+1, Xk) ≤ (βλMH(b−a)(d−c))d(Xk, Xk−1). Hence
d(Xk+1, Xk) ≤ (βλMH(b−a)(d−c))k−1d(X2, X1). Since Ω is a complete metric
space, and βλMH(b−a)(d−c) < 1, then we conclude by using the Weierstrass
M-test that the series

∞∑
k=1

(Xk+1(s, t)−Xk(s, t)), (9)

is absolutely and uniformly convergent on [a, b] × [c, d]. On the other hand,
Xk(s, t) can be written as

Xk(s, t) = X1(s, t) +
k−1∑
m=1

(Xm+1(s, t)−Xm(s, t)),

therefore from uniform convergence of the series (9), we conclude that
limk→∞Xk(s, t) exists for all (s, t) ∈ [a, b]× [c, d], that is, there exists a unique
solution X∗ ∈ X such that limk→∞ ∥Xk −X∗∥ = 0. Taking limit of both sides
of Eq. (8), we obtain

lim
k→∞

Xk+1(x, y) = lim
k→∞

r(s, t) + λ

∫ d

c

∫ b

a

H(s, t, x, y)ψ(x, y, lim
k→∞

Xk(x, y))dxdy

= r(s, t) + λ

∫ d

c

∫ b

a

H(s, t, x, y)ψ(x, y,X(x, y))dxdy = X(s, t)

that is, X∗(s, t) is the unique solution of (1). Moreover, by the Banach’s fixed
point principle we obtain the estimates (6) and (7). Let Ψ0 : [a, b] × [c, d] →
R,Ψ0(x, y) = ψ(x, y, r(x, y)). Since ψ, r are continuous, we infer that Ψ0 is
continuous on the compact set [a, b] × [c, d] and therefore M0 ≥ 0 exist, such
that

|ψ0(x, y)| ≤M0 ∀(x, y) ∈ [a, b]× [c, d]. (10)

For (s, t) ∈ [a, b]× [c, d], it follows that

∣∣Xk(s, t)−Xk−1(s, t)
∣∣ ≤ λMH

∫ d

c

∫ b

a

∣∣ψ(x, y,Xk(x, y))− ψ(x, y,Xk−1(x, y))
∣∣dxdy

≤ βλMH(b− a)(d− c) max
a≤x≤b
c≤y≤d

|Xk(x, y)−Xk−1(x, y)|

= βλMH(b− a)(d− c)
∥∥Xk −Xk−1

∥∥
and by induction,∣∣Xk(s, t)−Xk−1(s, t)

∣∣ ≤ (βλMH(b− a)(d− c))k−1
∥∥X1 −X0

∥∥.
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So,∣∣Xk(s, t)−X0(s, t)
∣∣ ≤ ∣∣Xk(s, t)−Xk−1(s, t)

∣∣+ ...+
∣∣X1(s, t)−X0(s, t)

∣∣
≤ ((βλMH(b− a)(d− c))k−1 + ...+ βλMH(b− a)(d− c) + 1)

∥∥X1 −X0

∥∥
=

1− (βλMH(b− a)(d− c))k

1− βλMH(b− a)(d− c)
.
∥∥X1 −X0

∥∥
≤ βλMH(b− a)(d− c)M0

β(1− βλMH(b− a)(d− c))
∀(s, t) ∈ [a, b]× [c, d].

Let Mr ≥ 0 such that |r(s, t)| ≤Mr for all (s, t) ∈ [a, b]× [c, d]. Then∣∣Xk(s, t)
∣∣ ≤ ∣∣Xk(s, t)−X0(s, t)

∣∣+ ∣∣X0(s, t)
∣∣ ≤ βλMH(b− a)(d− c)M0

β(1− βλMH(b− a)(d− c))
+Mr = ρ

for all (s, t) ∈ [a, b]× [c, d].
(b) cosidering

M = max
(
M0,max{|ψ(s, t, u)| : (s, t) ∈ [a, b]× [c, d], u ∈ [−ρ, ρ]}

)
(11)

we get |Ψk(s, t)| = |ψ(s, t,Xk(s, t))| ≤ M for all (s, t) ∈ [a, b] × [c, d] and
k ∈ N. Let (s, t), (s′, t′) ∈ [a, b] × [c, d], we obtain

∣∣X0(s, t) − X0(s
′, t′)

∣∣ ≤
θ(
∣∣s− s′

∣∣+ ∣∣t− t′
∣∣) and∣∣Xk(s, t)−Xk(s

′, t′)
∣∣ ≤ ∣∣r(s, t)− r(s′, t′)

∣∣
+ λ

∫ d

c

∫ b

a

| H(s, t, x, y)−H(s
′
, t

′
, x, y)) || ψ

(
x, y,Xk−1(x, y)

)
| dxdy

≤ θ(
∣∣s− s′

∣∣+ ∣∣t− t′
∣∣) + λ(b− a)(d− c)Mζ(

∣∣s− s′
∣∣+ ∣∣t− t′

∣∣)
= L0(

∣∣s− s′
∣∣+ ∣∣t− t′

∣∣)
with L0 = θ + λ(b− a)(d− c)Mζ and∣∣Ψ0(s, t)−Ψ0(s

′, t′)
∣∣ ≤ α(

∣∣s− s′
∣∣+ ∣∣t− t′

∣∣) + β
∣∣X0(s, t)−X0(s

′, t′)
∣∣

≤ (α + βθ)(
∣∣s− s′

∣∣+ ∣∣t− t′
∣∣)

∣∣Ψm(s, t)−Ψk(s
′, t′)

∣∣ ≤ α(
∣∣s− s′

∣∣+ ∣∣t− t′
∣∣) + β

∣∣Xk(s, t)−Xk(s
′, t′)

∣∣
≤ α(

∣∣s− s′
∣∣+ ∣∣t− t′

∣∣) + βL0(
∣∣s− s′

∣∣+ ∣∣t− t′
∣∣)

= L′(
∣∣s− s′

∣∣+ ∣∣t− t′
∣∣).

where L′ = α+ βL0 =
(
α + β(θ + λ(b− a)(d− c)Mζ)

)
□

Corollary 3.1. The functions H(sp, tq, x, y)ψ(x, y,Xk(x, y)), p = 0, n q =
0,m, k ∈ N are uniformly Lipschitz with constant L = ηM +MH

(
α + β(θ +

λ(b− a)(d− c)Mζ)
)
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Proof. Let arbitrary (s, t), (s′, t′) ∈ [a, b]× [c, d]. We define the function Ψk,p,q :
[a, b] × [c, d] → R, Ψk,p,q(x, y) = H(sp, tq, x, y)ψ(x, y,Xk(x, y)), p = 0, n q =
0,m. Then∣∣Ψk,s,t(x, y)−Ψk,s,t(x

′, y′)
∣∣

=
∣∣H(sp, tq, x, y)ψ(x, y,Xk(x, y))−H(sp, tq, x

′, y′)ψ(x′, y′, Xk(x
′, y′))

∣∣
≤

∣∣H(sp, tq, x, y)ψ(x, y,Xk(x, y))−H(sp, tq, x
′, y′)ψ(x, y,Xk(x, y))

∣∣
+
∣∣H(sp, tq, x

′, y′)ψ(x, y,Xk(x, y))−H(sp, tq, x
′, y′)ψ(x′, y′, Xk(x

′, y′))
∣∣

≤M
∣∣H(sp, tq, x, y)−H(sp, tq, x

′, y′)
∣∣

+MH

∣∣ψ(x, y,Xk(x, y))− ψ(x′, y′, Xk(x
′, y′))

∣∣
≤Mη(

∣∣s− s′
∣∣+ ∣∣t− t′

∣∣) +MHL
′(
∣∣s− s′

∣∣+ ∣∣t− t′
∣∣)

≤ L(
∣∣s− s′

∣∣+ ∣∣t− t′
∣∣). k ∈ N (12)

where L =Mη +MHL
′ = ηM +MH

(
α + β(θ + λ(b− a)(d− c)Mζ)

)
□

Since any finite interval [a, b] can be transformed to [0, 1] by linear maps,
it is supposed that [a, b] = [c, d] = [0, 1] without any loss of generality.
Now, we present a sequence of successive approximations for numerical solution
of (5) using two-dimensional Bernstein operators. To this end, first, we assume
the uniform partition D = (Dx, Dy) of the square S = [0, 1]× [0, 1] with

Dx : 0 = s0 < s1 < s2 < ... < sn = 1, Dy : 0 = t0 < t1 < t2 < ... < t2 = 1, (13)

and si = ihx, tj = jhy, where hx = 1
n
, hy = 1

m
, i = 0, n, j = 0,m. Then

the following iterative procedure, gives the approximate solution of Eq. (1) in
point (s, t):

X0(s, t) = r(s, t),

Xk(s, t) = r(s, t) (14)

+ λ

∫ 1

0

∫ 1

0

n∑
i=0

m∑
j=0

H(s, t, si, tj)ψ(si, tj, Xk−1(si, tj))Pn,i(x)Pm,j(y)dxdy, k ≥ 1.

Remark 3.1. Since
∫ 1

0
tk1(1− t)k2dt = k1!k2!

(k1+k2+1)!
, k1, k2 ∈ N, we get∫ 1

0

∫ 1

0
Pn,i(x)Pm,j(y)dxdy = 1

(n+1)(m+1)
. Also, (see [45]).

3.2. Algorithm of the approach

Consider the uniform partitions (13) with sp = p
n
, p = 0, n and tq =

q
m
, q = 0,m. On these knots the terms of the sequence of successive approxi-

mations are:

X0(sp, tq) = r(sp, tq), (15)

Xk(sp, tq) = r(sp, tq) + λ

∫ d

c

∫ b

a

H(sp, tq, x, y)ψ(x, y,Xk−1(x, y))dxdy, k ≥ 1,
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and applying two-dimensional Bernstein operators (3) we obtain following it-
erative algorithm:

• Step 1: Input the values a, b, c, d, λ, n,m and the functions r,H, ψ.

• Step 2: Set hx = b−a
n

and hy =
d−c
m

.

• Step 3: Choose ε
′
> 0 and for p = 0, n, q = 0,m,

set X0(sp, tq) = r(sp, tq).

• Step 4: For all p = 0, n, q = 0,m, Compute

X1(sp, tq) = r(sp, tq) +
λ

(n+ 1)(m+ 1)

n∑
i=0

m∑
j=0

H(sp, tq, si, tj)ψ(si, tj, r(si, tj))

• Step 5: For k ≥ 2, and for all p = 0, n, q = 0,m, Compute

Xk(sp, tq) = r(sp, tq) +
λ

(n+ 1)(m+ 1)

n∑
i=0

m∑
j=0

H(sp, tq, si, tj)ψ(si, tj, Xk−1(si, tj)).

• Step 6: We use the values computed at the previous step and obtain for
p = 0, n, q = 0,m, the values:

| Xk(sp, tq)−Xk−1(sp, tq) |

• Step 7: If | Xk(sp, tq)−Xk−1(sp, tq) |< ε
′
, print k and print Xk(sp, tq) ,

for all p = 0, n, q = 0,m, stop.; otherwise, set k = k + 1 and go to Step
5.

This algorithm has a practical criterion presented below in Remark (3.3).

3.3. The convergence analysis

The convergence property of the proposed method can be obtained from
the following theorem.

Theorem 3.2. Suppose that the conditions (i)-(iv) are satisfied with a = c =
0, b = d = 1. If βλMH < 1, then, the sequence {Xk(sp, tq)}k∈N converges to
the unique solution of Eq. (1), and the error estimate is:

d(X∗, Xk) ≤
(λβMH)

k+1

β(1− λβMH)
M0 +

Lλ

2
(

1

1− λβMH

)(
1√
n
+

1√
m
),

where M0 is given in (10).
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Proof. Choosing X0 ∈ Ω, X0 = r we have

∥∥X0 −X1∥ = sup
0≤s≤1
0≤t≤1

∣∣∣∣r(s, t)− r(s, t) + λ

∫ 1

0

∫ 1

0

H(s, t, x, y)ψ(x, y,X0(x, y))dxdy

∣∣∣∣
≤ sup

0≤s≤1
0≤t≤1

λ

∫ 1

0

∫ 1

0

∣∣H(s, t, x, y)ψ(x, y,X0(x, y))
∣∣dxdy

≤MHλ

∫ 1

0

∫ 1

0

sup
0≤s≤1
0≤t≤1

∣∣ψ(x, y, r(x, y))∣∣dxdy = λMHM0, (16)

so, by (6) and (16) we obtain

∥∥X∗ −Xk∥ ≤ (βλMH)
k+1

β(1− βλMH)
M0, (17)

Using (17) we have

d(X∗, Xk) ≤ d(X∗, Xk) + d(Xk, Xk) ≤
(βλMH)

k+1

β(1− βλMH)
M0 + d(Xk, Xk) (18)

therefore, we shall obtain the estimates for d(Xk, Xk). Form (14) and (5) forall
(s, t) ∈ [0, 1]× [0, 1] we obtain

∣∣Xk(s, t)−Xk(s, t)
∣∣ ≤ λ

∫ 1

0

∫ 1

0

(
|H(s, t, x, y)ψ(x, y,Xk−1(x, y))dxdy

−
n∑

i=0

m∑
j=0

H(s, t, si, tj)ψ(si, tj, Xk−1(si, tj))Pn,i(x)Pm,j(y)dxdy|
)

≤ λ

∫ 1

0

∫ 1

0

|H(s, t, x, y)ψ(x, y,Xk−1(x, y))dxdy

− λ

∫ 1

0

∫ 1

0

n∑
i=0

m∑
j=0

H(s, t, si, tj)ψ(si, tj, Xk−1(si, tj))Pn,i(x)Pm,j(y)|dxdy

+ λ

∫ 1

0

∫ 1

0

n∑
i=0

m∑
j=0

|H(s, t, si, tj)ψ(si, tj, Xk−1(si, tj))Pn,i(x)Pm,j(y)dxdy

− λ

∫ 1

0

∫ 1

0

n∑
i=0

m∑
j=0

H(s, t, si, tj)ψ(si, tj, Xk−1(si, tj))Pn,i(x)Pm,j(y)|dxdy
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therefore,∣∣Xk(s, t)−Xk(s, t)
∣∣ ≤ λ

∫ 1

0

∫ 1

0

∣∣H(s, t, x, y)ψ(x, y,Xk−1(x, y))

−
n∑

i=0

m∑
j=0

H(s, t, si, tj)ψ(si, tj, Xk−1(si, tj))Pn,i(x)Pm,j(y)
∣∣dxdy

+ λβMH

∫ 1

0

∫ 1

0

n∑
i=0

m∑
j=0

∣∣Xk−1(si, tj)−Xk−1(si, tj)
∣∣|Pn,i(x)||Pm,j(y)|dxdy

According to Theorem 2.1, Corollary 3.1 and taking into account that∫ 1

0

∫ 1

0
Pn(x)Pn(y)dxdy = 1

(n+1)(m+1)
, we have

∣∣Xk(s, t)−Xk(s, t)
∣∣ ≤ Lλ

2
(
1√
n
+

1√
m
) + λβMH

1

(n+ 1)(m+ 1)

n∑
i=0

m∑
j=0

∥∥Xk−1 −Xk−1

∥∥
≤ Lλ

2
(
1√
n
+

1√
m
) + λβMH

∥∥Xk−1 −Xk−1

∥∥,
taking supremum for (s, t) ∈ [0, 1]× [0, 1], we have∥∥Xk −Xk

∥∥ ≤ Lλ

2
(
1√
n
+

1√
m
) + λβMH

∥∥Xk−1 −Xk−1

∥∥,∥∥Xk−1 −Xk−1

∥∥ ≤ Lλ

2
(
1√
n
+

1√
m
) + λβMH

∥∥Xk−2 −Xk−2

∥∥,
...∥∥X2 −X2

∥∥ ≤ Lλ

2
(
1√
n
+

1√
m
) + λβMH

∥∥X1 −X1

∥∥,∥∥X1 −X1

∥∥ ≤ Lλ

2
(
1√
n
+

1√
m
) + λβMH

∥∥X0 −X0

∥∥,
multiplying the above inequalities by 1, B,B2, ..., Bk−1, respectively we obtain∥∥Xk −Xk

∥∥ ≤ (1 + λβMH + (λβMH)
2 + ...+ (λβMH)

k−1)
Lλ

2
(
1√
n
+

1√
m
)

≤ 1− (λβMH)
k−1)

1− λβMH

Lλ

2
(
1√
n
+

1√
m
)

therefore

d(Xk, Xk) ≤
Lλ

2
(

1

1− λβMH

)(
1√
n
+

1√
m
) (19)
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Hence, from (17) and (19) we conclude that

d(X∗, Xk) ≤
(λβMH)

k+1

β(1− λβMH)
M0 +

Lλ

2
(

1

1− λβMH

)(
1√
n
+

1√
m
)

Since λβMH < 1, it is easy to see that lim k→∞
hx,hy→0

d(X∗, Xk) = 0, which is the

convergence of the proposed method.

3.4. The stability analysis

In order to investigate the numerical stability of the proposed method,
we consider another first iteration term X0(s, t) = f(s, t) ∈ C([a, b]× [c, d],R)
such that ∃ε > 0 for which

∣∣r(s, t)−f(s, t)∣∣ < ε, ∀(s, t) ∈ [a, b]×[c, d]. Applying
the iterative method presented above to the Hammerstein integral equation:

X(s, t) = f(s, t) + λ

∫ d

c

∫ b

a

H(s, t, x, y)ψ(x, y,X(x, y))dxdy, (s, t) ∈ I, (20)

we obtained the sequence of successive approximations on the knots sp =
a+ p b−a

n
, p = 0, n and tq = c+ q d−c

m
, q = 0,m:

Y0(sp, tp) = f(sp, tp), (21)

Yk(sp, tp) = f(sp, tp) + λ

∫ 1

0

∫ 1

0

H(sp, tp, x, y)ψ(x, y, Yk−1(x, y))dxdy, k ≥ 1

and appling the same iterative procedure (14), the computed values are:

Y 0(s, t) = f(s, t),

Y k(s, t) = f(s, t)

+ λ

∫ 1

0

∫ 1

0

n∑
i=0

m∑
j=0

H(s, t, si, tj)ψ(si, tj, Y k−1(si, tj))Pn,i(x)Pm,j(y)dxdy (22)

Theorem 3.3. Under conditions of Theorem 3.2, the iterative procedure (14)
is numerically stable with respect to the choice of the first iteration.
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Proof. To obtain the numerical stability, forXk and Y k and for k ≥ 1 , ∀(s, t) ∈
[0, 1]× [0, 1], we have

| Xk(s, t)− Y k(s, t) |≤ |r(s, t)− f(s, t)|

+ |λ
∫ 1

0

∫ 1

0

n∑
i=0

m∑
j=0

|H(s, t, si, tj)ψ(si, tj, Xk−1(si, tj))Pn,i(x)Pm,j(y)dxdy

− λ

∫ 1

0

∫ 1

0

n∑
i=0

m∑
j=0

H(s, t, si, tj)ψ(si, tj, Y k−1(si, tj))Pn,i(x)Pm,j(y)dxdy|

≤ ε+ λβMH

∫ 1

0

∫ 1

0

n∑
i=0

m∑
j=0

∣∣Xk−1(si, tj)− Y k−1(si, tj)
∣∣|Pn,i(x)||Pm,j(y)|dxdy

≤ ε+ λβMH
1

(n+ 1)(m+ 1)

n∑
i=0

m∑
j=0

∣∣Xk−1(si, tj)− Y k−1(si, tj)
∣∣

Taking supremum for (s, t) ∈ I from the above inequality, we observe that

∥Xk(s, t)− Y k(s, t)∥ ≤ ε+ λβMH

∥∥Xk−1(si, tj)− Y k−1(si, tj)
∥∥

Now, by successive substitutions in the above obtained inequality, and accord-
ing to the condition βλMH < 1, we obtain

∥Xk(s, t)− Y k(s, t)∥ ≤ ε+ λβMHε+ (λβMH)
2ε+ ...+ (λβMH)

k−1ε

≤ 1

1− βλMH

ε

□
Remark 3.2. Since λβMH < 1, we conclude that the stability of the numerical
method is proved. Indeed, we have

lim
k→∞
ε→0

∥∥Xk − Y k∥ = 0.

Remark 3.3. The ”a-posteriori error” estimate is useful to get the stopping
criterion. Such estimate can be obtained as follows:
For given ε

′
> 0 (previously chosen), there is determined the first natural

number k for which | Xk(sp, tq) − Xk−1(sp, tq) |< ε
′
and we stop to this k

retaining the approximations Xk(s, t) of solution. We observe

∥X∗ −Xk∥ ≤ ∥X∗ −Xk∥+ ∥Xk −Xk∥

≤ βλMH

1− βλMH

∥Xk−1 −Xk∥+
Lλ

2
(

1

1− λβMH

)(
1√
n
+

1√
m
)

and

∥Xk −Xk−1∥ ≤ ∥Xk −Xk∥+ ∥Xk −Xk−1∥+ ∥Xk−1 −Xk−1∥

≤ Lλ(
1

1− λβMH

)(
1√
n
+

1√
m
) + ∥Xk −Xk−1∥
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So,

∥X∗ −Xk∥ ≤ βλMH

1− βλMH

∥Xk −Xk−1∥,

+
3βλMH

2(1− βλMH)
Lλ(

1

1− λβMH

)(
1√
n
+

1√
m
)

and therefore, in order to obtain | X∗(s, t)−Xk(s, t) |< ε, we require

3βλMH

2(1− βλMH)
Lλ(

1

1− λβMH

)(
1√
n
+

1√
m
) <

ε

2
(23)

and
βλMH

1− βλMH

∥Xk −Xk−1∥ <
ε

2
.

We can choose the least natural numbers n,m, for which inequality (23) holds.
Finally, we find the smallest natural number k ∈ N (this is the last iterative
step to be made) for which, ∥Xk − Xk−1∥ < ε

2
.1−βλMH

βλMH
= ε

′
. With these, the

inequality | Xk(sp, tq)−Xk−1(sp, tq) |< ε
′
leads to | X∗(sp, tq)−Xk(sp, tq) |< ε,

and the desired accuracy ε is obtained.

4. Numerical experiments

The proposed iterative method of successive approximations in Section
3 was tested on three numerical examples to providing the accuracy of the
method and illustrating the correctness of the theoretical results. In these
examples, we assumed that [a, b]× [c, d] = [0, 1]× [0, 1] , λ = 1 . The absolute
values of the errors at the selected grid points which are proposed as (sr, tr) =
( r
10
, r
10
), r = 0, 10, are reported. In order to analyze the error of the method, we

introduce the notations: ∥En∥∞ := max{Ep,q|p, q = 0, 1, ..., n} where Ep,q :=
|X∗(sp, tq) − Xk(sp, tq)|, X∗ is the exact solution and Xk is the approximate
solution obtained by the proposed method. The absolute error in the solution
are compared with the similar method in [47].

Example 4.1. [46] Consider two-dimensional nonlinear Fredholm integral equa-
tion

X(s, t) = s2+ r2+1+
0.09565

(s+ 1)(t+ 3)
+

∫ 1

0

∫ 1

0

xy

(s+ 1)(t+ 3)
cos(X(x, y))dxdy

The exact solution is given by X(s, t) = s2 + r2 + 1. Applying the algorithm
for n = m = 10, ε

′
= 10−15, we obtain the number of iterations k = 10

iterations. For more details, please see Table 1. In order to test the numerical
stability regarding the choice of the first iteration, we take ε = 0.1 (r(s, t) :=
r(s, t) + 0.1), and the differences between the effective computed values Dp,q =
|X10(sp, tq)−Y 10(sp, tq)|,p, q = 0, 10, are in Table 1, that confirm the numerical
stability of the algorithm.
In order to more detailed testing of convergence, we consider n = m = 100 and
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for ε
′
= 10−25 the number of iterations is k = 12. It is seen that Ep,q, p, q =

0, n, tend to zero as hx, hy decrease. The numerical results are shown in Table
2. For n = m = 1000, ε

′
= 10−25 , we have k = 14 iterations and the results

are in Table 3. The results ∥En∥∞ for ε
′
= 10−15 and n = m ∈ {10, 100, 1000},

respectively, are 3.428 × 10−5, 8.965 × 10−7 and 2.602 × 10−9. The results in
Table 1-3 confirm the convergence of the numerical method, that is Ep,q → 0
as hx, hy → 0.

Table 1. Numerical results for n = m = 10, in Example 4.1.
(sp, tq) X∗(sp, tq) X10(sp, tq) Ep,q Dp,q

(0.0,0.0) 1.00 1.00003428589077 3.42859 ×10−5 0.106
(0.1,0.1) 1.02 1.02003016354027 3.01635 ×10−5 0.104
(0.2,0.2) 1.08 1.08002678585216 2.67858 ×10−5 0.102
(0.3,0.3) 1.18 1.18002397614739 2.39761 ×10−5 0.101
(0.4,0.4) 1.32 1.32002160875469 2.16087 ×10−5 0.100
(0.5,0.5) 1.50 1.50001959193758 1.95919 ×10−5 0.100
(0.6,0.6) 1.72 1.72001785723478 1.78572 ×10−5 0.100
(0.7,0.7) 1.98 1.98001635257111 1.63525 ×10−5 0.100
(0.8,0.8) 2.28 2.28001503767139 1.50376 ×10−5 0.100
(0.9,0.9) 2.62 2.62001388092744 1.38809 ×10−5 0.100
(1.0,1.0) 3.00 3.00001285720904 1.28572 ×10−5 0.100

Table 2. Numerical results for n = m = 100, in Example 4.1.
(sp, tq) X∗(sp, tq) X12(sp, tq) Ep,q

(0.0,0.0) 1.00 1.00000089648041 8.96480 ×10−7

(0.1,0.1) 1.02 1.02000078869244 7.88692 ×10−7

(0.2,0.2) 1.08 1.08000070037532 7.00375 ×10−7

(0.3,0.3) 1.18 1.18000062690938 6.26909 ×10−7

(0.4,0.4) 1.32 1.32000056500866 5.65009 ×10−7

(0.5,0.5) 1.50 1.50000051227452 5.12275 ×10−7

(0.6,0.6) 1.72 1.72000046691688 4.66917 ×10−7

(0.7,0.7) 1.98 1.98000042757412 4.27574 ×10−7

(0.8,0.8) 2.28 2.28000039319316 3.93193 ×10−7

(0.9,0.9) 2.62 2.62000036294753 3.62947 ×10−7

(1.0,1.0) 3.00 3.00000033618015 3.36180 ×10−7
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Table 3. Numerical results for n = m = 1000, in Example 4.1.
(sp, tq) X∗(sp, tq) X14(sp, tq) Ep,q

(0.0,0.0) 1.00 1.00000000260202 2.60202 ×10−9

(0.1,0.1) 1.02 1.02000000228917 2.28917 ×10−9

(0.2,0.2) 1.08 1.08000000203283 2.03283 ×10−9

(0.3,0.3) 1.18 1.18000000181959 1.81959 ×10−9

(0.4,0.4) 1.32 1.32000000163993 1.63993 ×10−9

(0.5,0.5) 1.50 1.50000000148687 1.48687 ×10−9

(0.6,0.6) 1.72 1.72000000135522 1.35522 ×10−9

(0.7,0.7) 1.98 1.98000000124103 1.24103 ×10−9

(0.8,0.8) 2.28 2.28000000114124 1.14124 ×10−9

(0.9,0.9) 2.62 2.62000000105345 1.05345 ×10−9

(1.0,1.0) 3.00 3.00000000097576 9.75760 ×10−10

Example 4.2. Consider two-dimensional nonlinear Fredholm integral equation

X(s, t) = r(s, t) +

∫ 1

0

∫ 1

0

s2tyx(x2 + y2 +X3(x, y))dxdy, (24)

where

r(s, t) = t sin(s) +
1

15

(
(sin(1)2(cos(1)− 1

3
sin(1)3 + 2cos1− 2sin1− 15

4

)
s2t,

and exact solution X(s, t) = t sin(s). Here, we apply proposed iterative method
for n = m = 10, ε

′
= 10−20 and we get k = 14 (iterations to be made). In

order to test the convergence we consider n = 10, n = 100 and n = 1000, and
we obtain the accuracy O(10−5− 10−8), O(10−7− 10−10), and O(10−9− 10−12)
respectively. Table 4 illustrates the numerical results for this example.

Table 4. Numerical results for n = 10, n = 100, n = 1000, in Ex 4.2.
(sp, tq) ep,q, n = 10 ep,q, n = 100 ep,q, n = 1000
(0.0,0.0) 0 0 0
(0.1,0.1) 3.905753519 ×10−8 5.0330356 ×10−10 4.07376×10−12

(0.2,0.2) 3.124602815 ×10−7 4.0264285 ×10−9 3.25901×10−11

(0.3,0.3) 1.054553450 ×10−6 1.3589196 ×10−8 1.09991×10−10

(0.4,0.4) 2.499682252 ×10−6 3.2211428 ×10−8 2.60721×10−10

(0.5,0.5) 4.882191899 ×10−6 6.2912945 ×10−8 5.09220×10−10

(0.6,0.6) 8.436427601 ×10−6 1.0871357 ×10−7 8.79932×10−10

(0.7,0.7) 1.339673457 ×10−5 1.7263312 ×10−7 1.39730×10−9

(0.8,0.8) 1.999745802 ×10−5 2.5769142 ×10−7 2.08576×10−9

(0.9,0.9) 2.847294315 ×10−5 3.6690829 ×10−7 2.96977×10−9

(1.0,1.0) 3.905753519 ×10−5 5.0330356 ×10−7 4.07376×10−9

k 14 16 16
∥En∥∞ 3.906× 10−5 5.033× 10−7 4.074× 10−9
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Example 4.3. [47]Consider two-dimensional nonlinear Fredholm integral equa-
tion

X(s, t) = r(s, t)+

∫ 1

0

∫ 1

0

H(s, t, x, y)X2(x, y)dxdy, (s, t) ∈ [0, 1]× [0, 1], (25)

with
r(s, t) = 1

3
s+t−1− 1

90
(s+1)(t2+s−1)2, H(s, t, x, y) = (s+1)(t2+s−1)2yx2,

and exact solution X(s, t) = 1
3
s + t − 1. For this example, we apply proposed

iterative method for n = m = 10, n = m = 50, n = m = 100, ε
′
= 10−20. The

Table 4 shows that our method in comparison with the method in [47] are more
accurate.

Table 4. Numerical results for n = 10, n = 50, n = 100, in Ex 4.3.
Method of [47] Presented Method

(s , t) n=10 n=50 n=100 n=10 n=50 n=100

(0.1,0.1) 4.204e-5 1.637e-6 4.089e-7 3.0964e-6 4.3562e-7 2.0645e-8
(0.3,0.3) 2.334e-5 9.088e-7 2.270e-7 1.1437e-7 1.6091e-8 7.6210e-9
(0.5,0.5) 4.523e-6 1.761e-7 4.399e-8 2.9349e-6 1.2569e-7 1.9570e-8
(0.7,0.7) 2.961e-6 1.153e-7 2.880e-8 5.9716e-6 1.0409e-7 1.9814e-8
(0.9,0.9) 4.621e-5 1.799e-6 4.495e-7 2.0416e-6 8.8722e-7 1.3612e-7

5. Conclusions

In this paper, we used the two-dimensional Bernstein operators for the
numerical solution of two-dimensional nonlinear Hammerstein-Fredholm inte-
gral equations. We presented an efficient iterative algorithm based on the
method of successive approximations. It is observed that the given method is
simple and gives excellent approximate solution. In Theorem 3.1, we obtain the
existence and uniqueness of the solution and prove some the uniformly bound-
edness and uniformly Lipschitz properties for the terms of the sequence of suc-
cessive approximations. The convergence and the error estimation of this pre-
sented successive approximations method is proved in Theorem 3.2. Also, the
numerical stability regarding the choice of the first iteration is shown in Theo-
rem 3.3. The convergence and the numerical stability of the proposed technique
are approved by taking some numerical problems. The convergence is tested
for stepsize hx = hy = 0.1, hx = hy = 0.01, and hx = hy = 0.001, and the order
of effective error is O(10−5 − 10−8), O(10−7 − 10−10), and O(10−9 − 10−12),
respectively. The absolute errors in the solutions by our method are accurate
in comparison with [47].
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