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A NOTE ON ENRICHED CATEGORIES
Adriana Balan!

In aceastd lucrare se aratd cd o categorie simetricd monoidald inchisd
bicompletd ¥ cu biproduse indexate dupd o multime (micd) J are proprietatea cd
orice ¥ - categorie cu J obiecte este Morita echivalentd cu un monoid.

In this paper we show that a bicomplete symmetric monoidal closed
category V' having J-indexed biproducts, where J is small, has the property that
any V- enriched category of size J is Morita equivalent to a monoid.
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1. Introduction

In 1973, Lawvere popularized enriched categories by means of generalized
metric spaces ([6]). Since this fundamental paper, various mathematical objects
have been successfully coded as enrichments. The long list includes, among
others, abelian categories, heavily used in commutative and non-commutative
algebra, and order-enriched categories, a natural notion for domain theory and
computer science. The easiest example of an enriched category is the one-object
category whose arrows form a monoid in a monoidal category; the associated
presheaf category is then nothing else than the category of objects on which the
monoid acts.

In [8]], it is shown that any small category enriched over SupLat, the category
of sup-lattices and join-preserving maps, is Morita equivalent to a monoid, i.e. the
corresponding category of presheaves 1is equivalent to the category
of modules over a monoid. It is interesting to notice that the proof of the mentioned
result relies only on the fact that SupLat has all small biproducts. Motivated by
this, we shall extend in the present paper this result to any #° symmetric monoidal
closed category, complete and cocomplete, with zero object and having J-indexed
biproducts, for a given small set J. We show that for any 7'- category with J objects,
the associated category of presheaves is - equivalent to the category of modules
for a suitable monoid in 7.
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2. Preliminaires

The main reference on enriched categories is Kelly’s book ([4]]). We shall use
the same notation as in the quoted book.

Let ¥ = (%,®,1,[,]) be a symmetric monoidal closed category (short smcc),
complete and cocomplete. Here ®, I, [,] stand for the tensor product, unit object
and internal hom respectively in 7. For simplicity, we shall write as ¥ is strict, i.e.
all associativity and unit isomorphisms are identities, as any monoidal category is
equivalent to a strict one ([7]]).

The main idea of enriched category theory is to generalize the notion of
category so that, rather than having hom-sets of morphisms between pair of objects,
one has hom-objects given as objects of the specified enriching category 7.

Definition 2.1. A (small) V- category € consists of a set Ob¥% of objects together
with the following:
(i) For every pair of objects X, Y, an associated hom-object €' (X,Y) € ¥,
(ii) An arrow in ¥, called composition law myxyz : (Y,Z) Q% (X,Y) — € (X,Z)
foreach X,Y,Z;
(iii) For each object X in €, a distinguished arrow in ¥y ja : 1 — € (X,X), called
identity;
such that for all objects X,Y,Z,U, the following diagrams commute:

C(Z,U)0C Y, 2) 0 C(X,Y) "™ (7 U) 0% (X,2)
myzy R1d l i mxzy
€Y, U)® CK(X, Y) Y €(X,U)
IQF(X,Y) €(X, CX,Y)RI
Jy®ldl / \ lld®jx
mxyy mxxy
C,Y)REC(X,Y) C(X,Y)RF(X,X)

In particular, for 7" = Set, one recovers the usual notion of an ordinary (small
and locally small) category. Categories like modules on a ring or vector spaces over
a field are enriched in Ab, the category of abelian groups, with the tensor product
as monoidal structure. The category of Hilbert spaces is enriched in that of Banach
spaces, with the projective tensor product as monoidal structure. Now consider
the poset R, as a category. The addition of reals provides a symmetric monoidal
structure on that category, with 0 as unit. Every metric space (2", d) can be viewed
as a category 2~ enriched in the monoidal category R : the elements of .2~ are the
objects, and 2 (x,y) = d(x,y), the distance between those two points. In general,
the category 7 is enriched over itself, with hom-objects given by the internal hom,
Y (X,Y) = [X,Y]. In what follows, we shall write " when referring to it as an
enriched or enriching in category, and 7; when we speak about the corresponding
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ordinary category. Every enriched category % has an underlying associated ordinary
category %, with same objects and hom-sets 6o(X,Y) = % ([,%(X,Y)).

Definition 2.2. For V- categories ¢ and %, a V- functor F : € — 9
consists of a function F : Ob% — ObY, together with a family of arrows in ¥,
Fxy : €(X,Y) — P(FX,FY), for each pair X,Y € Ob¥, subject to the
following commutative diagrams:

CY,Z) Q€ (X,Y) Sk €(X,2)
Fyz®nyi \LFXZ

D(FY,FZ)® D(FX,FY) 2" _ (FX Fz)

1

y JFx

€ (X,X) Y 9(Fx,FX)

A V- natural transformation between two V' - functors F,G : € — 9 consists
of a family of arrows in ¥y, ax : I — P(FX,GX) for each X,Y € Ob¥, such that
the following diagram commutes

oy @Fxy

1€ X, V)2 9(FY,GY)® 2(FX,FY)

MFX FY,GY

€(X,Y) 2(FX,GY)

FX,GX,GY

€(X,Y)®I —= 2(GX,GY)® 2(FX,GX)
Gx ox

Y®

1%

I

Similarly to functor categories for ordinary functors between ordinary
categories, enriched functors between two enriched categories form an enriched
functor category, namely for % and & two ¥ - enriched categories with " small,
there is a ¥/~ enriched category, denoted [¢', 7], whose objects are the ¥ - functors
F :% — 2. The hom-objects [¢, Z|(F,G) between ¥ - functors F,G : ¢ — &
are given by the #'- enriched end, i. e. the equalizer in 7 (see [4], Sect. 2.1)

€, 2)(F.G) — [[ 2(Fx.GX)= [] [€(X.Y),2(FX,GY)]
Xe?¥ XyYes
The underlying ordinary category of a functor category is the category of 7 -
functors from % to & and ¥ - natural transformations ([4], Sect.1.2) between them.
For 7" = Set, the /- enriched functor category coincides with the ordinary functor
category.

For any small ¥~ category %, the ¥ - functor category [€°P, 7] is usually
called the category of presheaves over € .
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To finish this Section, we need to recall the notions of enriched limit and
colimit. A weight is a functor F : # °P — ¥ with small domain. The F- weighted
limit {F, G} of a functor G : #°P — % is defined representably by €' (X,{F,G}) =
[P V|(F,¢(X,G—)), while the F-weighted colimit F «G of G : # — € is
defined dually by € (F * G,X) = [P, V](F,¢(G—,X)). Usual (co)limits for a
V- category ¢ have a corresponding in enriched setting, called conical (co)limits.
These exist, for example if € = ¥ ([4], Sect. 3.8).

An enriched category is (small) complete when admits all small (weighted)
limits, and dually cocomplete if it has all small (weighted) colimits. In particular,
¥ is complete and cocomplete as an enriched category. In an enriched functor
category [¢, 7], with € small and & complete, limits are computed pointwise,
ie. {F,G}X={F,(G-)X}forF: %" — ¥,G: ¥ — [¢,7] and X €
% . Similarly for colimits; in particular, the category of presheaves [¢°P, 7] is a
complete and cocomplete ¥ - category, as ¥ is so.

A ¥- functor F : €°P — ¥ is called small projective if [€°P,V|(F,—)
preserves all (small) colimits. It is said to be dense if F : ¥ — [€,¥], FC =
¢ (F—,C) is fully faithful (i.e. the correspondence on arrows is an isomorphism in
%), and a strong generator if F is conservative (i.e.the underlying ordinary functor
Fo: Gy" — ) reflects isomorphisms).

The Cauchy completion of a ¥ - category % is the full subcategory of [€°F, V]
determined by the small-projectives functors. Two small ¥ - categories %, 2 are
called Morita equivalent if their Cauchy completions are equivalent, or equivalently
if [€°P, V] = [2°P, 7] (4], Sect. 5.5).

3. Main result

From now on we require that % has a zero object 0. We shall also assume that
there is a small indexing set J, such that in %, J-coproducts are naturally isomorphic
to J-products. According to [S]] or [2], the canonical natural map below has to be

also an isomorphism:
Y X — %
i i

where the components are X; 14, X; and X; — 0 — X; for i # j. In what
follows, we shall denote these biproducts by €. Well-known examples of such
categories are CommMon, the category of commutative monoids, Ab, the category
of abelian groups (both having all finite biproducts - or more generally, the category
of modules over any semi-ring) and SupLat, the latter having all small biproducts.

We are now ready to state and prove the main result of this paper:

Theorem 3.1. Let € be a small V- category, whose underlying set of objects is
indexed by J. Then € is Morita equivalent to a monoid in V.



A note on enriched categories 151

Proof. The proof follows the same ideas as in [8]]. Namely, consider the # - functor

P:€°P — ¥ givenby P= @ % (—,X). Notice that this makes sense as biproduct
Xe¥

of functors by the assumption on size of €. Moreover, a similar argument as in [3]

shows that is small projective, as for any small colimit F x G, with F : P — ¥/,

G: # — [€°P, ] and # small, we have
[CKO{j?%](@Cg(_?X)aF*G) = @[(gopaaj/]((g(_J()?F*G)

Xe? Xev
(Yoneda Lemma) =2 @(F *G(X))
Xev
~ Fx@PGx)
Xe?
(Yoneda Lemma) = Fx @ [¢?,7](¢(-,X),G)
Xe%
= F*[(g()[),n//](@cg<_’x),(;)

Xe?
= Fx[¢°,V](P,G)

Now consider the full subcategory & of [¢°P,7] determinated by all the
representables ¢’ (—,X), X € €. This is a dense small ¥ - subcategory in [€°P, V.
As no [€°P,¥)o(€¢(—,X),€(—,X")) is empty (¥ has a zero object, hence all
presheaves categories have same property; in particular,
[€°P, ¥ 0(€¢(—,X),%(—,X")) is not empty since it contains the zero morphism),
by Proposition 5.22 of [4]], it follows that P is a dense ¥ - functor in [¢°P,¥]. In
particular, it is a strong generator, which is the same as saying that [P], the full #'-
subcategory of [¢°P, 7] generated by P, is strongly generating.

We shall need now the following result from [4] that we include for
completeness:

Theorem 3.2. ([4]], Th. 5.26) A necessary and sufficient condition for a ¥V - category
% to be equivalent to [</°P V| for some small <7, is that € is cocomplete and that
there is a small set of small-projective objects in € constituting a strong generator

for €.

Hence by the above theorem, we have an equivalence of #- categories
[€°P, V] = [[P]°P, V] given by the functor [¢°P,¥|(P,—). Therefore [€°P, 7] is
equivalent to the category of modules over the ¥- monoid [6°P, ¥|(P,P). O

Remark 3.3. (i) A category having zero object and biproducts of size J has also
J'-biproducts for any set J' of cardinality smaller than J, hence the above theorem
extends to all enriched categories of size at most J.

(i) Notice that the above proof heavily relies on the existence of the zero
object: first, because biproducts are usually associated with the existence of the zero
object and second, the wunderlying category of the presheaves
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category [6°P, 7] has at least one map between any two objects, in particular be-
tween representables. One could overcome both these issues by assuming, for ex-
ample that 7 itself is enriched over pointed sets (i.e. it has zero maps), for then the
PointedSets-enrichment will be automatically transferred to all - categories (as
©o(X,Y)=W(,%¢(X,Y)) for X,Y € Ob¥%).

4. Examples

(i) Consider the case J = 0. For any 7/, it exists the empty ¥ - category 0 with
no objects and no hom-objects. The associated presheaf category [0°7, 7] is the
terminal category 1; its unique object is the unique 7 '- functor ! : 0°° — ¥ and
1(1,!) is the terminal object 1 of ¥ (which exists as ¥ is assumed complete). The
terminal object in % naturally carries a monoid structure. Now if the terminal object
is also initial, i.e. a zero object, then it is the only module over itself: for X ® 0 = 0
(as X ® — has left adjoint, hence it preserves colimits) and if X is a module over 0,
then by

~

X —>X®I X®0-—>0

\ |

X

it follows that for X, the identity morphism is also the zero map, hence X is itself
the zero object. Here the horizontal arrow is the tensor product of identity with
the unique morphism into the terminal object, and the vertical arrow is the module
structure. So the theorem follows: [0°7, 7] is the (one-object) category of modules
over the zero monoid.

It is interesting to notice that for J = 0, the converse also holds:

Proposition 4.1. [f there is a monoid M in ¥ such that the category of modules over
it, seen as an enriched category, is (isomorphic to) the terminal category above, then

0=1in%.

Proof. Any monoid M in a monoidal category is automatically a (left and right)
module over itself. The hypothesis tells us that there is no other module; in
particular, the free functor M ® — : ) — M — mod is naturally isomorphic to the
constant functor at M. It follows that for any arrow f :X — Y in %,
ldy®@f:M®X — M®Y is an isomorphism; for 0 — Y the unique map from the
initial object, we get 0 = M K0 =M ®Y for any Y. Taking Y = I gives us M = 0.
Now, the terminal object is a module over any monoid with obvious structure maps,
hence also over M. As M — mod has only one object, namely M itself as noticed
earlier, we must also have M = 1. O

(i1) For any category, products or coproducts indexed by a singleton set are trivial,
hence we recover the (obvious) fact that a - enriched category, for any 7" (smcc
bicomplete) with one object is Morita equivalent to a monoid, being itself one.
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(iii) The case of binary biproducts is well-known for long time for ¥ = CommMon,
Ab, R — Mod (for R a (semi)ring): a ¥ - category & with two objects X;,X, is the
same as a Morita context: two (semi)rings, respectively R-algebras € (X,X;) and
¢ (X2,X;) and two bimodules % (X;,X;) and % (X»,X;), connected by
%(Xl ,Xz) X %(Xz,Xl) — %(Xl ,X]) and %(Xz,Xl) X %(X] ,Xz) — Cg(Xz,Xz).
Then the 7- monoid Morita equivalent to % is the matrix (semi)ring
((K(Xl X1) € (X1,%)

¢ (X2.X1) € (X2,X3)
presheaves for a small non-empty Ab-category 1is equivalent to a
module category if and only if it has a finite cover ([9], Th. 8.1 for o/ = Ab).
In particular, any Ab-enriched (known as additive) finite category is Morita equiva-
lent to a monoid.

). Actually there is more to say in case ¥ = Ab: the category of

(iv) For an example concerning all small biproducts, take ¥ = SupLat, as in [8].
A monoid in SupLat is called a quantale. Equivalently, it is a poset having all
joins and an associative, unital product which distributes over joins. A quantaloid
is a quantale with several objects, i.e. a category enriched in SupLat. By [8],
every small quantaloid 2 is Morita-equivalent to a quantale, namely with Q =
Matr(2)(2y,20), where Matr(2) is the quantaloid of matrices with
elements in 2 (see [1]]).

5. Conclusions

We have generalized the well-known example of Morita context of rings
for any J- indexed ¥ - categories in case ¥ has J- biproducts. It is still under
consideration if the converse also holds, namely for a small bicomplete smcc ¥
with zero object, if there is some small set J such that any small J- indexed 7 -
category is Morita equivalent to a monoid, then ¥ has J- biproducts.
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