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EXPERIMENTS ON VISCOUS HEATING IN LEAKAGE-
FREE ROTATING SEAL SYSTEMS WITH MAGNETIC 

NANOFLUID 
 

Tünde BORBÁTH1, Valeriu Nicolae PANAITESCU2, István BORBÁTH3, 
Oana MARINICĂ4, Ladislau VÉKÁS5 

Two main aspects regarding to magnetic fluid rotating seals operation are 
discussed in this paper: the influence of the rotational speed and viscosity of 
magnetic nanofluids on seal temperature and the breakaway torque at start-up. 
Analytical methods for studying these technical issues and results obtained from 
experimental investigations are presented. Magnetic nanofluids with two types of 
carrier liquid (high vacuum oil and transformer oil) were tested having saturation 
magnetization in the range of 450-550 G. Temperature measurements were 
performed for three different rotational speeds: 600 rpm, 1000 rpm and 1450 rpm 
by using an experimental test bench. 
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1. Introduction 

Magnetic nanofluids are smart materials with a special feature, combining 
the behavior of a normal liquid with superparamagnetic properties. One of the 
most relevant applications of these fluids is the magnetic fluid rotating seal with a 
relative simple construction and high performance [1]. In such system the 
magnetic fluid is held in ring shapes by a permanent magnet which enables rotary 
motion while maintaining a hermetic sealing. Magnetic fluid seals are engineered 
for a wide range of applications including pressure and high vacuum sealing 
devices. Among the benefits are hermetic sealing, long lifetime, high reliability, 
non-contaminating, high-speed capability, optimum torque transmission, no set-
leakage failures and smooth operation [2].  

Many aspects are presented in different studies regarding to the magnetic 
fluid seal performance. Several papers discuss issues about the sealing capacity of 
the magnetic fluid seals [3, 4, 5]. The influencing factors such as magnetic field 
distribution [6, 7], centrifugal force [8] and centering effect [9] have also been 
investigated. The magnetic fluid behavior in high intensity nonuniform magnetic 
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According to [1, 5] the sealing capacity for a single sealing stage Δp is directly 
proportional to the saturation magnetization Ms and to the difference between the 
maximum and the minimum value of the magnetic flux density:  ∆݌ ≅ ଴ߤ න ܪ݀ܯ − ு೘ೌೣ଴ ଴ߤ න ܪ݀ܯ =ு೘೔೙଴ ௠௔௫ܪ)௦ܯ଴ߤ − (௠௜௡ܪ =   = ௠௔௫ܤ)௦ܯ − ௠௔௫݌∆     ୫୧୬) (1)ܤ = ෍ ௜݌∆ = ݊ ∙ ௡݌∆

௜ୀଵ  
 

 
Here µ0 is the absolute permeability, Ms is the magnetic saturation, Hmax, Hmin  

represent the maximum respective the minimum magnetic field intensity 
measured between the pole pieces and the shaft, Bmax is the maximum magnetic 
induction, Bmin is the minimum magnetic induction, n is the number of stages and 
Δpmax is the sealing capacity of the magnetic fluid seal. 

The material of the permanent magnet is anisotropic barium ferrite type 
FB 2.2. (Rofep, Romania) having a residual flux density equal to 0.37 T and a 
coercive force Hc of 175 kA/m.  

The two pole pieces are made from soft magnetic materials with low 
carbon content (OLC 15). Each of them has seven teeth which guide the magnetic 
fluxes and thus helps magnetic fluid sealing rings formation.   
Due to technological and functional reasons the use of rectangular teeth shape is 
recommended to get optimal values for the difference between the maximum and 
minimum values of the magnetic induction.  

Three kind of magnetic fluids where tested during the present 
investigation. These are listed in table 1. The magnetic nanofluids were prepared 
at the Roseal Co. (Odorheiu Secuiesc, Romania).  

Table 1 

Magnetic nanofluids 

Name Carrier liquid Saturation 

magnetization [G] 

HVO-467G High vacuum oil 467 

HVO-520G High vacuum oil 520 

UTR-528G Transformer oil 528 

 
To close the magnetic circuit created by the permanent magnet, pole 

pieces and magnetic nanofluid, the rotating shaft should be made from soft 
magnetic material (OLC15). It can have solid cylindrical shape or tube shaped.  
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In order to avoid magnetic flux dissipation the housing is manufactured 
using nonmagnetic materials.  

The high rotational accuracy is ensured by connecting two ball bearings to 
the pole pieces, inserting two spacer rings between them to reduce the flux 
dissipation. 

 
3. Magnetic fluids 
 
Magnetic fluids used in sealing technology must meet several 

requirements [7, 14]. In order to sustain high differential pressure they have to be 
tailored in such a way to ensure high saturation magnetization and low or very 
low vapor pressure. Usually, magnetic fluids in a sealing stage have to withstand 
an intense and strongly non-uniform magnetic field, Hmax ~ 106 A/m and |grad H| 
~ 109 A/m2 and thus they must ensure excellent colloidal stability in the intense 
and strongly non-uniform magnetic field [5, 10]. In special cases, chemical 
characterization is needed to avoid the destabilization of the magnetic fluid when 
aggressive gases are sealed. 
To fulfill simultaneously all these requirements impose special conditions on the 
stabilization procedure of the preparation of the magnetic fluids, in order to avoid 
irreversible magnetic field induced structural processes. 
In principle, the synthesis procedure of the magnetic nanofluids has two main 
phases. The first step of the preparation of the investigated magnetic nanofluids is 
to prepare magnetite nanoparticles through co-precipitation. The second phase 
contains the stabilization and dispersion of these particles in different carrier 
liquids in order to prevent irreversible aggregation of particles due to the attractive 
van der Waals and dipolar interactions [15, 16, 17]. Transformer oils are nonpolar 
carrier liquid, generally with low or medium viscosity and low tendency for 
evaporation. Vacuum oils are polar carrier liquids which need an additional 
stabilizing layer, physically absorbed on the surface of the first stabilizing layer 
[16, 18].  This vacuum oil has a relatively high viscosity with a tendency to non-
newtonian flow behavior.  
For HVO-467G and HVO-520G magnetic fluids Aneron high vacuum oil carrier 
liquid from the Merck Corporation (Germany) was used. The magnetic 
nanoparticles are magnetite particles with approx. 7 nm mean diameter. 

The flow behavior of different types of magnetic fluids plays a significant 
role in the seal heating. Rheological measurements were elaborated using an 
Anton Paar Physica MCR-300 rheometer (Romanian Academy - Timisoara 
Branch, Romania) with plate ˗ plate geometry and an attached thermostat.  

While the magnetic nanofluid with high vacuum carrier liquid has a non-
newtonian behavior (see Fig. 2.), the UTR-528G has newtonian behavior with a 
viscosity equal to 56 mPa·s at T = 20 °C in the absence of magnetic field.  
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Sample  

name 

Magnetic 
field strength  

B [mT] 

Shear 
rate  

γ&  [1/s] 

Activation energy 

of viscous flow 

Ea [kJ/mol] 

Reference viscosity 

(fit param. A) 

[Pa·s] 

 

R2 

HVO-467G 0 750 (3.11±0.02)·104 4.36 0.99634 

HVO-467G 500 750 (3.08±0.004)·104 4.66 0.99634 

HVO-520G 0 500 (3.27±0.01)·104 5.31 0.99892 

HVO-520G 500 500 (3.18±0.01)·104 5.48 0.99914 

HVO-520G 0 750 (3.03±0.02)·104 4.77 0.99657 

HVO-520G 500 750 (3.13±0.01)·104 4.92 0.99964 

UTR-527G 0 500 (3.13±0.07)·104 0.06 0.9985 

 
The “goodness’’ of the fit expressed by the coefficient of determination R2 show 
that the temperature dependence of the viscosity can be very well fitted with the 
Arrhenius type relation. 
Experiments show that the viscosity of such fluids may increase in magnetic field 
up to 10%.  Due to the fact that the UTR-520G has a low viscosity and thus the 
influence of a small change induced by the magnetic field does not influence the 
results in a significant way, it was adopted a nominal increase of 10% of the 
viscosity of these fluids as experiments indicate.  

 
4. Experimental setup 
 
The block diagram of the experimental test bench of the magnetic fluid 

seals (see Fig. 6.) has been already presented in [14] with small changes. It has a 
modular structure containing five main modules.  

The test module is composed of a rotating shaft driven by an electric 
motor of 0.55kW. An inverter ensures variable and controllable rotational speed 
of the shaft. During the experiments the rotational speed was varied up to 1450 
rpm. The investigated magnetic fluid seals were mounted inside a test chamber 
which was connected to a pressure or a vacuum module. 

 The pressure module is composed by a compressed helium cylinder 
supplied with a pressure adjuster connected to the buffer basin through an 
adequate flexible pipe. 

The test stand was designed in order to determine the sustainable pressure 
difference of the magnetofluidic seals and also to allow investigation of the 
influence of the rotational speed on the sealing capacity and on the seal 
temperature. 
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The Brinkman numbers obtained for the two different types of fluids up to 
a rotational speed equal to 1450 rpm, are below 1. It shows that the pole pieces 
don’t need additional cooling system. This also has been confirmed by 
experiments, the sealing system being able to provide a stable long-term sealing 
capacity for the tested parameters.  Note, that for higher rotational speed (over 
1600 rpm) the sealing system with magnetic fluids with high vacuum carrier 
liquid (HVO-467G and HVO-520G) will need forced cooling.  

However, for the non-newtonian vacuum oil based magnetic nanofluid, the 
low rotational speed at start-up in the presence of strong magnetic field, the 
breakaway torque is increased in a significant way. Taking into account that the 
investigated fluids (HVO-467G and HVO-520G) increased the torque at start-up 
up to 50% and the seal temperature with 20 °C, magnetic nanofluids with higher 
saturation magnetization definitely would lead to more significant effects on the 
operating conditions.  

Similar effects will arise for transformer oil based magnetic nanofluids 
having high saturation magnetization. The viscosity of such a magnetic fluid 
having a saturation magnetization Ms = 1000 G reaches 4 Pa·s, while a fluid with 
Ms = 1300 G has about 15 Pa·s viscosity. For these values significant start-up 
torque and heating-up effects are expected. 

Maintaining an adequate temperature is necessary due to the fact that the 
high temperature decreases the magnetization of the magnetic fluids and increases 
the rate of evaporation and thus has a negative influence on the seal performance. 
 Further experiments could be performed to obtain information about the 
exact temperature not only of the seal but of the magnetic fluid itself. For this, it is 
required to change the position of the pyrometer in order to be able to measure 
exactly the temperature of the magnetic fluid sealing ring at the last sealing stage. 
These measurements could give more precise information about the heat 
generated by viscous friction for different magnetic fluids and also about the 
amount of heat dissipation.  
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