
U.P.B. Sci. Bull., Series C, Vol. 74, Iss. 4, 2012 ISSN 1454-234x

FFT PARALLEL IMPLEMENTATION FOR MRI IMAGE
RECONSTRUCTION

Andrei ŢUGUI1

Această lucrare prezintă implementarea algoritmului FFT (Cooley-Tukey) -
intens utilizat la reconstrucţia imaginilor RMN - pe o maşină revoluţionară de
calcul paralel, Connex Array. Valorificând structura şi prelucrarea vectorială a
informaţiilor in Connex Array, reconstrucţia unei imagini RMN s-a facut mult
mai rapid decat în majoritatea scanerelor comerciale. Rezultatele sunt
remarcabile. Propunem cu această lucrare utilizarea Connex Array în sistemele
RMN în timp real, unde timpul de reconstrucţie al imaginilor creşte vertiginos
odată cu creşterea numărului de secţiuni de explorat.

This paper describes FFT Cooley-Tukey algorithm implementation used in
MRI image reconstruction on a revolutionary parallel computing machine, Connex
Array. By taking advantage of it’s vectorial structure and processing manner, MRI
image reconstruction was much faster than most of usual MRI commercial scanners.
Results are remarkable. Our proposal in this paper is the use of Connex Array in
real-time MRI systems, where reconstruction time grows seriously as the number of
taken sections grows.

Keywords: FFT, Connex Array, MRI, parallel computing

1. Introduction

FFT (Fast Fourier Transform) is a fast algorithm for Discrete Fourier
Transform (DFT) computation. In the literature, [1, 2] FFT has been extensively
studied and implemented as an important frequency analysis tool in many areas
such as image processing, signal processing and other domains. There are many
variants of the FFT algorithms. In this paper, we focus on the most common FFT
algorithm, the radix-2 Cooley-Tukey algorithm [3] used in magnetic resonance
image reconstruction (Fig. 1).

Magnetic Resonance Imaging (MRI) [4] uses magnetic fields and
radiofrequency pulses to view different kind of organs and tissues. Often, MRI
offers information can not be seen using X-Ray, ultrasound or CT (Computed
Tomography) scan [5]. We mention projection reconstruction used in MRI being
commonly used by other medical imaging techniques like CT or PET [6, 7, 8, 9],
very simple and fast technique for image reconstruction [10] [11].

1 PhD student, Electronics, Telecommunication and Information Technology Faculty,

POLITEHNICA University Bucureşti, România. e-mail: andrei.tugui@yahoo.com

230 Andrei Ţugui

In this paper we will show that using a green and cheap parallel-
computing technology (Connex Array), the main actual MRI computational
drawback (high computational time) [12] can be eliminated. Also, [13, 14]
describe several actual software platform/implementation for CT and PET
Fourier-based image reconstruction claiming high reconstruction time, even
though parallel-processing techniques are approached. Other parallel approaches
in actual medical imaging are presented in [15].

1.1. K-space and FFT image reconstruction
In MRI acquisition process, sample FID (Free Induction Decay) data is

brought into the K-space (Fourier related space) by any of the linear or non-linear
methods known [12]. The most used MRI scanning methods available use linear
filling methods in K-space because FFT is suitable for fast data reconstruction.
[12]

Fig. 1. MRI reconstruction pipeline

We will show in this paper that FFT algorithm (Cooley-Tukey) [3],

commonly used to reconstruct a MRI image (taking about 80% of image
reconstruction time [12]), is very suitable for our parallel-computing machine,

FFT parallel implementation for MRI image reconstruction 231

Connex Array. Moreover, using its parallel computing power, real-time MRI
will be seriously improved.

FFT technique involves some Fourier series on sample linear data or polar
data. [10]

As can be seen in Fig. 1, Discrete 2D Fourier Transform of an image
means computing one 1D FFT (One Dimension FFT) on the input data line, and
then computing one other 1D FFT on every column resulted from the first FFT
partial data from K-space matrix (input-output operation as reading or shift data
(Fig. 1) can be easily neglected as they take few cycles in computation using our
parallel architecture [7]).[17] The same result (the image) is achieved no matter
the computing order line-column.
 Although today we have rapid processors, high dimension image
reconstruction (512 or 1024) and high number of receiver channels (8…16) make
a very hard mission for processing machines (Table 1).

Table 1
MRI performances on different processors

Processor Function Image dim. (pixels) Computational time (s)
SGI R10000 175 MHz 3D TFD Rotation 128x128 x30 1.5
SGI R10000 175 MHz 3D TFD Rotation 256x256x30 27
HP PA-8000 200MHz 3D TFD Rotation 128x128x30 1.3
HP PA-8000 200MHz 3D TFD Rotation 256x256x30 24.7

 Pentium II 400 MHz 3D TFD Rotation 128x128x30 0.8
 Pentium II 400 MHz 3D TFD Rotation 256x256x30 13.8

SGI R10000 175 MHz 3D TFD Reconstruction 80 images, 128x128x30 335
HP PA-8000 200MHz 3D TFD Reconstruction 80 images, 128x128x30 276

 Pentium II 400 MHz 3D TFD Reconstruction 80 images, 128x128x30 162.1

2. Connex Array
This paper machine’s architecture belongs to a revolutionary project of

parallel computing age, „The Connex Project”.

Fig. 2. Connex Array

Fig. 2. Connex Array

232 Andrei Ţugui

Connex Array is a parallel computing machine which best fits into “Terra
Architecture” concept [7], a high performance architecture including several types
of parallelism to optimize chip’s area and power consumption (P = 2.5 W,

MHzfclk 400=).
Connex Array’s hardware structure contains 1024 processing elements

(PE) ring connected, each having 256 registers (meaning we have a 256 rows by
1024 columns matrix). ConnexArray TM is a many-cell array of execution units
(EU) designed for intense computations, while MTP (Multi-Threaded Processor)
is a multi-core BEAM (Bubble Free Embedded Architecture for Multithreading)
processor for complex computations, dealing with both scalar and vector-specific
instructions.

The execution model involves:
- in each clock cycle an instruction sequencer (IS) broadcasts one
instruction to be executed by each EU;
- each EU executes the received instruction according to its internal state
(stated by the selected Boolean), for example:
where (bool_vect_q == 1)
vector_n = f(vector_m, vector_p);
elsewhere
vector_n = g(vector_m, vector_p);
- the instruction operates on data stored in each EU and, sometimes, on
some data stored in a small neighborhood (usually in 1−iEU and 1+iEU);
- the sequence of instructions evolves according to the IS internal state and
according to the scalars or Booleans provided by the reduction tree. (Fig.
3)

Fig. 3. CA 1024 many-processor architecture

FFT parallel implementation for MRI image reconstruction 233

On 65 nm technology, our architecture can be implemented on a 2.5
cm 2 silicon area [7]. We used Connex to reconstruct an usual 128x128 MRI
image. We compared Connex to other parallel chips performance and power
consumed for the same algorithm implementation. Connex’s detailed description
can be found in [16, 18]. Only the components of m, n and p vectors selected by
the boolean vector q are involved in the execution (Fig.4)

Connex Array is programmed in VectorC [19], a C++ language extension
working with new primitives (vectors) like: int vector (array of integer data
types), float vector (array of real data types), etc. By vector we mean a new N-
length data type containing K-space complex pixels modelling the vectors in
Connex Array. A statement like:

 213 vvv += (1)

replaces following sequential programming code:

for (int i = 0; i < SIZEOF_VECTOR; i++)
 { 3v [i] = 1v [i] + 2v [i]}

where 1v , 2v , 3v are float vectors and SIZEOF_VECTOR variable holds vector’s
length [19].

In this paper SIZEOF_VECTOR = 128, since we compute a 128x128 K-
space matrix.

Fig. 4. CA 1024 structure (256 scalar vectors and 8 bool vectors)

Assuming we have a vector of integers vector int v , to fill values “0” in

even positions and “1” in odd positions we declare [19]:

234 Andrei Ţugui

where (v %2 == 0)
{ v = 0;}
elsewhere
{ v = 1;}

 Connex paralelism cam be simply described if we refer to its “full line
operation” feature, meaning an arithmetic operation performed having generic
form like BAR *= , where R is the result and BA, the operands, replaces

k

N

k
k BAR *

1

0
∑
−

=

= . This is what we call vectorial computation. Vectors like BA, can

be declared as follows:
vector A,B;

3. FFT and Connex Array

FFT became a very used algorithm in scientific and engineering
applications; it is concerned about following aspects:

- data access, step by step;
- sinus (cosine) function computation;
- computational precision.
To compute a sample F(k) for FFT (Fig. 5), N complex multiplications and

(N-1) complex additions are necessary [17]. Therefore, the total number of
operations necessary for the entire image reconstruction is:

 2* NNN = complex multiplications, (2)
)()1(2 NNNN −=− complex additions (3)

Our FFT data amount was 168668816 floating point operations, computed
in 0.67 ms (Table 3).

4. FFT algorithm implementation for image reconstruction.
 Comparation to NVIDIA

The image reconstruction technique requires 1D FFT computation

horizontally on sample data arranged in 128 length vectors, then computing
another 1D FFT but vertically, on the same data set. [17]

To compute FFT Cooley-Tukey algorithm (Fig. 5) with Connex we used
VectorC library [19], which by C++ operator’s overloading models basically
vectors. Our 2D FFT Cooley-Tukey algorithm requires the computation of one

21 * NNN = FFT using twiddle factor multiplications between vertical and
horizontal stages:

- N vertical N size FFTs;

FFT parallel implementation for MRI image reconstruction 235

- Array multiplication with twiddle factors
)/(2 MNNM

i
i

e
π

- N vertical N size FFTs.
One MRI image reconstruction 128x128 pixels, 32 bits floating point was

made, using Connex Array. Benchmark results can be seen in Table 3.

Fig. 5. FFT Cooley-Tukey algorithm, decimation-in-time (N = 8)

FFT algorithm (Cooley-Tukey) for N = 8 is described in [3]. For N = 128,

FFT computation takes N = 7 stages (2 7 = 128) (Fig. 5).
Main operations [19] involved in our FFT parallel algorithm are:

- vector addition:

 213 vvv += (4)
- vector multiplication:

 213 vvv = (5)
- conditional execution:

 2133 :? vvbv = (6)
nvv <<= 12 (7)

where n is the bit number shift for 1v and 3b is a bool value.

236 Andrei Ţugui

Sample vector computation each stage (Fig. 3) is made by adding the old
value of the sample with the value resulted from the current step, as follows:

 X[i] = X[i-1] + (12111 xcx +) (8)

Intermediate vectors like 11x , 12x were computed using shift functions
detailed in paper [16], as follows:

 i = 0;
 temp = shiftLeft(X[0],k); (9)
 where (INDEX < k) { 12x = temp;}
 i = i + k;
 temp = shiftRight(X[0],k);
 where (INDEX >= i && INDEX < (i+k)) { 12x = temp;}

 Here, INDEX is a particular vector filled in with consecutive scalars from
1 to SIZEOF_VECTOR.

We used C/C++ working environment using a special class (vector)
dedicated to Connex Array applications [19]. All operations made were floating
point, because real samples achieved by scanners are complex [12], as follows:

)}(Im{*)}(Re{)(ixiixix += (10)
Coefficient vectors (1c … 7c) filled in with twiddle factors [3] on every

computational step are defined as follows:
 where (INDEX%2 == 0) { 1c = 1;}
 elsewhere { 1c = -1;} // 1c = [1 -1 1 -1 1 -1...]

For computational simplicity, we considered 1... 7
128

1
128

0
128 === www

(twiddle factors) [17, 3], and all vector samples iix += 1)(.
As workbench, we used Eclipse IDE for C/C++ Developers © [24]. Due to

Connex’s parallel structure, 1024 samples properly arranged (Fig. 9) can be
computed in a single clock cycle [16, 20]. One floating point operation takes 16
clock cycles [7].

As first landmark we consider Table 2 conclusions from paper [20]
concerning 1D FFT computed with Connex:

Table 2
1D FFT, with reordering. N = FFT’ s dimension , M = number of FFT, 32 bit floating point

N M Cycles Cycle/FFT Mops
4 256 142 0.6 14422.5
16 64 562 8.8 7288.3
64 16 1342 83.9 4578.2

256 4 3562 890.5 2299.8
1024 1 7447 7447.0 1375.1

FFT parallel implementation for MRI image reconstruction 237

From hardware-algorithmic point of view, Connex is an array counting P =
1024 columns and M = 256 rows, with N <= P. Thus, we can refer the “i” register
from “j” processing element [7] as].][[jiA (Fig. 4)

Our FFT reconstruction algorithm used 2 Radix-2 IFFTs “Decimation-In-
Time”. Both vertical and horizontal FFTs represent the paralelisation of FFT
serial code described as follows:

For the horizontal step, N = 128 FFTs. We declared all 128 vectors
identical:

,][INDEXkX = 127,0=k
 Buffer vectors for butterfly operations each stage were declared as
follows:
 vector 1211,, xxtemp ;

Buffer vector holding first horizontal FFT is vector buffer [128]. First FFT
is computed for all][kX vectors in 7=n steps. The serial code parallelized with
Connex involves:

for (i=1; i<=N; i++)
 {
 for (j=1; j<=n; j++)
 {
 for (k=1; k<=N; k++)
 {
 butterfly_vert(i)
 }
 X[j] += butterfly_vert(i)
 }
 }, (11)

where N = 128, n = 7 and butterfly_vert(i) =][*][1211 ixcix j+ .

Using Connex, all loops are parallelized at once. Due to butterfly model,
all vectors must be shifted horizontally (Fig. 6)

Fig. 6. Radix 2 FFT, stage 4: the groups can be extended horizontally until all PE are filled

238 Andrei Ţugui

We have N2log stages, each requiring n twiddle factors; that means
Nn 2log coefficients filling n scalar vectors that can be loaded once in Connex

array space from external memory and used forward to other computation. All
shifting operations are shown in Table 3.

Table 3
Shift weight for 1D FFT, N = 128

 Stage

 Shift number
(left and right)

 Shift positions

 1 2 1
 2 128 2
 3 128 4
 4 64 8
 5 32 16
 6 6 32
 7 1 64

Each stage has N butterfly_vert() operations involving N/2 additions and

N/2 complex multiplications; algorithm in (11) repeats twice identically to
compute the imaginary parts FFT,]}[Im{ kX . Knowing that for 2D IFFT (one
image reconstruction) 2N multiplications and)(2 NN − complex additions are
involved, also that every floating point operation requires 16 clock cycles and we
counted 359 shifting operation (Table 3), total parallel execution time results:

 yNNNT DFFT +−=)1(*16)(2

2 , (12)

where N = 128 (FFT size) and y = 359 (total number of shifting

operations).
 As for I/O throughput time, we can briefly summarize the total time
elapsed to load all 22N data samples from external memory into the array:

 oioi CNT /
2

/ 2= , (13)

where oiC / is average time required to load a sample data from external memory
into data array (K-space). oiC / can easily be neglected, as I/O operations are
transparent to the user [7]; but as N grows, shifting operations become the
dominant computation factor. Still, having 1024 PE, N <= 1024 will be the
chip’s restriction limit. All data can be buffered in 4 M vectors in Connex (where
M = 256). Still, if N < P we can compute P/N 2D FFTs in parallel. Ex: 16
complex 64x64 FFTs can be computed in parallel by splitting the data array
organized in 1024 columns by 256 rows into 16 blocks 64x64 samples each.

FFT parallel implementation for MRI image reconstruction 239

 As it is showed in paper [20], vertical FFT computation (this paper
approach) is the most efficient for quadratic FFT dimension like ours.

We will show in the following a comparison of FFT parallel
implementations on NVIDIA Quadro FX, a powerful landmark in graphic parallel
processing (Table 6), and Connex Array. Although NVIDIA acts like a strong
parallel computing machine (486 Gflops general performance and Connex only
117 Gflops), FFT 2D algorithm implementation on Connex is 8 times more
efficient (Table 6).
 On NVIDIA Quadro FX, each of 8 computational stages (Fig. 5) require
distinct program fragments (multipass algorithm). WGL_ARB_pbuffer is a I/O
buffer counting several draw buffers used in one stage.
WGL_ARB_render_texture is another buffer used to save data output from each
stage and to load input data into the next stage. For 32-bit float I/O samples
NVIDIA uses a dedicated buffer also, NV_float_buffer. By creating 8 draw
buffers (ATI_draw_buffers), 2 FFTs can be computed in parallel using a single
I/O WGL_ARB_pbuffer, taking as input 4 samples and then the output is
redirected as input to the next stage. In the following we present 2D FFT CUDA
(Compute Unified Device Architecture) parallel algorithm used by NVIDIA:
 - first is created one I/O (Input-Output) buffer GL_FLOAT_R32_NV,
counting 8 32-bit scalar buffers (GL_FRONT_LEFT… GL_AVX3); [23]
 - at first step, the first 4 scalar buffers are used as load source for draw
buffers, and the last 4 as destination. Two scalar buffers store real parts for the
first FFT, and other 2 scalar buffers store imaginary parts. The rest 4 buffers store
real/imaginary parts for the second FFT;
 - at next steps, draw source and destination buffers are switched eachother,
and the process continues. After completion of all stages, remaining data from
draw destination buffers are filled in with computed 2D FFT.
 Quadro FX architecture uses one “fragment processor”, and two dedicated
complementary graphic processors: “vertex” and “rasterizer” [23]. Two
approaches are presented in paper [23] for our 2D FFT parallel implementation:
one is called “Mostly loading the fragment processor”, where all K-space sample
data is loaded in parallel into the fragment processor, 1D “butterfly lookup”
textures for data mixture twiddle factors computation are created, and a fragment
code program is executed for each K-space sample; but this approach makes from
fragment processor a bottleneck, so vertex and rasterized processors are idle for a
long time. Second parallel approach is called “Load the vertex processor, the
rasterizer and the fragment processor”: here specific quads are created for each
fragment code (Fig. 7), so lot of quads for early stages and few for final ones,
process requiring adaptive load into vertex, rasterizer and fragment processor,
making the entire algorithm more complex. Twiddle factors computation is made
with a dedicated function (ARB_fragment_program). For each stage, fragment

240 Andrei Ţugui

groups are joined into compact blocks (like those coloured in blue and green in
Fig. 7), and then passed to the vertex processor for index reordering and sign
computation; moreover, load balancing is passed also to vertex and rasterizer.
 Using Connex, all data computation means flexible data load and basic
operations with vectors. For both FFTs, 128 vectors representing K-space data
were loaded from I/O Plan [7] into memory in one single clock cycle (Fig. 8), also
coefficient vectors (twiddle factors) which are not computed anymore unlike
NVIDIA’s algorithm. Each stage data results are computed using a vector buffer
temp (9) and precomputed coefficient vectors (8), (9). Unlike NVIDIA, there is no
need for switching buffers, since temp and X[i] are overwrited each stage; also,
vector-oriented approach specific to Connex eliminates the vertex and rasterized
processor necessity from NVIDIA proposed chip, as we can directly compute up
to 256 K-space rows using the MTP [7]. Other NVIDIA algorithm limitations we
can mention are: it involves several syncronization between the nuclei asociated
to each thread, data must be copied from primary memory into video dedicated
memory and back and there are some deviations from IEEE 754 standard
concerning floating-points support. Also, CUDA recommandation for high
number of threads require computing 32 groups once for best performance.

Fig. 7. Decimation in time FFT butterfly (stage 2, N=8) with NVIDIA

An identical 2D FFT (Two Dimensions FFT) image reconstruction was

made with Connex, too. As we had to reconstruct a 128x128 image, we arranged
horizontally our FID data into 128 float vectors (X[0] … X[127]) into Connex
Array, computing first 128 FFTs on each vector (Fig. 6).

FFT parallel implementation for MRI image reconstruction 241

Fig. 8. Vector data disposal in Connex Array

 For the vertical FFT, data must be filled in horizontally again, so matrix in
Fig. 8 was transposed using two special functions (write(X,128,buffer) to save
data in a temporary buffer, and read (X,128,buffer,128,1) to effectively compute
the transposed matrix).

Fig. 9. MRI data in Connex Array

Although a single image reconstruction (128x128) was made, our CA1024

chip [7] can compute 8 images in parallel (for VECTOR_SIZE = 1024), as can be
seen in Fig. 9. Briefly, presented FFT CUDA algorithm is not as effective as 2D
FFT algorithm implemented in VectorC with Connex Array.

 Table 4
2D DFT (128x128 pixels) image reconstruction

 Function

 Floating point
 operations

 Number
 of
 cycles

 Execution time
 Connex Array

 1D FFT,N=128
 Im{X}=0

 32943 35 87.5 ns

 2D 128x128 Image
 Reconstruction
 Im{X}≠0,Re{X}≠0

 168668816

 573440

 0.67 ms

Table 5 shows usual MRI computational performances compared to

Connex Array.

242 Andrei Ţugui

Table 5
MRI scanner comparison

 MRI SCANNER PERFORMANCE
Siemens Magneton Simphony 35 frame/s, 128x128 pixels
GE Signa Ovation 150 frame/s, 128x128 pixels
Connex Array 350 frame/s, 128x128 pixels

5. Conclusions

FFT has been implemented in GPUs before. We tooked from [1, 17, 21, 22, 23] all
data necessary for Table 6 comparisons, reviewing the Fourier Transform and the
classic FFT Cooley-Tukey algorithm used in MRI (and ultrasonic, X-Ray) image
reconstruction on several GPUs, showing that for the same algorithm implemented
on other parallel technologies, Connex’s computing performance and power
consumed are remarkable. Regarding the task efficiency (Table 6), one can see that
Connex is eight times better than NVIDIA due to vectorial parallel implementation
(shown in chapter 4), even though NVIDIA has a better general performance. As
for TMS320C4X, computing time / task efficiency is obviously better since it’s a
specialized digital signal processor and Connex a general purpose parallel machine.
Same remark for Cyclops-64 (specialized signal-processing chip with dedicated
floating-point units, hence the power consumed is huge compared to Connex).

 Table 6

FFT parallel implementation efficiency on different GPUs

 Parallel
 computing
 machine

Algo-
rithm

 Core
 Speed
 (MHz)

Performance
 (Gflops)

 Data size
 (pixels)

Computing
 time
 (ms)

Task
efficiency
(Gflop/task)

 Power
consumed
 (W)

Task
energy
efficiency
(Watt/task)

 NVIDIA
Quadro FX
 NV 40

 2D FFT

 400

 486

128 x 128
 32-bit
 float

 1.17

 0.56

 25

 21.36

 TMS320C4
 DSP

 2D FFT

 400

 147

128 x 128
 32-bit
 float

 0.42

 0.061

 5

 11.9

Connex Arra

 2D FFT

 400

 117

128 x 128
 32-bit
 float

 0.67

 0.078

 2.5

 3.73

 IBM
Cyclops-64

 2D FFT

 500

 20

128 x 128
 32-bit
 float

 3.47

 0.069

 83.22

 23.98

 BOBS
2040XL DSP

 2D FFT

 150

 1.3

128 x 128
 32-bit
 float

 60.3

 0.078

 2

 0.033

In conclusion, we can say that MRI reconstruction and any other FFT-

based applications are suitable for Connex Array’s computational power and

FFT parallel implementation for MRI image reconstruction 243

energy efficiency. We leave this issue open and we remain receptive to any
suggestion and information related to this paper.

Acknowledgement

The author got lot of technical and moral support from Gheorghe M.
Ştefan, Peter Bluemler, Bogdan Mîţu, Radu Hobincu, Rustem Popa, Ana-Maria
Calfa, Maria Aniţas, Flavia Ţugui.

R E F E R E N C E S

[1] Long Chen, Ziang Hu, Junmin Lin, Guang R. Gao, Optimizing the Fast Fourier Transform on a
Multi-core Architecture, Computer Architecture and Parallel Systems Laboratory,
University of Delaware, USA, 2007

[2] D.M.S.L. Johnsson, R.L. Krawitz, R. Frye, A radix 2 FFT on the connection machine. In
Proceedings of Super computing, 1989, pag. 809-819

[3] J.W Cooley, J.W. Tukey, An Algorithm for the Machine Calculation of Complex Fourier
Series. Math. Computation, 1965 , pag. 19, 297–301

[4] E.Mark Haacke, Understanding Magnetic Resonance imaging. Magnetic Resonance in
medicine, Washington University, School of Medicine, Mallinckrodt Institute of
Radiology, May 1999, Vol. 41, pag. 855-915

[5] Ge Way, Michael W. Vannier, Low contrast resolution in volumetric X-ray CT – Analytical
comparison between conventional and spiral CT, University of Iowa, Department of
Radiology, november 1996

[6] Silvia De Francesco, Augusto Silva, Fourier Methods in CT: projection and reconstruction
algorithms, IEETA/DET Universitade de Aveiro, Campus Universitario, Portugal

[7] Gheorghe Ştefan, Integral Parallel Architecture In System-On-Chip Designs, Faculty of
Electronics, Tc. and IT, Politehnica University of Bucharest, România

[8] Adam Alessio, Paul Kinahan, PET Image Reconstruction, University of Washington,
Department of Radiology, USA

[9] Jeroen Verhaeghe, Dimitry Van De Ville, Ildar Khalidov, Yves D’Asseler, Ignace Lemahieu,
Michael Unser, Dynamic PET Reconstruction Using Wavelet Regularization With Adapted
Basis Functions, IEEE Transactions on Medical Imaging, Vol. 27, July 2008, pag. 948-958

[10] Yao Xie, Fourier-based forward and back projectors for iterative tomographic image
reconstruction, Stanford University, December 2007

[11] Yao Wang, Computed Tomography, Polytechnic University Brooklyn, NY 11201
[12] Matt A.Bernstein, Kevin F.King, Xiaohong Joe Zhou, Handbook of MRI, 2004 , ISBN –13:

978-0-12-092861-3, pag. 5-15, 256-266, 378-380, 394-400, 405-410, 491-501
[13] Dirk Alexander Sennst, Bernnard Schmidth, Oliver Watzke, Willi A. Kalender, An extensible

Software-based Platform for Reconstruction and Evaluation of CT Images, RadioGraphics
Vol. 24, pag. 601-613, March 2004

[14] J. L. Herraiz, S España, J. J. Vaquero, M. Desco, J M Udías, FIRST: Fast Iterative
Reconstruction Software for (PET) Tomography, Institute of Physics Publishing, Physics in
Medicine and Biology, 2006, pag. 4547-4565

[15] Philipp Kegel, Maraike Schellnann, Sergei Gorlatch, Challenges and Approaches in
Parallelizing Applications for Medical Imaging, University of Munster, Department of
Computer Science, Germany, 2009

244 Andrei Ţugui

[16] I.A. Cunninghan, P.F. Judy, The Biomedical Engineering Handbook: Second Edition, Ed.
Joseph D. Bronzino, Boca Raton: CRC Press LLC, 2000, pag. 385-443

[17] Rose Marie Piedra, Parallel 1-D FFT implementation With TMS320C4x DSPs, February
1994

[18] Mihaela Maliţa, Gheorghe M. Ştefan, Many-processors & KLEENE’s model, UPB. SCi.
Bull. Series C, Vol. 72, Iss. 3, 2010, ISSN 1454-234x

[19] Bogdan Mîţu, C Language Extension for Parallel Processing, BrightScale research report,
2008, http://arh.pub.ro/gstefan/VectorC.ppt

[20] Istvan Lorentz, Optimizing The Fast Fourier Transform on a many-core processor - the
Connex Array, Transilvania University Braşov, March 2010

[21] Nikos P. Pitsianis, Gerald Pechanek, High-performance FFT implementation on the BOPS
ManArray parallel DSP, SPIE Conference on Advanced Signal Processing Algorithms,
Architectures and Implementations IX, Denver, Colorado USA, July 1999, SPIE Vol. 3807,
pag. 166-170

[22] Elkin Garcia, Ioannis E. Venetis, Rishi Khan, Guang R. Gao, Optimized Dense Matrix
Multiplication on a many-core Architecture, EURO Par 6272 LNCS, September 2010, pag.
316-327

[23] Thilaka Sumanaweera, Donald Liu, GPU Gems 2 programming techniques for high-
perfoance graphics and general-purpose computation, Siemens Medical Solutions USA,
2005, ISBN 0-321-33559-7

[24] http://www.eclipse.org/downloads/

