
U.P.B. Sci. Bull., Series C, Vol. 74, Iss. 4, 2012                                                      ISSN 1454-234x 

FFT PARALLEL IMPLEMENTATION FOR MRI IMAGE 
RECONSTRUCTION  

Andrei ŢUGUI1 

Această lucrare prezintă implementarea algoritmului FFT (Cooley-Tukey) - 
intens utilizat la reconstrucţia imaginilor RMN - pe o maşină  revoluţionară de 
calcul paralel, Connex Array. Valorificând  structura şi prelucrarea  vectorială a 
informaţiilor in Connex Array,  reconstrucţia unei imagini RMN s-a facut mult 
mai rapid decat în majoritatea scanerelor comerciale. Rezultatele sunt 
remarcabile. Propunem cu această lucrare utilizarea Connex Array în sistemele 
RMN în timp real, unde timpul de reconstrucţie al imaginilor creşte vertiginos 
odată cu creşterea numărului de secţiuni de explorat. 

This paper describes FFT Cooley-Tukey algorithm implementation used in 
MRI image reconstruction on a revolutionary  parallel computing machine, Connex 
Array. By taking advantage of it’s vectorial structure and processing manner, MRI 
image reconstruction was much faster than most of usual MRI commercial scanners. 
Results are remarkable. Our proposal in this paper is the use of Connex Array in 
real-time MRI systems, where  reconstruction  time grows seriously as the number of 
taken sections grows. 
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1. Introduction 

FFT (Fast Fourier Transform) is a fast algorithm for Discrete Fourier 
Transform (DFT) computation. In the literature, [1, 2] FFT has been extensively 
studied and implemented as an important frequency analysis tool in many areas 
such as image processing, signal processing and other domains. There are many 
variants of the FFT algorithms. In this paper, we focus on the most common FFT 
algorithm, the radix-2 Cooley-Tukey algorithm [3] used in magnetic resonance 
image reconstruction (Fig. 1). 

Magnetic Resonance Imaging (MRI) [4] uses  magnetic fields and 
radiofrequency pulses to view different kind of organs and tissues. Often, MRI 
offers information can not be seen using X-Ray, ultrasound or CT (Computed 
Tomography) scan [5]. We mention projection reconstruction used in MRI being 
commonly used by other medical imaging techniques like CT or PET [6, 7, 8, 9], 
very simple and fast technique for image reconstruction [10] [11]. 
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In this paper we will show that using a green and cheap parallel-
computing technology (Connex Array), the main actual MRI computational 
drawback (high computational time) [12] can be eliminated. Also, [13, 14] 
describe several actual software platform/implementation for CT and PET 
Fourier-based  image reconstruction claiming high reconstruction time, even 
though parallel-processing techniques are approached. Other parallel approaches 
in actual medical imaging are presented in [15].    
 

1.1. K-space and FFT image reconstruction 
In MRI acquisition process, sample FID (Free Induction Decay) data is 

brought into the K-space (Fourier related space) by any of the linear or non-linear 
methods known [12]. The most used MRI scanning methods available use linear 
filling methods in K-space because FFT is suitable for fast data reconstruction. 
[12]  

 
Fig. 1. MRI reconstruction pipeline 

 
We will show in this paper that FFT algorithm (Cooley-Tukey) [3], 

commonly used to reconstruct a MRI image (taking about 80% of image 
reconstruction time [12]), is very suitable for our  parallel-computing machine, 
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Connex Array. Moreover, using its parallel  computing power, real-time MRI  
will be seriously improved. 

FFT technique involves some Fourier series on sample linear data or polar 
data. [10]   

As can be seen in Fig. 1, Discrete 2D Fourier  Transform of  an image 
means computing one 1D FFT  (One Dimension FFT) on the input data line, and 
then computing one other 1D FFT on every column resulted from the first FFT 
partial data from K-space matrix (input-output operation as reading or shift data 
(Fig. 1) can be easily neglected as they take few cycles in computation using our 
parallel architecture [7]).[17]  The same result (the image) is achieved no matter  
the computing order line-column. 
 Although today we have rapid processors, high dimension image 
reconstruction (512 or 1024) and high number of receiver channels (8…16) make 
a very hard mission for processing machines (Table 1).  

Table 1 
MRI performances on different processors 

Processor Function Image dim. (pixels) Computational time (s) 
SGI R10000 175 MHz 3D  TFD Rotation 128x128 x30 1.5 
SGI R10000 175 MHz 3D  TFD Rotation 256x256x30 27 
HP  PA-8000 200MHz 3D  TFD Rotation 128x128x30 1.3 
HP  PA-8000 200MHz 3D  TFD Rotation 256x256x30 24.7 

     Pentium II  400 MHz 3D  TFD Rotation 128x128x30 0.8 
     Pentium II  400 MHz 3D  TFD Rotation 256x256x30 13.8 

SGI R10000 175 MHz  3D TFD Reconstruction 80 images,  128x128x30 335 
HP  PA-8000 200MHz  3D TFD Reconstruction 80 images, 128x128x30 276 

     Pentium II  400 MHz  3D TFD Reconstruction 80 images, 128x128x30 162.1 

 
2. Connex Array 
This paper machine’s architecture belongs to a revolutionary project of 

parallel computing age, „The Connex Project”.  
 

 
 
 
 

Fig. 2. Connex Array 
 

 
 
 
 

Fig. 2. Connex Array 
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Connex Array is a parallel computing machine which best fits into “Terra 
Architecture” concept [7], a high performance architecture including several types 
of parallelism to optimize chip’s area and power consumption (P = 2.5 W, 

MHzfclk 400= ). 
Connex Array’s hardware structure contains 1024 processing elements 

(PE) ring connected, each  having 256 registers (meaning we have a 256 rows by 
1024 columns matrix). ConnexArray TM  is a many-cell array of execution units 
(EU) designed for intense computations, while MTP (Multi-Threaded Processor) 
is a multi-core BEAM (Bubble Free Embedded Architecture for Multithreading) 
processor for complex computations, dealing with both scalar and vector-specific 
instructions.  

The execution model involves:  
- in each clock cycle an instruction sequencer (IS) broadcasts one 
instruction to be executed by each EU; 
- each EU executes the received instruction according to its internal state 
(stated by the selected Boolean), for example: 
where (bool_vect_q == 1) 
vector_n = f(vector_m, vector_p); 
elsewhere 
vector_n = g(vector_m, vector_p); 
- the instruction operates on data stored in each EU and, sometimes, on 
some data stored in a small neighborhood (usually in 1−iEU  and 1+iEU ); 
- the sequence of instructions evolves according to the IS internal state and 
according to the scalars or Booleans provided by the reduction tree. (Fig. 
3) 

 
Fig. 3. CA 1024 many-processor architecture  
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On 65 nm technology, our architecture can be implemented on a 2.5 
cm 2 silicon area [7]. We used Connex to reconstruct an usual 128x128 MRI 
image. We compared Connex to other parallel chips performance and power 
consumed for the same algorithm implementation. Connex’s detailed description 
can be found in [16, 18]. Only the components of m, n and p vectors selected by 
the boolean vector q are involved in the execution (Fig.4) 

Connex Array is programmed in VectorC [19], a C++ language extension 
working with new primitives (vectors) like: int vector (array of integer data 
types), float vector (array of real data types), etc. By vector we mean a new N-
length data type containing K-space complex pixels modelling the vectors in 
Connex Array. A statement like: 
 

                            213 vvv +=                                                       (1) 
 
replaces following sequential programming code:  
                                                                                                                                         
for (int i = 0; i < SIZEOF_VECTOR; i++) 
    { 3v [i] = 1v [i] + 2v [i]} 

where 1v , 2v , 3v  are float vectors and SIZEOF_VECTOR variable holds vector’s 
length [19].  

In this paper  SIZEOF_VECTOR = 128, since we compute a 128x128 K-
space matrix. 

 
Fig. 4. CA 1024 structure (256 scalar vectors and 8 bool vectors) 

 
Assuming we have a vector of integers vector int v , to fill values “0” in 

even positions and  “1” in odd positions we declare [19]: 
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where ( v %2 == 0) 
{ v  = 0;} 
elsewhere 
{ v  = 1;}     
 
      Connex paralelism cam be simply described if we refer to its “full line 
operation” feature, meaning an arithmetic operation performed having generic 
form like BAR *= , where R is the result and BA,  the operands, replaces 

k

N

k
k BAR *

1

0
∑
−

=

= . This is what we call vectorial computation. Vectors like BA,  can 

be declared as follows: 
vector A,B; 
 

3. FFT and Connex Array 
 

FFT became a very used algorithm in scientific and engineering 
applications; it is concerned about following aspects:  

- data access, step by step; 
- sinus (cosine) function computation; 
- computational   precision. 
To compute a sample F(k) for FFT (Fig. 5), N complex multiplications and 

(N-1) complex additions are necessary [17]. Therefore, the total number of  
operations necessary for the entire image reconstruction is:        

                                       2* NNN =  complex multiplications,                    (2)      
                                      )()1( 2 NNNN −=−  complex additions                    (3)   

Our FFT data amount was 168668816 floating point operations, computed 
in 0.67 ms (Table 3).       
 

4. FFT algorithm implementation for image reconstruction.  
    Comparation to NVIDIA  

 
The image reconstruction technique requires 1D FFT computation 

horizontally on sample data arranged in 128  length vectors, then computing 
another 1D FFT but vertically, on the same data set. [17]    

To compute FFT Cooley-Tukey algorithm (Fig. 5) with Connex we used 
VectorC library [19], which by C++ operator’s overloading models basically 
vectors. Our 2D FFT Cooley-Tukey algorithm requires the computation of one 

21 * NNN =  FFT using twiddle factor multiplications between vertical and 
horizontal stages: 

- N vertical N size FFTs; 
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- Array multiplication with twiddle factors 
)/(2 MNNM

i
i

e
π

 
- N vertical N size FFTs. 
One MRI image reconstruction 128x128 pixels, 32 bits floating point was 

made, using Connex Array. Benchmark results can be seen in Table 3. 
 

 
Fig. 5. FFT Cooley-Tukey algorithm, decimation-in-time (N = 8) 

 
 
FFT algorithm (Cooley-Tukey) for N = 8 is described in [3]. For N = 128, 

FFT computation takes  N = 7 stages (2 7  = 128) (Fig. 5).     
Main operations [19] involved in our FFT parallel algorithm are: 

 
-    vector addition:      

      213 vvv +=                                                                (4)                  
-    vector multiplication: 

         213 vvv =                                                              (5)            
-    conditional execution: 

     2133 :? vvbv =                                                         (6)         
nvv <<= 12                                                             (7)    

where n is the bit number shift for 1v  and 3b  is a bool value. 
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Sample vector computation each stage (Fig. 3) is made by adding the old 
value of the sample  with the value resulted from the current step, as follows: 

 
                                                X[i] = X[i-1] + ( 12111 xcx + )                                   (8)      
                                                                                             

Intermediate vectors like 11x , 12x  were computed using shift functions 
detailed in paper [16], as follows: 

 
            i = 0;   
     temp = shiftLeft(X[0],k);                                                                                            (9)  
     where (INDEX < k) { 12x  = temp;} 
     i = i + k;  
     temp  = shiftRight(X[0],k); 
     where (INDEX >= i && INDEX < (i+k)) { 12x  = temp;}     

 Here, INDEX is a particular vector filled in with consecutive scalars from 
1 to    SIZEOF_VECTOR. 

We used C/C++ working environment using a special class (vector) 
dedicated to Connex Array applications [19]. All operations made were floating 
point, because real samples achieved by scanners are complex [12], as follows:              

                                              )}(Im{*)}(Re{)( ixiixix +=                           (10)       
Coefficient vectors ( 1c … 7c ) filled in with twiddle factors [3] on every 

computational step  are defined as follows: 
   where (INDEX%2 == 0) { 1c  = 1;} 
   elsewhere  { 1c  = -1;} // 1c = [1 -1  1 -1  1 -1...]                                               

For computational simplicity, we considered 1... 7
128

1
128

0
128 === www   

(twiddle factors) [17, 3], and all vector samples  iix += 1)( .                    
As workbench, we used Eclipse IDE for C/C++ Developers © [24]. Due to 

Connex’s parallel structure, 1024 samples properly arranged (Fig. 9) can be 
computed in a single clock cycle [16, 20]. One floating point operation takes 16 
clock cycles [7].    

As first landmark we consider Table 2 conclusions from paper [20] 
concerning 1D FFT   computed with Connex: 

Table 2  
1D FFT, with reordering. N =  FFT’ s dimension , M = number of FFT, 32 bit floating point 

N M Cycles Cycle/FFT Mops 
4 256 142 0.6 14422.5 
16 64 562 8.8 7288.3 
64 16 1342 83.9 4578.2 

256 4 3562 890.5 2299.8 
1024 1 7447 7447.0 1375.1 
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From hardware-algorithmic point of view, Connex is an array counting P = 
1024 columns and M = 256 rows, with N <= P. Thus, we can refer the “i” register 
from “j” processing element [7] as ].][[ jiA (Fig. 4) 

Our FFT reconstruction algorithm used 2 Radix-2 IFFTs “Decimation-In-
Time”. Both vertical and horizontal FFTs represent the paralelisation of FFT 
serial code described as follows: 

For the horizontal step, N = 128 FFTs. We declared all 128 vectors 
identical: 

,][ INDEXkX =    127,0=k  
 Buffer vectors for butterfly operations each stage were declared as 
follows: 
                               vector 1211,, xxtemp ; 

Buffer vector holding first horizontal FFT is vector buffer [128]. First FFT 
is computed for all ][kX  vectors in 7=n steps. The serial code parallelized with 
Connex involves: 
 
for (i=1; i<=N; i++) 
   { 
      for (j=1; j<=n; j++)  
         { 
         for (k=1; k<=N; k++) 
         { 
           butterfly_vert(i) 
          } 
   X[j] += butterfly_vert(i) 
         } 
    },                                                        (11) 
 
where N = 128, n = 7 and  butterfly_vert(i) = ][*][ 1211 ixcix j+  . 

Using Connex, all loops are parallelized at once. Due to butterfly model, 
all vectors must be shifted horizontally (Fig. 6) 

 
Fig. 6. Radix 2 FFT, stage 4:  the groups can be extended horizontally until all PE are filled 
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We have N2log  stages, each requiring n twiddle factors; that means 
Nn 2log  coefficients filling n scalar vectors that can be loaded once in Connex 

array space from external memory and used forward to other computation. All 
shifting operations are shown in Table 3. 

Table 3 
Shift weight for 1D FFT, N = 128 

 
   Stage 

  Shift number 
(left and right) 

 
 Shift positions 

   1             2           1 
   2        128          2
   3         128           4 
   4           64           8 
   5           32         16 
   6             6          32 
   7             1          64 

 
Each stage has N butterfly_vert() operations involving N/2 additions and 

N/2 complex multiplications; algorithm in (11) repeats twice identically to 
compute the imaginary parts FFT, ]}[Im{ kX . Knowing that for 2D IFFT (one 
image reconstruction) 2N  multiplications and )( 2 NN − complex additions are 
involved, also that every floating point operation requires 16 clock cycles and we 
counted 359 shifting operation (Table 3), total parallel execution time results: 

 
       yNNNT DFFT +−= )1(*16)( 2

2 ,                              (12) 
 
where N = 128 (FFT size) and y = 359 (total number of shifting 

operations). 
 As for I/O throughput time, we can briefly summarize the total time 
elapsed to load all    22N  data samples from external memory into the array: 
 

      oioi CNT /
2

/ 2= ,                                       (13) 
 

where oiC /  is average time required to load a sample data from external memory 
into data array (K-space). oiC /  can easily be neglected, as I/O operations are 
transparent to the user [7]; but as N grows, shifting operations become the 
dominant computation factor. Still, having 1024 PE,         N <= 1024 will be the 
chip’s restriction limit. All data can be buffered in 4 M vectors in Connex ( where 
M = 256). Still, if N < P we can compute P/N 2D FFTs in parallel. Ex: 16 
complex 64x64 FFTs can be computed in parallel by splitting the data array 
organized in 1024 columns by 256 rows into 16 blocks  64x64 samples each. 



FFT parallel implementation for MRI image reconstruction                          239 

 As it is showed in paper [20], vertical FFT computation (this paper 
approach) is the most efficient for quadratic FFT dimension like ours.    

We will show in the following a comparison of FFT parallel 
implementations on NVIDIA Quadro FX, a powerful landmark in graphic parallel 
processing (Table 6), and Connex Array. Although NVIDIA acts like a strong 
parallel computing machine (486 Gflops general performance and Connex only 
117 Gflops), FFT 2D algorithm implementation on Connex is 8 times more 
efficient (Table 6).  
 On NVIDIA Quadro FX, each of  8 computational stages (Fig. 5) require 
distinct program fragments (multipass algorithm). WGL_ARB_pbuffer is a I/O 
buffer counting several draw buffers used in one stage. 
WGL_ARB_render_texture is another buffer used to save data output from each 
stage and to load input data into the next stage. For 32-bit float I/O samples 
NVIDIA uses a dedicated buffer also, NV_float_buffer. By creating 8 draw 
buffers (ATI_draw_buffers), 2 FFTs can be computed in parallel using a single 
I/O WGL_ARB_pbuffer,  taking as input 4 samples and then the output is 
redirected as input to the next stage. In the following we present 2D FFT CUDA 
(Compute Unified Device Architecture) parallel algorithm used by NVIDIA: 
 - first is created one I/O (Input-Output) buffer GL_FLOAT_R32_NV, 
counting 8 32-bit scalar buffers (GL_FRONT_LEFT… GL_AVX3); [23] 
 - at first step, the first 4 scalar buffers are used as load source for draw 
buffers, and the last 4 as destination. Two scalar buffers store real parts for the 
first FFT, and other 2 scalar buffers store imaginary parts. The rest 4 buffers store 
real/imaginary parts for the second FFT; 
 - at next steps, draw source and destination buffers are switched eachother, 
and the process continues. After completion of all stages, remaining data from 
draw destination buffers are filled in with computed 2D FFT. 
 Quadro FX architecture uses one “fragment processor”, and two dedicated 
complementary graphic processors: “vertex” and “rasterizer” [23]. Two 
approaches are presented in paper [23] for our 2D FFT parallel implementation: 
one is called “Mostly loading the fragment processor”, where all K-space sample 
data is loaded in parallel into the fragment processor, 1D “butterfly lookup” 
textures for data mixture twiddle factors computation are created, and a fragment 
code program is executed for each K-space sample; but this approach makes from 
fragment processor a bottleneck, so vertex and rasterized processors are idle for a 
long time. Second parallel approach is called “Load the vertex processor, the 
rasterizer and the fragment processor”: here specific quads are created for each 
fragment code (Fig. 7), so lot of  quads for early stages and few for final ones, 
process requiring adaptive load into vertex, rasterizer and fragment processor, 
making the entire algorithm more complex. Twiddle factors computation is made 
with a dedicated function (ARB_fragment_program). For each stage, fragment 
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groups are joined into compact blocks (like those coloured in blue and green in 
Fig. 7), and then passed to the vertex processor for index  reordering and sign 
computation; moreover, load balancing is passed also to vertex and rasterizer. 
 Using Connex, all data computation means flexible data load and basic 
operations with vectors. For both FFTs, 128 vectors representing K-space data 
were loaded from I/O Plan [7] into memory in one single clock cycle (Fig. 8), also 
coefficient vectors (twiddle factors) which are not computed anymore unlike 
NVIDIA’s algorithm. Each stage data results are computed using a vector buffer 
temp (9) and precomputed coefficient vectors (8), (9). Unlike NVIDIA, there is no 
need for switching buffers, since temp and X[i] are overwrited each stage; also,  
vector-oriented approach specific to Connex eliminates the vertex and rasterized 
processor  necessity from NVIDIA proposed chip, as we can directly compute up 
to 256 K-space rows using the MTP [7]. Other NVIDIA algorithm limitations we 
can mention are: it involves several syncronization between the nuclei asociated 
to each thread, data must be copied from primary memory into video dedicated 
memory and back and there are some deviations from IEEE 754 standard 
concerning floating-points support. Also, CUDA recommandation for high 
number of threads require computing 32 groups once for best performance.     
 

 
Fig. 7. Decimation in time FFT butterfly (stage 2, N=8) with NVIDIA 

 
An identical 2D FFT (Two Dimensions FFT ) image reconstruction was 

made with Connex, too. As we had to reconstruct a 128x128 image, we arranged 
horizontally our FID data into 128  float vectors  ( X[0] … X[127] ) into Connex 
Array, computing first 128 FFTs on each vector (Fig. 6).                  
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Fig. 8. Vector data disposal in Connex Array 

 For the vertical FFT, data must be filled in horizontally again, so matrix in 
Fig. 8 was transposed using two special functions ( write(X,128,buffer) to save 
data in a temporary buffer, and  read (X,128,buffer,128,1) to effectively compute 
the transposed matrix).  

 

Fig. 9. MRI data in Connex Array 
 
Although a single image reconstruction (128x128) was made, our CA1024  

chip [7] can compute 8 images in parallel (for VECTOR_SIZE = 1024), as can be 
seen in Fig. 9. Briefly, presented FFT CUDA algorithm is not as effective as 2D 
FFT algorithm implemented in VectorC  with Connex Array. 

 Table 4 
2D DFT (128x128 pixels)  image reconstruction 

         
        
         Function 
 

 
  Floating point 
     operations 
 
    

   
 Number  
      of  
   cycles 

 
      Execution time 
      Connex Array 

     1D FFT,N=128 
         Im{X}=0 

        32943       35         87.5 ns 

 2D 128x128 Image 
     Reconstruction 
 Im{X}≠0,Re{X}≠0  

     
    168668816 

 
  573440 

 
        0.67 ms 

 
Table 5 shows usual MRI computational performances compared to 

Connex Array. 
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Table 5 
MRI scanner comparison 

                MRI SCANNER                            PERFORMANCE 
Siemens Magneton Simphony      35 frame/s, 128x128 pixels 
GE Signa Ovation    150 frame/s, 128x128 pixels 
Connex Array    350 frame/s, 128x128 pixels 

 
5. Conclusions 

 
FFT has been implemented in GPUs  before. We tooked from [1, 17, 21, 22, 23] all 
data necessary for Table 6 comparisons, reviewing the  Fourier  Transform and the 
classic FFT Cooley-Tukey algorithm used in  MRI  (and  ultrasonic, X-Ray)  image  
reconstruction on several GPUs, showing  that for the same algorithm implemented  
on other parallel technologies, Connex’s computing performance and power 
consumed are remarkable. Regarding the task efficiency (Table 6), one can see that 
Connex is eight times better than NVIDIA due to vectorial parallel implementation 
(shown in chapter 4), even though NVIDIA has a better general performance. As 
for  TMS320C4X, computing time / task efficiency is obviously better since it’s a 
specialized digital signal processor and Connex a general purpose parallel machine. 
Same remark for Cyclops-64 (specialized signal-processing chip with dedicated 
floating-point units, hence the power consumed is huge compared to Connex). 

 
                                                                                                                                              Table 6  

FFT parallel implementation efficiency on different GPUs 
   
    Parallel 
  computing 
    machine 

 
Algo- 
rithm 

  
   Core 
 Speed 
 (MHz) 

 
Performance 
 (Gflops) 

      
 Data size  
  (pixels) 

 
Computing
    time 
    (ms) 

 
Task  
efficiency 
(Gflop/task)

    
  Power 
consumed 
      (W) 

 
Task  
energy 
efficiency 
(Watt/task)

  NVIDIA  
Quadro FX 
    NV 40 

      
 2D FFT

 
    400 

 
     486 

128 x 128 
  32-bit 
   float  

 
     1.17 

 
       0.56 

 
        25 

 
    21.36 

  
  TMS320C4
         DSP 

    
 2D FFT

 
    400 

        
     147 

128 x 128 
  32-bit 
   float 

 
     0.42 

 
      0.061 

 
         5 

 
     11.9 

  
Connex Arra

   
 2D FFT

     
    400 

 
     117 

128 x 128 
  32-bit 
    float 

 
     0.67 

 
      0.078 

 
        2.5 

 
      3.73 

 
      IBM  
Cyclops-64 

   
 2D FFT

 
    500 

           
       20 

128 x 128 
  32-bit 
    float 

 
     3.47 

 
      0.069 

         
      83.22 

 
     23.98 

 
     BOBS  
2040XL DSP

   
 2D FFT

 
    150 

           
      1.3 

128 x 128 
  32-bit 
    float 

 
      60.3 

 
       0.078 

         
         2 

 
      0.033 

 
In conclusion, we can say that MRI  reconstruction and any other FFT-

based applications are suitable for Connex Array’s computational power and 
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energy efficiency. We leave this issue open and we remain receptive to any 
suggestion and information related to this paper.     
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