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ACHIEVING SENSOR FUSION FOR COLLABORATIVE 

MULTI-LEVEL MONITORING OF PIPELINE 

INFRASTRUCTURES  

Grigore STAMATESCU1 

Large scale monitoring systems enable efficient field level data collection at 

high temporal and spatial resolutions. One example is the deployment of such 

systems in pipeline infrastructure applications which should be monitored for leaks 

and protected from unauthorized access, with the potential of causing significant 

environmental and economic damage. The paper presents the design of a multi-level 

system architecture for data collection and processing based on the collaborative 

integration of wireless sensor networks and unmanned aerial vehicles. Three sensor 

fusion methods: Kalman filtering, Fuzzy Sensor Validation and Fusion (FUSVAF) 

and Consensus-based processing, are considered for intelligent data reduction and 

situational awareness while alleviating communication bottlenecks across the multi-

level network. Simulation and experimental results are presented.  
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1. Introduction 

The fundamental role played by embedded networked systems in the 

Industrial- IoT, prominently represented by wireless sensor networks, with well 

established constraints on local computing and communication, is leading to the 

emergence and wide spread adoption of new ubiquitous monitoring and control 

technologies. The applications of these new technologies to solve social, 

economic and environmental challenges, are to be found in areas like security: 

critical infrastructure systems protection, energy: future smart grids, advanced 

metering infrastructures, industry: industrial wireless sensor networks (IWSN) or 

healthcare: body sensor networks and ambient assisted living and care for the 

elderly and chronic disease patients. Such a dense space-temporal instrumentation 

of the physical world leads to huge quantities of raw data and challenges that need 

to be addressed for effective and secure management and operation of such 

systems. A first step is to define efficient architectures and topologies for 

distributed information processing which assure the transformation of collected 

data to higher level pieces of information. Recent developments in embedded 

networked sensing and unmanned aerial vehicles, along with standardization 
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efforts have increased the adoption by industry users in real-world smart, safe and 

sustainable infrastructure systems. 

One approach to solve these ongoing challenges in an industrial system is 

the application of multi-sensor data fusion (MSDF) as a complex solution for 

dealing with incomplete, uncertain information coming from heterogeneous data 

sources in security-constrained environments. A defining problem for the domain 

is that of detecting, localization, tracking and classification of events, enabling 

higher level decision entities to act, in order to optimize the overall system 

operation or to minimize losses in the case of failure. Data integration is carried 

out by means of distributed and centralized fusion algorithms at the various levels 

of the network through local aggregation and fusion. Final goal is to achieve high 

confidence information regarding to the operation of the industrial system to be 

monitored aimed at decision support, optimization and planning. Our specific 

application focus is on wireless sensor networks (WSN) and unmanned aerial 

vehicles (UAV) collaboration for joint monitoring of pipeline infrastructure 

scenarios. The operational framework is that of multi-sensory intelligent 

environments which combine elements of computing, communication, control and 

cognition under a unifying novel paradigm. The particular nature of such large 

scale distributed transport systems poses a natural fit to the common 

characteristics of both WSNs and UAVs, namely: autonomous operation, 

communication, and local processing along with robust networking protocols. The 

main types of sensing and information processing architectures suitable for this 

type of application were previously defined as: conventional hierarchical, flat 

heterogeneous mobile sensor network structure, hybrid approaches [1]. Fig. 1 

presents a graphical illustration of such a collaborative system for pipeline 

surveillance. 

A sensor fusion architecture, aimed specifically at identifying pipeline 

leaks and perimeter breaches is found appropriate, along with associated 

mechanisms aimed at fault tolerance and recovery, adapted to these architectures. 

The implementation can take multiple forms, combining the outcome of local 

sensor network event detection algorithms with image processing output. In 

summary, the following challenges are identified: 

 

 Design of an integrated framework for information processing with 

application to large scale oil transport systems, based on collaborative 

monitoring through WSNs and UAVs; 

 Evaluation and implementation of data aggregation and multi-sensor 

integration to reduce communication burden and uncertainty across the 

network by leveraging local computation resources; 

 Combining scalar and multi-dimensional (image, video) data for high level 

management of situational awareness in pipeline infrastructures; 
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 Dynamic optimal tuning of hardware configuration and software/protocols 

adapted to event detection in large scale monitoring; 

 Achieve simulation results as well steps toward actual deployment, to 

evaluate the feasibility of the proposed solution in terms of reliability and 

energy efficiency [2]. 

 

 
Fig. 1. Operation scenario and system architecture 

 

The rest of the paper is structured as follows. Section two discusses recent 

related work relevant for real-world deployments of industrial wireless sensing 

solutions. Section three presents a detailed overview of the proposed system 

architecture for communication, data processing and interoperability. Discussion 

regarding three sensor fusion methods, applied to data processing from multiple 

sources is carried out in section four. Section five concludes the paper and opens 

up directions for future investigation. 

2. Related work 

Several works have recently approached the emergence of ubiquitous 

networked embedded devices in industrial context. A thorough study surveying 

one of the key issues hampering adoption of embedded computing and 

communication device in an industrial setting is performed in [3]. This is related 
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to dependability at the component, node and system levels. WSN-specific attacks 

are classified and their impact on health monitoring and machine diagnostics is 

investigated. A framework for network and data management, I3WSN, is 

introduced and evaluated in [4]. The authors detail the system architecture, with 

multiple local WSNs collecting data at the field level which then aggregated in a 

global control center (GCC). Leveraging web technologies enables easy queries, 

service implementation and data visualization and storage. The prominent 

application to showcase the usefulness in an industrial setting is event detection 

for safety in risk management. The paper does not handle actual hardware 

implementation and constraints of real-world deployments and it is limited to an 

indoor environment and static system architecture with centralized data fusion at 

the top level.  

A key issue in WSN deployments for manufacturing and industrial settings 

is localization for static and mobile entities. Conventionally this has been done by 

performing location inference by means of exploiting propagation behavior over 

the radio communication link. Basic approaches use the received signal strength 

indicator (RSSI) in relation to known fixed-position anchors to carry out 

trilateration for localization. More advanced methods include time of arrival 

(ToA), time difference of arrival (TDoA) or angle of arrival (AoA), depending on 

the case the need for more precise clock synchronization or more complex 

hardware might arise. In [5] mobile object localization is performed using 

ultrasound beacons in a manufacturing environment. Both active, which involves 

node to anchor distance ranging, and passive, anchor to node positioning, are 

covered. As trilateration may incur significant positioning error an intelligent 

method to improve the estimates is proposed, making use of an artificial neural 

network (ANN) to compensate signal noise and propagation effects. The scenario 

however is limited to a basic circular trajectory over a limited time-span and does 

not account for multiple node positioning. A more in-depth look at the radio 

channel modelling for low-power wireless communication is handled in [6]. The 

authors aim at deriving an optimal positioning strategy for facility sensor 

networks i.e. industrial wireless sensor networks for manufacturing plants, by 

statistical data analysis which can accommodate the multiple sources of 

interference, multi-path propagation effects and sensor faults and redundancy 

constraints. By using a fuzzy sensor validation and fusion (FUSVAF) method [7], 

confidence indicators are assigned to individual sensor readings which leads to an 

improved overall estimate of the desired parameter. Additionally, at the node level 

data can be pre-filtered in order to exploit on-board processing capabilities of the 

node. The optimal partitioning scheme can be used for various deployments and 

by assimilating UAVs as mobile nodes, they can be included in the global data 

processing framework running algorithms suited to the computing and 

communication resources available locally. 
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Of direct relevance to industrial pipeline monitoring applications, several 

systems have been proposed, implemented and evaluated. Initial experimental 

work was carried out for leakage detection and prevention for water pipelines. A 

system was proposed in [8] which uses the Intel Mote platform for pressure and 

acoustic/vibration measurement along the pipes to infer leakages. Signal 

processing is carried out locally and consists of frequency analysis for extraction 

and thresholding of Haar-wavelet coefficients. Upon surpassing the threshold an 

alert is conveyed towards the sink node. High energy content in certain frequency 

bands is also associated to possible leaks and correlated across neighboring nodes. 

A laboratory test-bed for system design is described in [9] which uses force-

sensitive resistors (FSR) for non-invasive relative pressure monitoring. The sensor 

values are reported by the wireless sensor network and analyzed centrally to 

detect potential leaks. Oil-head pipeline monitoring with wireless embedded 

sensors is presented in [10]. As novel element, nodes are self-sufficient, relying of 

energy harvesting by means of thermoelectric generators for power. The gradient 

between hot steam pipes flowing into the well and external environment is 

exploited and proven to assure ample power reserves for nodes operating a 

conventional sense-store-transmit application. 

3. System architecture 

The first level includes the individual sensor nodes which measure pipeline 

pressure to indicate possible leaks, detect presence by means of PIR and magnetic 

sensors and also measure ambient parameters such as temperature, humidity, etc. 

These are small embedded computing and communication devices which 

communicate wirelessly through a low-power radio interface and form a mesh 

network to reliably convey data towards the sink. The second level is the 

sink/cluster-head level. Multiple small scale wireless sensor networks are 

integrated at this level to assemble the large scale monitoring system. The central 

point of the network is a node with more computing and communication resources 

which acts as network coordinator for the first level but also communicates with 

its peers (the coordinators of neighboring networks) over a longer range 

communication interface. The upper, third level of the framework, includes the 

interaction between the cluster heads and an unmanned aerial vehicle (UAV) 

tasked with a support role in the framework. Its role is two-fold, first it has the 

ability to relay WSN data to the central point of the monitoring system, called 

ground control center (GCC), but it is also used to collect visual information in 

the form of static and dynamic images to enhance data collection and event 

detection at the ground level. One relevant example is dispatching the UAV to 

validate a perimeter breach along the pipeline by target tracking and 

identification. 
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A main design option is to establish a decentralized data fusion 

architecture with the goal of efficient event detection and situation awareness. As 

background, such an approach offers some notable advantages concerning mainly 

communication and scalability. By leveraging the local computing resources of 

the nodes, the data processing load is distributed. This leads to reducing the 

impact of communication and signal processing bottlenecks in the overall system. 

Also, as large scale monitoring systems can be composed of hundreds to 

thousands of nodes, scalability is an important concern. By implementing 

effective processing distribution mechanisms, new entities (nodes, networks or 

UAVs) can be easily added to the system without significant additional overhead. 

From a sensor integration perspective, by adhering to the three layer model 

previously introduced, several data processing operations are assigned to each 

level. On the individual node level, some basic filtering e.g. low-pass filter for 

noise suppression and thresholding can be applied on the raw data before 

communication. It has been previously estimated that, from an energy efficiency 

point of view, the energy to transmit 1 bit of data over a low-power wireless link 

equates to between 1000 - 3000 microcontroller operations, so that there is a 

convincing incentive to process data on-board. The second, higher level, for 

processing takes place at the network coordinator/cluster head level. As this node 

is the central collection point for data generate by the rest of the nodes, it is able to 

perform aggregation and fusion across time and domains, to the extent that it’s 

computing resources allow. This ranges from basic aggregation operators such as 

COUNT, AVG, MAX, MIN, etc. to more complex functions that implement  data 

fusion methods. As the role of the central node is both down-stream, coordination 

of the local network and up-stream, among peers and towards the UAV system. 

One novel implementation is the Opal sensor node [11] which uses two radios for 

communication in the 2.4GHz and 900 MHz bands and exploits thus 

communication diversity. Finally, at the top level, scalar data collected and 

processed by the ground sensor networks can be used to enhanced static and video 

surveillance of the pipeline infrastructure by a dedicated UAV. The two sources 

are fused at the ground control center (GCC) where humans also enter the loop for 

decision making. Associated to the GCC, the central coordination and fusion node 

of the wireless sensor network (NCW), provides an interface between the GCC 

and the deployed ground sensors. It provides the required computing resources for 

fusion algorithm implementation and bi-directional communication through a 

low-power radio interface.  A diagram of the system architecture is shown in Fig. 

2. 
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Fig. 2. Design of WSN fusion gateway 

 

System integration has been realized by combining off-the-shelf 

components, namely a BeagleBone Black embedded development board running 

Linux along with a TI CC2531 USB radio module, acting as radio base station for 

the IEEE 802.15.4 compliant ground sensor network. The Beaglebone leverages a 

Cortex-A8 processor at 1GHz and 512MB DDR3 memory and 4GB on-board 

flash along with a suite of connectivity options for interfacing, such as: USB, 

Ethernet, HDMI. By providing open-source software and hardware it is a very 

flexible solution. The radio module offers 2.4GHz ISM connectivity and mesh 

networking support under ContikiOS and supports IPv6 networking for the sensor 

network through 6LoWPAN protocols. The NCW is responsible for field data 

collection in raw or aggregated formats and performs sensor fusion according to 

the mission configuration. It interfaces through the serial USB port towards the 

GCC where the operator can leverage this data in an augmented reality 

environment for situational awareness. 
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4. Sensor fusion methods  

Three sensor fusion methods were chosen for this analysis: Kalman 

filtering, Fuzzy Sensor Validation and Fusion (FUSVAF) and consensus-based. 

We briefly review their theoretical background along with simulation and 

experimental results in connection to our proposed application scenario. 

 

- Extended Kalman filter (EKF) 

 

 The extended Kalman filter represents a generalization of the conventional 

Kalman filter (KF) towards non-linear systems. In addition to KF, it involves a 

linearization step at each cycle, which is based around the most recent state 

estimate. It is important to note that, as opposed to KF, EKF is not an optimal 

filter and it lacks convergence where the approximation of the linear model is not 

good enough on the entire uncertainty interval. Taking the case of the non-linear 

discrete system: 

 

         (1) 

         (2) 

 

with  and  zero mean, Gaussian noise and covariance matrices  and  

respectively. We denote  and  the Jacobian matrices of the functions  

and . 

 

         (3) 

        (4) 

 

The extended Kalman filter algorithm is implemented using two stages of 

prediction and measurement update, as follows: 

 

Prediction:           (5) 

 
 

Measurement update: 

 (6) 

 

          (7) 

    (8) 
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Simulation results are presented in Fig. 3. It illustrates the output of an 

uni-dimensional EKF for a stream of 20 raw measurements of a ground sensor. 

The initial estimates for process and measurement noise variance,  and , can be 

tuned to adjust system performance. 

 
Fig. 3. EKF estimation of discrete measurements with r=0.1 and q=0.1 

 

- Fuzzy Sensor Validation and Fusion (FUSVAF) 

 

FUSVAF technique was implemented in [12] for sensor drift correction 

and previously applied in [13] for UAV altitude estimation based on barometric 

and GPS readings. It assumes constraining measurements from different sources 

through a dynamically adjusted validation gate. The validation gate can take the 

shape of a piece-wise bell curve, whose margins of are determined and updated by 

means of a fuzzy reasoning process. The confidence values are assigned by: 

 

                         (9) 

The estimated fused value, , is computed using the equation: 

 

                                      (10) 
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where zi are the measurements,  are the confidence values,  is an adaptive 

parameter which represents system state,  is a constant scaling factor and  is the 

predicted value. 

Figs. 4 and 5 present the outcome of the fusion method for experimental 

temperature and humidity data, collected from two ground sensor nodes. 

 

 
Fig. 4. Fused temperature measurements 

 

 
Fig. 5. Fused humidity measurements 

 

- Consensus-based methods 

 

Consensus-based methods assume a distributed optimization process 

across a local cluster of sensing entities. The theoretical background and proofs 

have been extensively discussed in [14,15]. Fig. 6 represents the outcome of a 

consensus-based mechanism implementation where the mean squared error 

(MSE) between individual estimates is considered as metric and stop-condition 

for the iterative algorithm. 



Achieving sensor fusion for collaborative multi-level monitoring of pipeline infrastructures   93 

 
Fig. 6. MSE iterative consensus 

5. Conclusions 

The paper discussed the application of multi-level sensor integration to 

large scale monitoring systems based on collaborative WSN and UAV entities. 

The chosen application, pipeline infrastructure systems offer signification 

potential for real-world implementations due to its key characteristics, scale and 

critical infrastructure designation. By studying the three methods for sensor fusion 

methods at the local and network levels, one of the main findings is that they can 

be used in a complementary fashion to achieve the best outcome. The concurrent 

use of the three algorithms can be implemented as follows: 

 Kalman filtering for on-node pre-processing of raw data streams; 

 FUSVAF at the cluster-head level for fault detection and weighted 

fusion of pre-processed data; 

 Consensus-based methods, for on-demand, in-network pervasive 

information where the decision is distributed across the 

heterogeneous computing and communication entities. 

Current and future work is aimed at deploying an integrated functional 

model of the monitoring systems, including WSN and UAV components and 

proving its applicability in a real scenario. 
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