
U.P.B. Sci. Bull., Series C, Vol. 75, Iss. 4, 2013 ISSN 2286 – 3540

PROGRAMMING DISTRIBUTED APPLICATIONS FOR
MOBILE PLATFORMS USING MPI

Iulian VÎRTEJANU1, Costică NIŢU2

Message Passing Interface (MPI) is library specification meant to facilitate
developing distributed applications for high performance computing. MPICH2 is a
freely available implementation of the MPI standard. The first part of the paper
describes a method for cross-compiling the MPICH2 library for ARM™ platforms
(specifically, for Google Android™ OS phones). The second part presents the
results of running a distributed application (specifically, ߨ estimation using Monte
Carlo statistical method) on two single core ARM™ CPU mobile phones connected
via WIFI.

Keywords: message-passing, distributed, ARM™, mobile phones

1. Introduction

 Even if Android OS is a recent player on the smart phone market, it
needed only few years to become a leading platform in the world [1]. Based on
Linux kernel, Android does not use the standard glibc [2] which accompanies
most Linux distributions, but a limited (compared to glibc) alternative custom
made for mobile phones, alternative named Bionic. “The core idea behind Bionic's
design is: KEEP IT REALLY SIMPLE.” [3]. Bionic fully supports ARM™
architecture.
 Due to advance in technology, there will be a lot of powerful mobile
devices out there in few years; already multi-core CPU mobile phones (such as
Samsung Galaxy S2) are sold.

The paper presents a method to run distributed applications on Android
based mobile phones, without relying on Bionic C library.

 2. Estimating ࣊ using Monte Carlo method
 We decided to choose a simple and easily parallelizable algorithm, which
is estimating ߨ using Monte Carlo integration methods [4].Given a square with
sides of 2ݎ and a circle with the radius ݎ contained within the square, the area
rapport between them will be circle area / square area, thus equal to:

ଶݎߨ

ଶݎ4 ൌ
ߨ
4

1 PhD. student., Faculty of Electronics, University POLITEHNICA of Bucharest, Romania, e-mail:

viulian@gmail.com
2 Prof., Faculty of Electronics, University POLITEHNICA of Bucharest, Romania, e-mail:

cnitu_upb2001@yahoo.com

144 Iulian Vîrtejanu, Costică Niţu

If ܰ points are generated randomly within the square, then about ܰߨ 4⁄
should fall within the circle within the square.

If we have an algorithm that generates ܰ points randomly and counts the
number of those falling within the circle (let’s say using variableܥ), then ߨ can be
estimated using the formula:

ߨ ؆
ܥ4
ܰ

The algorithm is very easy to parallelize since processes do not depend on
intermediate results of other processes. If P processes are used, we need one
broadcast event to inform the nodes of initial conditions and at the end all
processes send back a message to the master containing the results.

3. MPICH2
Message Passing Interface (MPI) is library specification meant to facilitate

developing distributed applications for high performance computing. MPICH2 is
a freely available implementation of the MPI standard.

MPICH2 contains the library itself (that distributed applications can use to
for message-passing between processes) as well as a set of tools that facilitate
running processes on different machines, all with a minimal amount of setup.

Two computers were used to test and benchmark the algorithm. They are
Windows 7 64bit based machines, running on Intel architecture and connected via
Wireless network:

Fig. 1 - Hardware setup for testing purposes

 Since the setup involved CPUs having different number of cores, MPICH2
was configured to execute 4 processes on master server and 2 processes on the
additional machine. MPICH2 will try to distribute the processes based on the
hints indicated in the machine file (a file which describes the IP address of each
cluster node and how many processes are to be executed on that specific node).
 The most important API methods used are MPI_Bcast and MPI_Reduce [8]
which will send a message to all nodes in the cluster and respectively, will
combine the results from all nodes into the master process (rank = 0).
 Two variables were used to test the algorithm:

Programming distributed applications for mobile platforms using MPI 145

1. Number of processes (from 1 to 12, and then 16 processes)
2. Number of iterations (equal to the total number of points ܰ that the
processes had to distribute among themselves and calculate ߨ statistically)

Fig. 2 - Algorithm results on PC based cluster

The results indicate that for a small number of iterations, the CPUs finish
the job faster than what it takes the framework to setup the processes and
communication channels. To see an impact, we need to increase the number of
iterations so that the setup time becomes significantly less than the time
framework needs to set up the cluster. Thus, for ܰ ൌ 20.000.000 the fastest
computation happens when 1 process runs per CPU (six distributed processes).
We notice that also at 12 distributed processes (2 processes / CPU) the time
needed to estimate ߨ is small. This is because for intermediate number of
processes, one CPU core will have to handle more than one process which delays
the total execution time.
 The algorithm works and we could try it out on real mobile phones.
Current Android OS current phones run on ARM™ CPUs but are not shipped
with a preinstalled native compiler. Tools and distributed application executable
code for ARM™ need to be generated on a platform where a C compiler is
available. Using a compiler to generate executable code for a different platform
different than the one where compiling takes place is a process named cross-
compiling.
 Since MPICH2 is currently distributed for major UNIX operating systems
which rely on a full glibc canonical library, we decided not to use Android’s

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 10 11 12 16

Ti
m
e
(m

s)

Number of distributed processes

PI estimation using distributed Monte Carlo
method

(6 physical 2GHz Intel CPU cores)

5.000.000

10.000.000

20.000.000

50.000.000

Iterations

146 Iulian Vîrtejanu, Costică Niţu

Bionic library. The choice was uClibc library, an almost complete (compared with
glibc) library made especially for embedded devices.

4. Compiling MPICH2 for ARM™ architecture
To generate executable ARM™ code, an Intel X86 platform (E8500 Intel

CPU) running with Ubuntu 11.40 was used.
Requirements:

• buildroot [5] – a complete C bundle that allows generating a full Linux
distribution for embedded devices. A GNU toolchain was created which allowed
cross-compiling to ARM™ executable code on Intel X86 platforms. It contains
uClibc.
• MPICH2 [6] – a freely available MPI implementation library that was
statically linked to the executable.
• Unlocked Android phones. This will void the warranty, but produces
already give away tools to unlock the bootloader of the phones allowing root
access.

Once the toolchain is generated, MPICH2 can be cross-compiled using
command:

export PATH=/home/viulian/buildroot‐2011.05;%PATH%
export LIBSDIR=/home/viulian/buildroot‐2011.05/output/target/usr
CFLAGS="‐I/home/viulian/buildroot‐2011.05/output/target/usr/include/libxml2 ‐
DHAVE_DEPRECATED_DNS_FUNCS ‐march=armv5 ‐mfpu=vfp ‐fPIC ‐fno‐exceptions ‐mlong‐
calls ‐O3 ‐ffunction‐sections ‐fno‐short‐enums ‐fomit‐frame‐pointer ‐fno‐strict‐
aliasing ‐finline‐limit=64 ‐static" CC=arm‐linux‐gcc ./configure ‐‐prefix=/system
‐‐host=arm‐linux ‐‐disable‐ipv6 ‐‐enable‐static ‐‐with‐pm=smpd ‐‐with‐
device=ch3:sock ‐‐disable‐f77 ‐‐disable‐fc
The resulting executables files (mpiexec and smpd) should be copied to the

phones within the /system/xbin/ folder.
Since MPICH2 was not meant to run in Android environment, there are

few things that we encountered:
• $HOME environment variable has to point to a location not found on the
SDCard (since on Android, SDCard is mounted with generic attributes that forbid
changing the rights of the files). MPICH2 requires that the configuration files are
only readable by the current user.
• /etc/hosts files have to indicate the address of each phone in the cluster.
Otherwise communication hangs, even if the cluster configuration file specifies
the IP of each phone.
• hostname command is mandatory to be used to give a name to each
phone. Otherwise, the API considers the phone name to be ‘localhost’, and
communication between the cluster nodes will block indefinitely.

For now, we’ve only cross-compiled the tools that are used to setup the
mobile phone cluster. The next step is to cross-compile the distributed
application. The C code present in the mcpi.c file [7] has to be compiled using the
following Makefile file:

Programming distributed applications for mobile platforms using MPI 147

CC=/home/viulian/system/bin/mpicc
TARGET=mcpi
all: $(TARGET)
$(TARGET): $(TARGET).o
 $(CC) ‐static ‐o $@ $(TARGET).o $(LIBS) $(LDFLAGS)
$(TARGET).o: $(TARGET).c
 $(CC) $(CFLAGS) ‐c $(TARGET).c
clean:

 rm ‐f *.o $(TARGET)
The executable file mcpi was copied on /system/xbin/ folders of the

phones which by default is present in the $PATH environment variable. Thus, the
cluster will be able to locate the distributed application executable when
executing the job.

5. Running the distributed application
The cluster was created by two mobile phones running on a single core

ARM™ CPU. One was Qualcomm MSM8255 Snapdragon 1GHz CPU and the
other was Qualcomm MSM7227 600 MHz CPU. The best results are obtained
when all nodes in the cluster are identical in performance (otherwise there’s
visible performance degradation – since other nodes will wait for the slower node
one to finish computing). Since the 1GHz CPU is almost twice as fast as the lower
end one, we decided to run 2 processes on it.

The results indicate that the fastest computation happens when 7 processes
are running. It is so because at the given CPU speeds and distribution (2 processes
per faster core, 1 processes for slow one) MPICH2 selected to run 5 processes on
the fastest CPU, and 2 on the slow one. This minimized the wait time since in
other possible distribution of the processes puts more load on one of the phones
and the whole wait time increases.

The results of running the application on the cluster:

Fig. 3 - Results of running distributed application on mobile phone cluster

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8

Ti
m
e
(m

s)

Number of distributed processes

PI estimation using distributed Monte
Carlo method

(2 physical ARM™ CPU cores)

1.000.000

5.000.000

10.000.000

Iterations

148 Iulian Vîrtejanu, Costică Niţu

 6. Conclusion

This paper shows that running distributed applications on mobile phones is

possible, and they can be used as a platform to foster new and innovative ideas.
Some limitations were observed. There is a need for new standard which

allows for dynamic nodes to join the cluster and handle units of works
automatically. MPICH2 framework does not allow these; the cluster configuration
(machine addresses, processes / machines) has to be defined prior to the job being
started. Another major limitation is that for a phone to be part of a dynamic
network, additional security measures are needed, such as a VPN. However, a
secure VPN is currently not sustainable since it requires additional processing
power (battery) and also the overhead added to each TCP/IP packet which slows
down the message-passing communications.

With the advent with mobile technology (better batteries, faster network,
faster CPUs) having a dynamic cluster of mobile phones will create new business
ideas and improve the quality of life. An application idea would be the “family
cluster”, where family members mobile phones are personal PCs are part of the
same cluster with improved privacy and reliability, without the need for a third
party service provider acting like master hub.

R E F E R E N C E S

[1] Gartner, Market Share Analysis: Mobile Devices, Worldwide, 1Q11, Retrieved from

http://www.gartner.com/it/page.jsp?id=1689814
[2] A. Ulvesand, D. Eriksson, Native code on Android, 2011, Retrieved from

http://www.csc.kth.se/utbildning/kth/kurser/DD143X/dkand11/Group1Mads/andreas.ulves
and.daniel.eriksson.report.pdf

[3] Bionic C Library Overview, Retrieved from
http://www.netmite.com/android/mydroid/1.5/bionic/libc/docs/OVERVIEW.TXT

[4] A. Doucet, N. De Freitas, N. Gordon, Sequential Monte Carlo methods in practice, Birkhäuser,
2001

[5] Peter Korsgaard, Buildroot: making Embedded Linux easy, Retrieved from
http://buildroot.uclibc.org/

[6] MPICH2, Retrieved from http://www.mcs.anl.gov/research/projects/mpich2/
[7] mcpi.c, Retrieved from http://hex.ro/tracker/EasyTracker.php?id=47
[8] Joseph D. Sloan, High Performance Linux Clusters with OSCAR, Rocks, OpenMosix, and

MPI, O’Reilly, 2004

