
U.P.B. Sci. Bull., Series C, Vol. 74, Iss. 3, 2012 ISSN 1223-7027

AN AGENT-ORIENTED APPROACH FOR AMBIENT
INTELLIGENCE

Andrei Olaru1, Adina Magda Florea2, Amal El Fallah Seghrouchni3

Majoritatea implementărilor de sisteme pentru Inteligenţa Ambien-
tală realizate în cursul ultimului deceniu s-au concentrat asupra implemen-
tării de sisteme complete pentru scopuri specifice. În activitatea noastra ne
concentrăm pe acel nivel dintr-un sistem de Inteligenţă Ambientală care se
ocupă cu transferul de informaţie ţinând cont de semantică, în aşa fel încât
informaţia relevantă să fie livrată utilizatorului interesat. Abordarea noas-
tră foloseşte un sistem multi-agent caracterizat de comportament si cunoşt-
inţe locale pentru agenţi, o topologie a sistemului în relaţie cu contextul, şi
şabloane de context pentru detectarea situaţiei utilizatorului.

Most implementations of Ambient Intelligence – or AmI – systems
realized over the last decade have focused on implementing complete systems
that serve specific purposes. In our work we focus on that layer of an AmI
system that handles the semantic-aware exchange of information in order to
deliver the relevant information to the interested user. Our approach uses
a multi-agent system that features local behavior and knowledge for agents,
a context-related system topology, and context patterns for the detection of
the situation of the user.

Keywords: Ambient Intelligence, Multi-Agent Systems, Context-awareness

1. Introduction

The term of Ambient Intelligence has been coined at the dawn of the
21st century, in 2001, with the report of the ISTAG group [1], when it became
one of the priorities in the ICT domain in the European Union and worldwide.
Ambient Intelligence – or AmI, for short – was envisaged as a ubiquitous,
unitary, electronic environment that would assist people in many or all of
their life’s aspects and in a considerably varied number of manners.

1Assistant Professor, PhD, Computer Science and Engineering Department, University
Politehnica of Bucharest, Romania, e-mail: cs@andreiolaru.ro

2Professor, Computer Science and Engineering Department, University Politehnica of
Bucharest, Romania, e-mail: adina@cs.pub.ro

3Professor, Laboratory of Informatics of Paris 6, University Pierre et Marie Curie, France,
e-mail: amal.elfallah@lip6.fr

45

46 Andrei Olaru, Adina Magda Florea, Amal El Fallah Seghrouchni

Ambient intelligence should represent the third wave in computing [2].
After the mainframe and the personal computer, in the age of Ambient In-
telligence the computing devices become invisible, by being integrated in all
objects and materials. This makes everything become "smart" and, by means
of communication, everything around us will collaborate in order to offer more
complex functions and more relevant results. AmI also represents an evolution
of what is now the Internet: web-based, collaborative and social services that
assist the user in daily activities.

As a complex system, an AmI environment is organized on several layers
[3]: the hardware layer is composed of all the devices that are part of the
AmI environment – sensors, actuators, smartphones, displays, laptops, etc, –
and is very heterogeneous from the point of view of computational and storage
capacity; the interconnectivity layer allows connections between the devices
in the hardware layer, and may use wired or wireless networks, Bluetooth,
Infrared, GSM, etc; the interoperability layer is vital to AmI, in order for
devices to be able to communicate freely, using uniform protocols above this
level; the application layer is the layer that makes AmI truly "intelligent" – it
offers services that have semantic awareness and that are adapted to the user’s
context; the last layer is the interface – gestures, speech, voice recognition
and other means of human-machine communication make AmI compatible
with people that are not previously trained to use a computer and also make
AmI environments more comfortable and intuitive to use.

All of the layers presented above pose many specific challenges to re-
searchers. But as a whole, AmI must have two important features: first, be
proactive and context-aware, taking the right action at the right time; sec-
ond, remain non-intrusive, by not disturbing the user and letting the user
focus on the activity rather than on the interface with the computer [2]. An
important part in solving these issues is held by the application layer. One
of the prominent solutions that have been proposed for the implementation
of the functionalities offered by the application layer comes from Artificial
Intelligence [4], and is represented by Multi-Agent Systems [5].

The goal of this work is to answer the question "How to build a multi-
agent system for the application layer of an Ambient Intelligence environ-
ment?". Such a multi-agent system would have two roles: on the one hand,
work with information at a semantic level, exchange and share information in
order to deliver the potentially relevant information to the potentially inter-
ested agent / user; on the other hand, to offer to the user intelligent services
resulting from information sharing. Its function remains general and indepen-
dent of specific domains of applications. The information provided by this
layer may be provided directly to the interface, or to specialized applications
(or specialized agent components) that use the information for domain-specific
tasks.

An Agent-Oriented Approach for Ambient Intelligence 47

The focus of our work is on three aspects of the modeling and imple-
mentation of a such agent system: the behavior of the agent ("how does the
agent exchange the information?"), the topology of the system ("with whom
does the agent exchange the information?") and the representation of context
("how does the agent determine if the information is relevant?"). This paper
will focus more on the last two aspects: topology (context-awareness outside
the agent) and knowledge representation (context-awareness inside the agent).

In order to illustrate the presented approach, let us use a part of a sce-
nario that we have developed jointly with a team from NII (Tokio):

Scenario: Alice is one of the best students in the Computer Science
course in her university. The university features a "smart", AmI-enabled cam-
pus, and is located in a city with several AmI-enabled systems, for instance the
public transport system. Among many other functionalities that are possible
thanks to Ambient Intelligence, it is possible for the Professor that holds the
Computer Science course, when he arrives in the classroom, to know which
students are already present and to see an estimation of the arrival time of the
missing students. This way the Professor can decide when to start the lecture.
Today, Alice is in a transit train and is supposed to arrive on time, but due to
unexpected events, the train is going to be late. Automatically, the Professor
will be notified that Alice will be at least fifteen minutes late, and therefore
he will begin the course even if she hasn’t arrived.

The scenario features important elements of our approach: the behavior
of the system is context-aware, and the context is changing (dynamic context);
the presented behavior is based on the exchange of information between several
agents (Alice’s agent, the Professor’s agent, the agent managing the Computer
Science Course, the agent managing the train, etc), connected by relations
based on the context of the entities.

The following section presents the state of the art in the implementations
of AmI environments, as well as in the implementation of context-awareness.
Section 3 briefly presents the three aspects of our approach to building a multi-
agent system for Ambient Intelligence. These aspects are then discussed in
detail in Sections 4 (the topology of the system), 5 (context patterns) and 6
(agent behavior). The last section draws the conclusions.

2. Related Work

In the field of agent-based Ambient Intelligence platforms there are two
main directions of development: one concerning agents oriented toward assist-
ing the user, based on centralized repositories of knowledge (ontologies), and
one concerning the coordination of agents associated with devices, and poten-
tially their mobility, in order to resolve complex tasks that no agent can do by
itself, also considering distributed control and fault tolerance.

There are agent-based systems for Ambient Intelligence that do not ex-
plicitly use context-awareness, and also some that do not use agents as a

48 Andrei Olaru, Adina Magda Florea, Amal El Fallah Seghrouchni

distributed computing paradigm [6, 7, 8, 9]. There is however research that
concerns larger numbers of agents, distributed control, and fault tolerance:

Context handling is considered by the AmbieAgents infrastructure [10],
which is proposed as a scalable solution for mobile, context-aware information
services. There are three types of agents: Context Agents manage context
information, considering privacy issues; Content Agents receive anonymized
context information and execute queries in order to receive information that
is relevant in the given context; Recommender Agents use more advanced rea-
soning and ontologies in order to perform more specific queries. The structure
of the agents is fixed and their roles are set. Although it may prove effective
in pre-programmed scenarios, the system is not very flexible. In this paper
we are trying to provide a simpler agent structure, in a system that is based
more on self-organization and less on controlled interaction between agents.
Context-aware data management is also discussed by Feng et al [11], but con-
text queries are handled in a centralized way, making it efficient but not very
scalable.

The LAICA project [12] brings good arguments for relying on agents in
the implementation of AmI. It considers various types of agents, some that may
be very simple, but still act in an agent-like fashion. The authors, also having
experience in the field of self-organization, state a very important idea: there
is no need for the individual components to be "intelligent", but it is the whole
environment that, by means of coordination, collaboration and organization,
must be perceived by the user as intelligent. The work is very interesting as it
brings into discussion important issues like scalability, throughput, delegation
of tasks and a middleware that only facilitates interaction, in order to enable
subsequent peer-to-peer contact. The application is directed towards generic
processing of data, which is done many times in a fairly centralized manner.
The structure and behavior of agents is not well explained, as their role in the
system is quite reduced – the middleware itself is not an agent. However, the
architecture of the system remains very interesting.

The SpacialAgents platform [13] is a very interesting architecture that
employs mobile agents to offer functionality on the user’s devices. Basically,
whenever a device (supposedly held and used by a user), which is also an
agent host, enters a place that offers certain capabilities, a Location Informa-
tion Server (LIS) sends a mobile agent to execute on the device and offer the
respective services. When the agent host moves away, the agent returns to the
server. Sensing the movement of agent hosts in relation with LISs is done by
the use of RFID tags. The architecture is scalable, but there is no orientation
towards more advanced knowledge representation or context-awareness, how-
ever it remains very interesting from the point of view of mobile agents that
offer new capabilities.

Agents with reduced memory and performance footprint for AmI have
been developed in the Agent Factory Micro Edition project [14]. The authors

An Agent-Oriented Approach for Ambient Intelligence 49

succeed in implementing a reliable communication infrastructure by using rea-
sonably simple agents, however there is no higher level view that includes more
complex global behavior and there is no context-awareness.

The implementation of the SodaPop model [15] is another application
sharing common features with our own, especially the use of self-organization
for an AmI system, but it does not use the agent paradigm and it handles a
quite specific case.

Ever since the first works on context-awareness for pervasive computing
[16], certain infrastructures for the processing of context information have been
proposed [17, 18, 10, 19]. There are several layers that are usually proposed
[20, 11], going from sensors to the application: sensors capture information
from the environment, there is a layer for the preprocessing of that informa-
tion, the layer for its storage and management, and the layer of the application
that uses the context information [20]. This type of infrastructures is useful
when the context information comes from the environment and refers to en-
vironmental conditions like location, temperature, light or weather. However,
physical context is only one aspect of context [21]. Moreover, these infrastruc-
tures are usually centralized, using context servers that are queried to obtain
relevant or useful context information [16, 10]. In our approach [22], we at-
tempt to build an agent-based infrastructure that is decentralized, in which
each agent has knowledge about the context of its user, and the main aspect of
context-awareness is based on associations between different pieces of context
information.

Modeling of context information uses representations that range from
tuples to logical, case-based and ontological representations [23, 24]. These
are used to determine the situation that the user is in. Henricksen et al use
several types of associations as well as rule-based reasoning to take context-
aware decisions [19, 25]. However, these approaches are not flexible throughout
the evolution of the system – the ontologies and rules are hard to modify on
the go and in a dynamical manner. While ontologies make an excellent tool
of representing concepts, context is many times just a set of associations that
changes incessantly, so it is very hard to dynamically maintain an ontology
that describes the user’s context by means of a concept. In this paper we
propose a simple, but flexible and easy-to-adapt dynamical representation of
context information, based on concept maps and conceptual graphs. While our
representations lacks the expressive power of ontologies in terms of restrictions,
a graph-based representations is very flexible and extensible, so support for
restriction may be added as future work.

In this work we will present an approach to context-awareness that in-
volves two aspects: first, the implicit modeling of context by using a hierarchi-
cal structure for agents, that is mapped against the different types of contexts
that are considered by the system; second, a graph-based representation of
context information that, by means of graph matching, allows identifying the

50 Andrei Olaru, Adina Magda Florea, Amal El Fallah Seghrouchni

relevant information and also the detection and solution of problems in the
user’s context.

3. Elements of the Approach

Our approach to building a multi-agent system for the application layer
of Ambient Intelligence has two central aspects: the context-aware topology
of the agent system and the use of context patterns to recognize relevant
information. Beside these two elements, the behavior of the agents relies on
the exchange of information with neighbor agents in order to spread interesting
information.

Relying on local information exchange has proved effective in previous
studies by the authors [26], in which pieces of information successfully spread
in a multi-agent system where the agents had a preference only for certain
types of information. The information did spread quickly and correctly, even
though each agent had only a very small knowledge base that referred only to
its own information and to some of the neighbors’ information.

However, our first studies used a space-based topology – two agents were
neighbors (i.e. could communicate directly) only if they were within a certain
distance of each other – and a simple indication of context – information was
characterized by some domains of interest, its persistence and a measure of
importance.

Table 1
Elements of our approach: the level, the implementation, and the result.

Level Context-aware elements Result
System
(outside the agent)

Context-aware relations between
agents

Context-aware topology

Agent
(inside the agent)

Context representation and con-
text patterns

Context-aware behavior

In this paper we extend our approach with an improved topology – that
considers shared context of more types – and improved computing of relevance
– the relevance of the information is computed using a graph-based represen-
tation for information and also graph patterns that represent the interest of
the agent. We present the elements of our approach in Table 1.

4. Agent System Topology

In the context of a decentralized and scalable agent system, one challenge
is with whom should agents communicate. That is, in the topology of the agent
system, who should be the neighbors of an agent?

The system that we are designing relies on the context-aware exchange
of information between an agent and its neighbors. But an agent should only
exchange information with another agent that may consider that information
as relevant. And that can happen only if the agents share some type of context.
For instance, if the agents are part of the same activity, or if their users are

An Agent-Oriented Approach for Ambient Intelligence 51

located in the same space. Two agents that share no context would not have
any information that is relevant to both of them.

Therefore, the topology of the system should be induced by con-
text: if two agents share context, they should be neighbors. This creates a
topology that is an overlay over the actual topology of network that intercon-
nects the agents. We can consider that the underlaying network allows direct
connections between any two agents (i.e. the connection graph is complete).

In order to better map context to system topology, we have defined the
following types of neighborhood relationships, to match the different types of
context – spatial, computational, temporal, activity and social [21]: for spatial
context – the Place agent and the is-in relation; for computational context
– the Device and Service agents and the of (linking to the agent to which
the offering of the service is related, like a place) and executes-on relations
for services and controlled-by (linking the device to the user that controls it)
for devices; for temporal context – the Time interval agent and the within
relation; for activity context – the Activity agent and the part-of relation; for
social context – the User and Group agents and the in (linking a user to a
group) and connected-to (linking two users) relations.

A more organized perspective on the relations between agents is presented
in Table 2.

Table 2
The possible relations between different agent types, resulting from mapping

of context to system topology.
Agent type Possible incoming relations

(and their sources)
Possible outgoing relations
(and their destinations)

Place is-in (from Activity, User, De-
vice, Service, Place

-

Activity part-of (from User, Group,
Activity, Service)

of (toward User), within (to-
ward Time Interval)

Device executes-on (from Service) is-in (toward Place),
controlled-by (toward User)

Service - executes-on (toward Device),
is-in (toward Place), part-of
(toward Activity), within (to-
ward Time Interval)

User controlled-by (from Device), of
(from Activity), connected-to
(from User)

part-of (toward Activity), in
(toward Group), connected-to
(toward User)

Group in (from User) part-of (toward Activity)
Time Interval within (from Activity, Service,

Time Interval)
within (toward Time Inter-
val)

There are several advantages to using a context-based topology: on the
one hand, information only spreads among agents that share common context,
i.e. a piece of information is sent to an agent to which it is more likely to be
relevant; on the other hand, when an agent searches for a piece of information,

52 Andrei Olaru, Adina Magda Florea, Amal El Fallah Seghrouchni

the search will be confined to the context of the agent, i.e. where it is most
likely to yield relevant results. Having the types of agents and relations prede-
fined (but nevertheless still having a high degree of generality) allows for the
implementation of some specific behavior depending on the type of the agent.

Fig. 1. Agent topology for the scenario from Section 1. Dashed boxes group agents
running on the same machine.

Example. Returning to our example in Section 1, we can design the
topology of the agent system as in Figure 1. Having this topology, when the
information that Alice will be late is generated by her Scheduler (having used
information sent to Alice by Train), it will inform the agent managing her
CS Course attendance, which will disseminate this information to CSCourse,
which will inform the CourseStarter. This way, the information spreads among
agents having a common context, here the common context being mainly re-
lated to activity.

The use of a context-based topology has been validated through a proof of
concept application using a subset of the presented relations and agent types
[27], that has been demonstrated at the Fifth Joint NII-LIP6 Workshop on
Multi-Agent and Distributed Systems in 20101.

5. Context Patterns

In the context of an Ambient Intelligence system that should be com-
pletely distributed and formed of devices with heterogeneous computing capa-
bilities, one challenge is how should agents evaluate what is the information
relevant to them and, potentially, to their neighbors? That is, how to know if
the context of the information is compatible with the context of the agent?

The challenge of finding a good representation of context information is
that we want it to be open and flexible – be able to include new values and

1Workshop held in collaboration by the National Institute of Informatics in Tokyo and
the Laboratory of Computer Science of University Paris 6. Details at http://www-desir.
lip6.fr/~herpsonc/5workshopNii/program.htm

An Agent-Oriented Approach for Ambient Intelligence 53

structures without having to redefine ontologies, and also be able to aggre-
gate easily new information with the existing knowledge of the agent, all this
without having centralized components for context processing.

The representation for context information that we have chosen is based
on graphs. It is similar to RDF graphs and to concept maps, in that the edges
of the graph are predicates. Each agent has a graph G = (V,E) that contains
the information that is relevant to its function. For instance, the agent that
assists Alice (from our example scenario) would have a graph that contains
parts of Alice’s schedule (for the sake of simplicity we will omit the Scheduler
agent in this section), like in Figure 2.

Note that although some edges and nodes in the graphs may have the
same labels and semantics as elements from the agent topology in Section 4,
the two graphs are very different: these are data structures stored inside the
agent, and those in Section 4 represent the topology of the agent system.

Also, as opposed to the relations in the agent system topology (see Sec-
tion 4), the relations between concepts in the agent’s context are not prede-
fined, and can have any value – including values that coincide with the relations
between agents in the system’s topology.

Our contribution is represented, however, not by the representation itself,
but by the introduction of context patterns [28]. A pattern represents a set
of associations that has been observed to occur many times and that is likely
to occur again. Patterns may come from past perceptions of the agent on
the user’s context or be extracted by means of data mining techniques from
the user’s history of contexts. Commonsense patterns may come from public
databases or be exchanged between agents.

A pattern is also a graph, but there are several additional features that
makes it match a wider range of situations. For instance, some nodes may be
labeled with "?"; also, edges may contain regular expressions. A pattern s is
defined as:

GP
s = (V P

s , EP
s)

V P
s = {vi}, vi = string | ? | URI, i = 1, n

EP
s = {ek}, ek = (vi, vj, E_RegExp), vi, vj ∈ V P

s , k = 1,m, where
E_RegExp is a regular expression formed of strings or URIs.

Patterns represent situations that are relevant to the function of the
agent. Therefore, the agent will be interested in information that matches these
patterns. Take for example agent CSCourseAttendance, that manages Alice’s
attendance to the course: among others, it will be interested in information
about when will Alice actually attend the course. This can be expressed by
the pattern in Figure 3. That is, the pattern matches graphs that contain
the time interval in which Alice will be attending the course. Since Alice will
be late, we would want the CSCourseAttendance agent to receive information
about the new interval in which Alice will be attending the course, with an
updated start time.

54 Andrei Olaru, Adina Magda Florea, Amal El Fallah Seghrouchni

Fig. 2. The context graph of the agent assisting Alice, showing information about Alice’s
activity.

Fig. 3. Context pattern matching the time interval in which Alice will attend the CS
course.

An agent has a set of patterns that it matches against the current context
(graph G), and against information that it receives from other agents. A
pattern GP

s (we will mark with " P " graphs and elements that contain special
features like ? nodes) matches a subgraph G′ of G, with G′ = (V ′, E ′) and
GP

s = (V P
s , EP

s), iff there exists an injective function f : V P
s → V ′, so that

(1) ∀vPi ∈ V P
s , vPi =? or vPi = f(vPi) (same value)

and
(2) ∀eP ∈ EP

s , e
P = (vPi , v

P
j , value) we have:

-if value is a string or an URI, then the edge (f(vPi), f(v
P
j), value) ∈ E ′

-if value is a regular expression, then it matches the values value0,. . . ,
valuep of a series of edges e0, e1, . . . , ep ∈ E ′, where e0 = (f(vPi), va0 , value0),
ek = (vak−1

, vak , value1), k = 1, p− 1, ep = (vap−1 , f(v
P
j), valuep), val ∈ V ′.

That is, every non-? vertex from the pattern must match a different
vertex from G′; every non-RegExp edge from the pattern must match an edge
from G′; and every RegExp edge from the pattern must match a series of edges
from G′. Subgraph G′ should be minimal.

Example. We can presume that agent Alice knows that agent CS Course
Attendance is interested in the pattern2 . This pattern fully matches the con-
text graph held by agent Alice, with the solution CS Course Attendance

(
within−−−→ 14:00-16:00 isa−→ Time Interval)

part−of−−−−→ Schedule
of−→ Alice. Agent

2We use the following notation for graphs written in text, using labeled (if the edge is
labeled) right arrows, parentheses and stars ("?"): a graph with three nodes A, B and C
and two edges, from A to B, and from B to C, is written as A −→ B −→ C; a tree with the
root A having two children B and C is written as A(−→ B) −→ C; a graph with three nodes
forming a loop is written as A −→ B −→ C −→ ?A (the star is are used because the node A has
been previously referred before (and its definition is elsewhere); finally, a graph with two
loops ABCA and ABDA is written as B(−→ C −→ A −→ ?B) −→ D −→ ?A (every edge appears
only once).

An Agent-Oriented Approach for Ambient Intelligence 55

Alice will send to CSCourseAttendance this solution, thus informing it of Al-
ice’s participation to the course.

Table 3
Pseudo-code for the behavior of an agent.

Algorithm for agent A
· receivePatternFromNeighbor(GP

sB , B)
addToNeighborPatterns(B,GP

sB) // store the association

· receiveInformationFromNeighbor(GiB , B)
(G′, k) = match(GiB , GA) // GA: agent’s context graph
if(k > 0 and k < integration_threshold)
merge(GiB , GA)

else
discard // either already known (k = 0) or

not relevant enough

· doPatternMatching
foreach((Ag,GP

s) // pair agent-pattern
∈ AgentPatterns ∪NeighborPatterns) // own or neighbors’

(G′, k) = match(GP
s , GA) // matching subgraph, k

if(k = 0 and Ag 6= A) // full match of neighbor pattern
send(Ag,G′) // send the information to the agent

if(k = 0 and Ag = A and isProblem(GP
s)) // an existing problem was solved

removeProblem(GP
s)

informUserProblemSolved()
if(k > 0 and Ag = A

and k < problem_threshold) // almost matching
addProblem(GP

s)
disseminatePattern(GP

s) // wait for neighbors to provide so-
lution

A pattern GP
s k-matches (matches except for k edges) a subgraph G′ of

G, if condition (2) above is fulfilled for m − k edges in EP
s , k ∈ [1,m − 1],

m = ||EP
s || and G′ remains connected and minimal.

A k-matching pattern with k above a certain threshold may indicate a
problem in the situation of the user: the pattern matches, therefore the user
is in the specified situation, but some elements are missing, therefore it may
mean that the agent should try and retrieve those elements.

6. Agent Behavior

The purpose of agents is to obtain information that is relevant to them
– and therefore to the users. An agent A obtains information by express-
ing interest in certain types of information, and then waiting for information
matching that interest to be shared with it. Expressing interest is done by
sending context patterns to the neighbor agents. Then, neighbors will send
information that matches the patterns to agent A.

56 Andrei Olaru, Adina Magda Florea, Amal El Fallah Seghrouchni

We can identify certain components of the behavior of an agent: receiving
a pattern from another agent, expressing interest; receiving an information
from another agent, as a consequence of expressing interest; there is a pattern-
match between a context pattern and the agent’s context graph. These three
components are presented in the algorithm in Table 3.

Example. Let us go back to our scenario: we know that the Cours-
eStarter service (which is an agent) collects information on the details of the
students’ attendance to the course. This interest will be represented by a pat-
tern of the form3 ?Activity(

within−−−→?Time Interval)
part-of∗ of−−−−−−→?User

part-of−−−−→
CSCourse. According to the agent behavior, it will send this pattern to
the neighbors that are potentially interested by it – in this case, CSCourse.
CSCourse knows the users that participate in the course, so it will be able to
give multiple solutions to the sub-pattern ?User

part-of−−−−→ CSCourse. Hav-
ing instantiated the solutions, it will send one of the partially-solved, i.e.
?Activity(

within−−−→?Time Interval)
part-of∗ of−−−−−−→ Alice to CSCourseAttendance,

which has previously given information related to user Alice. According to
the previous example (in Section 5), CSCourseAttendance already holds the
appropriate information and returns the solution to CSCourse, which in turn
will send it to CourseStarter (knowing the correspondence between the agents
and the patterns they are interested in).

7. Conclusions and Future Work

Using agent for the implementation of a generic application layer for
AmI, based on information exchange, has very good potential. In this context,
we have developed an approach to building a MAS for AmI characterized
by a context-aware topology, graph-based context representation and context
patterns, as well as a behavior that assures that an agent is obtaining relevant
information.

We have not discussed in this paper about the dynamic nature of context
and how the agent topology should change in order to adapt to new contexts.
Another aspect of future work is the integration of uncertainty in the repre-
sentation of information.

Acknowledgments

This work has been funded by the Sectoral Operational Programme Hu-
man Resources Development 2007-2013 of the Romanian Ministry of Labour,
Family and Social Protection through the Financial Agreement POSDRU/6/
1.5/S/16 and by Agence Universitaire de la Francophonie.

3We will shorten the writing of subgraphs of the from ?
isa−−→ Type to just ?Type.

An Agent-Oriented Approach for Ambient Intelligence 57

REFERENCES

[1] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten and J. Burgelman. Scenarios for
ambient intelligence in 2010. Tech. rep., Office for Official Publications of the European
Communities, 2001.

[2] G. Riva, F. Vatalaro, F. Davide and M. Alcañiz, eds. Ambient Intelligence. IOS Press
Amsterdam, 2005.

[3] A. El Fallah Seghrouchni. Intelligence ambiante, les defis scientifiques. presentation,
Colloque Intelligence Ambiante, Forum Atena, 2008.

[4] C. Ramos, J. C. Augusto and D. Shapiro. Ambient intelligence - the next step for
artificial intelligence. IEEE Intelligent Systems, vol. 23, no. 2, pp. 15–18, 2008.

[5] J. Ferber. Multi-agent systems: an introduction to distributed artificial intelligence.
Addison-Wesley, 1999.

[6] H. Chen, T. W. Finin, A. Joshi, L. Kagal, F. Perich and D. Chakraborty. Intelligent
agents meet the semantic web in smart spaces. IEEE Internet Computing, vol. 8, no. 6,
pp. 69–79, 2004.

[7] S. Costantini, L. Mostarda, A. Tocchio and P. Tsintza. DALICA: Agent-based ambient
intelligence for cultural-heritage scenarios. IEEE Intelligent Systems, vol. 23, no. 2, pp.
34–41, 2008.

[8] H. Hagras, V. Callaghan, M. Colley, G. Clarke, A. Pounds-Cornish and H. Duman.
Creating an ambient-intelligence environment using embedded agents. IEEE Intelligent
Systems, pp. 12–20, 2004.

[9] N. M. Sadeh, F. L. Gandon and O. B. Kwon. Ambient intelligence: The MyCampus
experience. Tech. Rep. CMU-ISRI-05-123, School of Computer Science, Carnagie Mellon
University, 2005.

[10] T. C. Lech and L. W. M. Wienhofen. AmbieAgents: a scalable infrastructure for mobile
and context-aware information services. Proceedings of the 4th International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS 2005), July 25-29,
2005, Utrecht, The Netherlands, pp. 625–631, 2005.

[11] L. Feng, P. M. G. Apers and W. Jonker. Towards context-aware data management for
ambient intelligence. In F. Galindo, M. Takizawa and R. Traunmüller, eds., Proceed-
ings of DEXA 2004, 15th International Conference on Database and Expert Systems
Applications, Zaragoza, Spain, August 30 - September 3, vol. 3180 of Lecture Notes in
Computer Science, pp. 422–431. Springer, 2004.

[12] G. Cabri, L. Ferrari, L. Leonardi and F. Zambonelli. The LAICA project: Support-
ing ambient intelligence via agents and ad-hoc middleware. Proceedings of WETICE
2005, 14th IEEE International Workshops on Enabling Technologies, 13-15 June 2005,
Linköping, Sweden, pp. 39–46, 2005.

[13] I. Satoh. Mobile agents for ambient intelligence. In Proceedings of Massively Multi-
Agent Systems I, First International Workshop, MMAS 2004, Kyoto, Japan, December
10-11, 2004, Revised Selected and Invited Papers, vol. 3446 of Lecture Notes in Com-
puter Science, pp. 187–201. Springer, 2004.

[14] C. Muldoon, G. M. P. O’Hare, R. W. Collier and M. J. O’Grady. Agent factory micro
edition: A framework for ambient applications. In V. N. Alexandrov, G. D. van Albada,
P. M. A. Sloot and J. Dongarra, eds., Proceedings of ICCS 2006, 6th International
Conference on Computational Science, Reading, UK, May 28-31, vol. 3993 of Lecture
Notes in Computer Science, pp. 727–734. Springer, 2006.

[15] M. Hellenschmidt. Distributed implementation of a self-organizing appliance middle-
ware. In N. Davies, T. Kirste and H. Schumann, eds., Mobile Computing and Ambient
Intelligence, vol. 05181 of Dagstuhl Seminar Proceedings, pp. 201–206. ACM, IBFI,
Schloss Dagstuhl, Germany, 2005.

58 Andrei Olaru, Adina Magda Florea, Amal El Fallah Seghrouchni

[16] A. Dey, G. Abowd and D. Salber. A context-based infrastructure for smart environ-
ments. Proceedings of the 1st International Workshop on Managing Interactions in
Smart Environments (MANSE’99), pp. 114–128, 1999.

[17] J. Hong and J. Landay. An infrastructure approach to context-aware computing.
Human-Computer Interaction, vol. 16, no. 2, pp. 287–303, 2001.

[18] A. Harter, A. Hopper, P. Steggles, A. Ward and P. Webster. The anatomy of a context-
aware application. Wireless Networks, vol. 8, no. 2, pp. 187–197, 2002.

[19] K. Henricksen and J. Indulska. Developing context-aware pervasive computing appli-
cations: Models and approach. Pervasive and Mobile Computing, vol. 2, no. 1, pp.
37–64, 2006.

[20] M. Baldauf, S. Dustdar and F. Rosenberg. A survey on context-aware systems. Inter-
national Journal of Ad Hoc and Ubiquitous Computing, vol. 2, no. 4, pp. 263–277,
2007.

[21] G. Chen and D. Kotz. A survey of context-aware mobile computing research. Technical
Report TR2000-381, Dartmouth College, 2000.

[22] A. Olaru, A. El Fallah Seghrouchni and A. M. Florea. Ambient intelligence: From sce-
nario analysis towards a bottom-up design. In M. Essaaidi, M. Malgeri and C. Badica,
eds., Intelligent Distributed Computing IV, Proceedings of the 4th International Sympo-
sium on Intelligent Distributed Computing - IDC 2010, Tangier, Morocco, September
16-18 2010, vol. 315 of Studies in Computational Intelligence, pp. 165–170. Springer
Berlin / Heidelberg, 2010.

[23] M. Perttunen, J. Riekki and O. Lassila. Context representation and reasoning in per-
vasive computing: a review. International Journal of Multimedia and Ubiquitous Engi-
neering, vol. 4, no. 4, pp. 1–28, 2009.

[24] T. Strang and C. Linnhoff-Popien. A context modeling survey. Workshop on Advanced
Context Modelling, Reasoning and Management as part of UbiComp, pp. 1–8, 2004.

[25] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ranganathan and
D. Riboni. A survey of context modelling and reasoning techniques. Pervasive and Mo-
bile Computing, vol. 6, no. 2, pp. 161–180, 2010.

[26] A. Olaru, C. Gratie and A. M. Florea. Context-aware emergent behaviour in a MAS for
information exchange. Scalable Computing: Practice and Experience, vol. 11, no. 1,
pp. 33–42, 2010.

[27] A. El Fallah Seghrouchni, A. Olaru, T. T. N. Nguyen and D. Salomone. Ao Dai: Agent
oriented design for ambient intelligence. In N. Desai, A. Liu and M. Winikoff, eds.,
Principles and Practice of Multi-Agent Systems, 13th International Conference, PRIMA
2010, Kolkata, India, November 12-15, 2010, Revised Selected Papers, vol. 7057 of
Lecture Notes in Computer Science, pp. 259–269. Springer Berlin / Heidelberg, 2011.

[28] A. Olaru, A. M. Florea and A. El Fallah Seghrouchni. Graphs and patterns for context-
awareness. In P. Novais, D. Preuveneers and J. Corchado, eds., Ambient Intelligence
- Software and Applications, 2nd International Symposium on Ambient Intelligence
(ISAmI 2011), University of Salamanca (Spain) 6-8th April, 2011, vol. 92 of Advances
in Intelligent and Soft Computing, pp. 165–172. Springer Berlin / Heidelberg, 2011.

