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ON BIPRODUCTS AND TERMINAL COALGEBRAS

Adriana Balan1

A category C with (countable) biproducts admits summation of countable families
of arrows. If this summation is also idempotent, then a version of limit-colimit coincidence
holds. In particular, for a C -endofunctor H which is ωop-continuous, the initial H-algebra
and the terminal H-coalgebra coincide. This applies to the case of monadic category C

with such biproducts as above, and the endofunctor H comes from a lifting.
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1. Introduction

Categories with countable biproducts are models of the partially additive categories
introduced by Manes and Arbib ([3]) as an algebraic semantics for programming languages.

They have been also shown to closely relate to iteration theories and categories with
fixed-point operations ([8]), as they provide a categorical method for the construction of a
trace operator. More recently, it was noticed that strong unique decomposition categories
can be characterized in terms of faithful embeddings into categories with countable biprod-
ucts ([10]).

Infinite data structures, like streams or infinite trees, are often used to model dynami-
cal processes and to compute solutions for them, by means of coalgebraic techniques. They
usually arise as solutions of recursive definitions, in the form X ∼= HX , where H is a func-
tor (a type constructor), that is, are fixed points of H (terminal coalgebras). Thanks to the
properties of terminal coalgebras, proofs within infinite data structures can be conveniently
managed by coinduction. But usually infinite data structures carry additional algebraic
structure, coming from the existence of a lift of H to some category of algebras. If the cat-
egory of algebras is conveniently chosen (has countable biproducts), proving things about
them can be more easily managed by induction instead of coinduction, as soon as the lifted
functor has the unique fixed point property.

The paper is organized as follows: Section 2 contains an introduction to categories
with countable biproducts. One main feature of such categories is the existence of a summa-
tion operator, defined on countable families of arrows, with nice behaviour: associativity,
commutativity, additive identity. Examples of such categories are Rel, the category of sets
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and relations, and ωSLat, the category of countably sup-semilattices and continuous mor-
phisms. For both examples, the summation on arrows is idempotent. However, it turns out
that it does not hold in arbitrary categories with countable biproducts. If assumed sepa-
rately, it is equivalent with enrichment over countably sup-semilattices. In particular, there
is a natural partial order on arrows completely characterized by summation.

Section 3 contains the technical result of the paper. Under some mild assumptions
of splitting idempotents, a version of the limit-colimit coincidence holds for ω-chains of
embedding-projection pairs. In Section 4 we apply the above result to the initial-terminal
chain of an endofunctor H on C . Under the assumption of ωop-continuity and preservation
of the natural order on arrows, such a functor has the unique fixed point property, that is,
the initial algebra and the final coalgebra coincide. In the sequel, we give some examples
of such functors which arise as liftings when the category C is taken to be the category of
algebras for a monad. The last Section contains some concluding remarks and thoughts on
future research directions.

2. Preliminaries: biproducts and enrichment

Let C be a category. Objects of C will be denoted by X ,Y, . . .. We shall write idX for
the identity morphism of an object X of C Assume C has a zero object denoted 0.2 Then C

has also zero morphisms defined as 0X ,Y : X → 0→ Y , for each pair of objects X ,Y .3

We consider that the category C has countable 4 coproducts and products. For a
countable set I5 and a family of objects (Xi)i∈I , denote by ini : Xi → ⊔i∈IXi the canonical
morphisms into the coproduct, respectively by pri : ⊓i∈IXi → Xi the projections from the
product to the components. Then for any indexing sets I,J, a morphism f :⊔i∈IXi→⊓ j∈JYj

is uniquely determined by its components fi j : Xi→ Yj, where fi j = pr j f ini. In particular,
using the zero morphisms, one can construct a canonical map from the I-th coproduct into
the product indexed by same set I, θ : ⊔i∈IXi→⊓i∈IXi given by

pr jθ ini =

{
idXi , if i = j

0 , otherwise

Definition 2.1. C is said to have countable biproducts if θ is an isomorphism for all count-
able indexing sets I.6

We shall identify in the sequel the coproduct and the product via this isomorphism
and denote them by ⊕i∈IXi (the biproduct of the family (Xi)i∈I).

2A zero object is an object simultaneously initial and terminal ([17])
3That is, C is enriched over pointed sets and the enrichment is unique ([17]).
4By which we mean finite or denumbrable.
5For now on, all index sets will be assumed countable.
6In fact, any natural isomorphism will suffice – see [16] and [11].
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From now on we shall assume C has countable biproducts. For a (countable) index-
ing set I and a family of objects (Xi)i∈I , it is easy to see that the projections pri :⊕i∈IXi→ Xi

and the injections ini : Xi→⊕i∈IXi satisfy pr jini =

{
idXi , if i = j

0 , otherwise
.

Let ⊕i∈I fi :⊕i∈IXi→⊕i∈IX ′i be the arrow induced by a family of morphisms (Xi
fi→

X ′i )i∈I . That is, pr j(⊕i∈I fi)ink =

{
fi , if i = j = k

0 , otherwise
.

We shall denote the biproduct of I copies of an object X as X⊕I . Let ∆ : X→ X⊕I and
by ∇ : X⊕I→X be the diagonal and the codiagonal morphisms determined by pri∆= idX , re-
spectively ∇ini = idX for all i ∈ I. Then for any family of maps

( fi : X → Y )i∈I , define ∑i∈I fi to be the composite X ∆→ X⊕I ⊕i∈I fi→ Y⊕I ∇→ Y . In particu-
lar, for I the empty set, the resulting arrow is the zero morphism. For any pair of arrows

f ,g : X → Y , we shall write f +g for the composite X ∆→ X⊕X
f⊕g→ Y ⊕Y ∇→ Y .

Then C becomes a partially additive category with all (countable) families of mor-
phisms summable. We do not intend to recall here all the theory of partially additive cat-
egory (for which we refer to [2], [8] for a complete and detailed exposition); we just em-
phasize that the summation is commutative and associative (more generally, invariant under
permutation of terms), has the zero morphism as countably additive identity, and there are
no additive inverses. Composition of arrows distributes over summation from left and right.
The canonical injections and projections satisfy ∑i∈I inipri = id, for each indexing set I.

Example 2.1. (i) In Rel, the category of sets and relations, arbitrary coproducts (dis-
joint unions) are also products, thus biproducts. In particular, Rel has countable
biproducts and the induced summation on relations is their union.

(ii) The category ωSLat of countably sup-semilattices has countable biproducts. Re-
call that a countably sup-semilattice is a poset such that any countable subset has a
supremum (in particular, the empty set has a supremum, thus the poset has a least el-
ement). A morphism of countably sup-semilattices is a function preserving all count-
able suprema; in particular, it preserves the least element and the order. The category
of countably sup-semilattices is an (infinitary) variety, as it is the category of alge-
bras for the countably power-set monad. Consequently, (categorical) products of
countably-sup-semilattices exist and are formed as in Set. These are also coproducts,
in case the indexing set is countable. Thus ωSlat has countable biproducts (this can
be easily shown as in [13], where the case of all (small) biproducts is considered).

The above examples have one common feature, namely the summation on arrows is
countably idempotent. It is worth noticing that not all categories with countable biprod-
ucts have this property: take S to be a countably complete semiring 7 which is not idem-
potent (for example, take S = (N ∪ {∞},+, ·,0,1) with + and · defined in an obvious

7That is, countable sums exist in S, are an extension of finite sums, are associative and commutative and
satisfy the distributivity laws with respect to multiplication (see [7], [15]).
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fashion - notice that ∞ · 0 = 0 ·∞ = 0) and C be the category of (left) countably com-
plete S-semimodules and S-linear maps ([7]). C is monadic over Set, for the monad
MX = { f : X → S | supp( f ) countable},8 thus products in C are formed as in Set, and
it can be easily seen that countable products are also coproducts. Thus there is a well-
defined countable summation on arrows. The homset of algebra maps M1→ M1 can be
identified with M1 = S, and the corresponding summation on arrows coincides with the
original addition on S. But this was assumed non-idempotent.

In view of the above observations, it seems that idempotency of summation does not
come for free. We shall assume it holds in C in the sequel: for each countable non-empty
set I and for each morphism f : X → Y , ∑i∈I f = f .

The above assumption allows us to define a partial order on arrows: f ⊑ g for f ,g :
X →Y if there is h : X →Y such that f +h = g (equivalently, if f +g = g). The supremum
of two arrows two arrows f ,g is their sum f +g. This also extends to countable family of
arrows, and left or right composition preserves such supremum. The least element is the
zero map, also preserved by composition. In other words, C is enriched over ωSLat.9

Remark 2.1. If C is any ωSLat-enriched category with countable products (or count-
able coproducts), then one can reason as in the finite case (enrichment over commutative
monoids, and existence of finite (co)products) to conclude that these are actually biproducts.
The induced summation on arrows coincides with the supremum in each sup-semilattice
homset, and the idempotency of summation of arrows is a consequence of enrichment. We
preferred starting with an arbitrary C with countable biproducts specially to emphasize
that idempotency (which will turn to be crucial in the sequel) does not come for free for
arbitrary categories with countable biproducts.

3. On (co)limits of ω-chains

Let C be an ωSLat-enriched category with countable biproducts. Consider the fol-
lowing diagram in C

X0
ψ0

�
φ0

X1 � . . .� Xn

ψn

�
φn

. . . (1)

such that ψnφn = idXn for each n ∈ N. For each n,k ∈ N, denote by ξn,k : Xn → Xk the
morphism given by

ξn,k =


id , if n = k

φnφn+1 . . .φk−1 , if n < k

ψkψk+1 . . .ψn−1 , if n > k

The family of arrows (ξn,k)n,k∈N verifies ψkξn,k+1 = ξn,k = ξn+1,kφn for all n,k. Let ξ :
⊕n∈NXn → ⊕n∈NXn the arrow induced by this family. Thus prnξ ink = ξn,k holds for all
n,k ∈ N.

8Here supp( f ) = {x ∈ X | f (x) ̸= 0}.
9Note also that each homset of endomorphisms C (X ,X) becomes a closed semiring ([14]) with the above

summation as addition and composition as multiplication.
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Lemma 3.1. ξ is idempotent if and only if φnψn ⊑ idXn+1 for all n ∈ N.

Proof. The proof is left to the reader, taking into account that the sum of morphisms is also
their supremum. �

Proposition 3.1. If ξ is idempotent and splits as ⊕n∈NXn
r→ L i→⊕n∈NXn, then (L,(Xn

inn−→
⊕n∈NXn

r→ L)n∈N) is the colimit of the chain (Xn,φn)n∈N, and the limit of the cochain
(Xn,ψn)n∈N is (L,(L i→⊕n∈NXn

prn−→ Xn)n∈N).

Proof. We show only the first statement, the other one following by duality. Denote by jn
the morphism Xn

inn→⊕n∈NXn
r→ L. Then

jn+1φn = r inn+1φn

= rξ inn+1φn

= ∑
n∈N

r inkprkξ inn+1φn

= ∑
n∈N

rinkξn+1,kφn

= ∑
n∈N

rinkξn,k

= ∑
n∈N

rinkprkξ inn

= rξ inn

= jn

hence (L,( jn)n∈N) is a compatible cone. We show now it is the colimiting cone: take
(A,(Xn

an→ A)n∈N) another cone over the diagram (Xn,φn)n∈N and denote by a :⊕n∈NXn→ A
the corresponding arrow given by the universality of coproducts. Then for the morphism
ā : L i→⊕n∈NXn

a→ A we have

ā jn = ār inn

= air inn

= aξ inn

= ∑
n∈N

a inkprkξ inn

= ∑
n∈N

akξn,k

Notice now that for k ≥ n, we have akξn,k = akφk−1 . . .φn = an, while for k < n, we obtain
akξn,k = ak+1φkψk . . .ψn−1 ⊑ ak+1ψk+1 . . .ψn−1 ⊑ . . . ⊑ an. Therefore ā jn = an for all n.

Now, the unicity of the map L→ A follows from construction: if L b→ A would be any
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morphism verifying b jn = an, then

br = br ∑
n∈N

innprn

= ∑
n∈N

anprn

= a ∑
n∈N

innprn

= a

hence b = bri = ai = ā. �

Remark 3.1. (i) The splitting condition of the idempotent ξ is a mild condition, auto-
matically fulfilled in case C is Cauchy complete. This happens for example, when C

has all (co)equalizers.
(ii) As any countably sup-semilattice is in particular an ω-complete partial order, and

any morphism of sup-semilattices preserves (countable) joins, in particular joins
of ω-chains and bottom element (the zero morphism), it follows that C is ωcpo-
enriched. Therefore, one can apply the limit-colimit coincidence from [18] in order to
obtain the above result, as for each n, (φn,ψn) is an embedding-projection pair. How-
ever, we preferred the above approach to make more visible the impact of biproducts.

4. Biproducts and terminal coalgebras

Let C be a ωSLat-enriched category with countable biproducts, such that idempotent
splits in C . Consider an ωop-continuous endofunctor functor H : C → C .10 Then the
terminal H-coalgebra exists and can be obtained ([?]) as the limit of the sequence

0 !← H0← . . .← Hn Hn!← . . .

where ! : 0→H0 is the unique morphism to the zero object. Completing the above diagram

with the arrows Hn0
Hn¡→ Hn+10, where ¡ : 0→ H0 is the (only) morphism from the zero

object, produces the double chain

0
!
�

¡
H0 � . . .� Hn

Hn!
�
Hn¡

. . . (2)

If for each n, Hn!Hn¡ ⊑ idHn+10 holds, from the previous section we may conclude that the
terminal H-coalgebra carries also the structure of initial H-algebra.11

In order to come up with some relevant examples, our first attempt was to look at
functors H which are ωSLat-enriched (such H would preserve zero morphisms and (count-
able) summation of arrows, i.e. suprema; in particular it would preserve the order). How-
ever, this turned out to be rather deceiving, because preservation of zero morphisms imme-
diately implies preservation of the zero object (as in any category with zero morphisms, the
zero object is the only object for which the identity is also the zero morphism), therefore the

10That is, it preserves limits of ωop-chains.
11Not only being realized on same object, but also the structural morphism of H-algebra is the inverse of

the H-coalgebra structure morphism.
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terminal H-coalgebra (thus also the initial H-algebra), obtained as explained before, will be
trivial. So in order to insure the non-triviality of the sequence (2), it seems more-likely to
require that H preserves only the order on arrows, that is, to be locally monotone. This
happens in particular if H preserves binary sums of morphisms.
Countable biproducts in categories of algebras. Let A be a category with countable
products and coproducts and M a monad on A for which M0 = 1. For each (non-empty)
indexing set I and each i ∈ I, there is a map ⊔ j∈IX j → MXi, whose j-th component is the
unit of the monad Xi→MXi, for j = i, and X j→ 1 = M0→MXi, for j ̸= i. By the universal
property of products, we obtain a map ⊔i∈IXi→⊓i∈IMXi. It extends uniquely over the mul-
tiplication of the monad to a natural transformation bc : M(⊔i∈IXi)→⊓i∈IMXi. As in [6],
one can show that the natural transformation bc is an isomorphism for all (countable) index-
ing sets I precisely when the Kleisli category of the monad Kl(M) has (countable) biprod-
ucts, or equivalently, when the category of M-algebras Alg(M) has (countable) biproducts.
Call such a monad ω-additive. Moreover, if C has equalizers and coequalizers, then the
Eilenberg-Moore category is Cauchy complete (because it has equalizers), and the Kleisli
category is also because it inherits coequalizers from base category. Thus idempotents split
in both categories associated to the monad M. However, as explained in the first section
and also mentioned in [12], this is not enough to ensure ωSlat-enrichment. For an example
of ω-additive monad M such that both Kl(M) and Alg(M) are ωSLat-enriched, take any
quantale Q and the monad MX = { f : X →Q | supp( f ) countable} introduced in Section 2.
Locally monotone functors on categories of algebras. In the sequel, the category C is
the category of algebras Alg(M) for a monad M as above. For a discussion concerning the
Kleisli category, see [9]. First, a general remark: given any monad M on a category A (with
products), the family of A -endofunctors inductively defined by the grammar below always
admit liftings to Alg(M):

H ::= Id | KA | ⊓i∈IHi |MG (3)

where KA stands for the constant functor to an object A∈A carrying an M-algebra structure,
and G is any A -functor ([4], [5]). In particular, it includes also power functors like HI ,
for (countable) index set I, and binary products of functors H1×H2. For each such H,
the terminal H-coalgebra, if exists, naturally inherits an M-algebra structure making it the
terminal coalgebra for the lifted endofunctor H̄. Now, if the monad is ω-additive such
that Alg(M) becomes ωSLat-enriched, and the lifted endofunctor H̄ is ωop-continuous and
locally monotone, then H̄ has the unique fixed point property. See [4] for a discussion on
the ωop-continuity of the lifted functor. Here, we would rather focus on the second aspect,
the one of local monotonicity.
We show by induction of the above grammar that all functors of (3) lift to locally monotone
functors on Alg(M). First, the A -identity functor lifts to the identity on Alg(M) which is
obviously locally monotone. The constant functor to the object A ∈A lifts to the constant
functor to the M-algebra A sending any arrow to the identity of A. Again, this is locally
monotone.
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Consider now a countable set I and a family (Hi)i∈I of A -endofunctors having locally
monotone liftings (H̄i)i ∈ I on Alg(M). Then the lifting of ⊓i∈IHi is ⊕i∈IH̄i. Consider f ,g :
X → Y with f ⊑ g, equivalently f +g = g. Then H̄i f ⊑ H̄ig for all i by local monotonicity.
The top line in the diagram below is⊕i∈IHi f +⊕i∈IHig; the square in the middle commutes
by commutativity and associativity of the biproduct, while the two outer triangles commute
by naturality.

⊕
i∈I

HiX
∆ //

⊕
i∈I

∆
''NN

NNN
NNN

NNN
NN

(⊕
i∈I

HiX)⊕ (⊕
i∈I

HiX)

∼=
��

(⊕
i∈I

Hi f )⊕(⊕
i∈I

Hig)
//(⊕

i∈I
HiY )⊕ (⊕

i∈I
HiY )

∼=
��

∇ //⊕
i∈I

HiY

⊕
i∈I
(HiX⊕HiX)

⊕
i∈I
(Hi f⊕Hig)

//⊕
i∈I
(HiY ⊕HiY )

⊕
i∈I

∇

77ppppppppppppp

Thus the top and the bottom lines are equal, so ⊕i∈IHi f +⊕i∈IHig = ⊕i∈I(Hi f ⊕Hig) =
⊕i∈IHig. Note that the countability of the indexing set I was essential in establishing the
local monotonicity of the product functor.
Now let’s look at M itself; if we denote by F ⊣U : Alg(M)→ A the adjunction between
the corresponding free algebra functor and the forgetful one, then M lifts on Alg(M) to FU ,
the associated comonad. Take again a pair of algebra morphisms f ,g : X → Y with f ⊑ g
(hence f + g = g). In the diagram below, the natural isomorphisms αx,αY express that
F preserves coproducts (being a left adjoint), while βX : UX +UX →U(X ⊕X) and βY :
UY +UY →U(Y ⊕Y ) are given by the universality of coproducts; do not confuse U f +Ug,

which is the A -morphism UX +UX →UY +UY universally induced by UX
U f
⇒
Ug

UY , with

the summation of morphisms which holds in Alg(M).

FUX ∆ //

FU∆

��;
;;

;;
;;

;;
;;

;;
;;

;;
; FUX ⊕FUX

∼= αX
��

FU f⊕FUg // FUY ⊕FUY

∼=αY
��

∇ // FUY

F(UX +UX)

FβX
��

F(U f+Ug)
// F(UY +UY )

F∇
88qqqqqqqqqqq

FβY
��

FU(X⊕X)
FU( f⊕g)

// FU(Y ⊕Y )

FU∇

AA������������������
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All squares and triangles commute by naturality;12 thus we obtain

FU f +FUg =∇(FU f ⊕FUg)∆

=F∇αY (FU f ⊕FUg)∆

=F∇F(U f +Ug)αX ∆

=FU∇FβY F(U f +Ug)αX ∆

=FU∇FU( f ⊕g)FβX αX ∆

=FU∇FU( f ⊕g)FU∆

=FU( f +g)

=FUg

In particular, FU f ⊑ FUg, thus FU is locally monotone. By a similar argument one can
show that the lifting of MG (where G is any A -endofunctor), is locally monotone. We just
point out that the lifted functor is FGU . Thus all functors as above allow for locally mono-
tone liftings to Alg(M), therefore their associated final coalgebras also carry the structure
on an initial algebra for the lifted endofunctor.

5. Conclusions

It remains an open question on how to handle the behavior of diagrams like (1) in absence of
ωSLat-enrichment, that is, in absence of idempotency of summation. It is worth mentioning
that there are such categories with (countable) biproducts and endofunctors on them which
do not preserve the summation on arrows, but still have the unique fixed point property: for
instance take C = SProc, the category of synchronous processes ([1]) and H =⃝, the unit
delay functor (monad).
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